Item type |
学術雑誌論文 / Journal Article.(1) |
公開日 |
2019-08-22 |
書誌情報 |
en : Applied Science
巻 9,
号 9,
p. 1928,
発行日 2019-05-10
|
タイトル |
|
|
タイトル |
Enhancing Recommendation Accuracy of Item-Based Collaborative Filtering via Item-Variance Weighting |
|
言語 |
en |
言語 |
|
|
言語 |
eng |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
recommender system |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
item-based collaborative filtering |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
predictive accuracy |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
classification accuracy |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
item-variance weighting |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_6501 |
|
資源タイプ |
journal article |
アクセス権 |
|
|
アクセス権 |
open access |
|
アクセス権URI |
http://purl.org/coar/access_right/c_abf2 |
著者 |
張, 志鵬
工藤, 康生
村井, 哲也
REN, Yong-Gong
|
室蘭工業大学研究者データベースへのリンク |
|
|
表示名 |
工藤 康生(KUDO Yasuo) |
|
URL |
http://rdsoran.muroran-it.ac.jp/html/100000129_ja.html |
抄録 |
|
|
内容記述タイプ |
Abstract |
|
内容記述 |
Recommender systems (RS) analyze user rating information and recommend items that may interest users. Item-based collaborative filtering (IBCF) is widely used in RSs. However, traditional IBCF often cannot provide recommendations with good predictive and classification accuracy at the same time because it assigns equal weights to all items when computing similarity and prediction. However, some items are more relevant and should be assigned greater weight. To address this problem, we propose a niche approach to realize item-variance weighting in IBCF in this paper. In the proposed approach, to improve the predictive accuracy, a novel time-related correlation degree is proposed and applied to form time-aware similarity computation, which can estimate the relationship between two items and reduce the weight of the item rated over a long period. Furthermore, a covering-based rating prediction is proposed to increase classification accuracy, which combines the relationship between items and the target user’s preference into the predicted rating scores. Experimental results suggest that the proposed approach outperforms traditional IBCF and other existing work and can provide recommendations with satisfactory predictive and classification accuracy simultaneously. |
|
言語 |
en |
出版者 |
|
|
出版者 |
MDPI |
|
言語 |
en |
出版者版へのリンク |
|
|
表示名 |
10.3390/app9091928 |
|
URL |
https://doi.org/10.3390/app9091928 |
DOI |
|
|
関連タイプ |
isIdenticalTo |
|
|
識別子タイプ |
DOI |
|
|
関連識別子 |
10.3390/app9091928 |
日本十進分類法 |
|
|
主題Scheme |
NDC |
|
主題 |
007 |
ISSN |
|
|
収録物識別子タイプ |
EISSN |
|
収録物識別子 |
2076-3417 |
権利 |
|
|
言語 |
en |
|
権利情報 |
© 2019 by the authors; licensee MDPI AG, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/). |
著者版フラグ |
|
|
出版タイプ |
VoR |
|
出版タイプResource |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
主となる版 |
|
|
関連タイプ |
isVersionOf |
|
|
識別子タイプ |
URI |
|
|
関連識別子 |
https://www.mdpi.com/2076-3417/9/9/1928/pdf |
フォーマット |
|
|
内容記述タイプ |
Other |
|
内容記述 |
application/pdf |