Item type |
学術雑誌論文 / Journal Article.(1) |
公開日 |
2020-12-08 |
書誌情報 |
en : IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
巻 16,
号 5,
p. 3267-3277,
発行日 2020
|
タイトル |
|
|
タイトル |
DeSVig: Decentralized Swift Vigilance Against Adversarial Attacks in Industrial Artificial Intelligence Systems |
|
言語 |
en |
言語 |
|
|
言語 |
eng |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Deep learning |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Computational modeling |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Edge computing |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Data models |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Informatics |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Robustness |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
5G mobile communication |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Adversarial examples |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
deep learning |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
generative adversarial networks (GAN) |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
industrial artificial intelligence systems (IAISs) |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
mobile edge computing |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_6501 |
|
資源タイプ |
journal article |
アクセス権 |
|
|
アクセス権 |
open access |
|
アクセス権URI |
http://purl.org/coar/access_right/c_abf2 |
著者 |
LI, Gaolei
太田, 香
董, 冕雄
WU, Jun
LI, Jianhua
|
室蘭工業大学研究者データベースへのリンク |
|
|
表示名 |
太田 香(OTA Kaoru) |
|
URL |
http://rdsoran.muroran-it.ac.jp/html/100000140_ja.html |
室蘭工業大学研究者データベースへのリンク |
|
|
表示名 |
董 冕雄(DONG Mianxiong) |
|
URL |
http://rdsoran.muroran-it.ac.jp/html/100000145_ja.html |
抄録 |
|
|
内容記述タイプ |
Abstract |
|
内容記述 |
Individually reinforcing the robustness of a single deep learning model only gives limited security guarantees especially when facing adversarial examples. In this article, we propose DeSVig, a decentralized swift vigilance framework to identify adversarial attacks in an industrial artificial intelligence systems (IAISs), which enables IAISs to correct the mistake in a few seconds. The DeSVig is highly decentralized, which improves the effectiveness of recognizing abnormal inputs. We try to overcome the challenges on ultralow latency caused by dynamics in industries using peculiarly designated mobile edge computing and generative adversarial networks. The most important advantage of our work is that it can significantly reduce the failure risks of being deceived by adversarial examples, which is critical for safety-prioritized and delay-sensitive environments. In our experiments, adversarial examples of industrial electronic components are generated by several classical attacking models. Experimental results demonstrate that the DeSVig is more robust, efficient, and scalable than some state-of-art defenses. |
|
言語 |
en |
出版者 |
|
|
出版者 |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
|
言語 |
en |
出版者版へのリンク |
|
|
表示名 |
10.1109/TII.2019.2951766 |
|
URL |
https://doi.org/10.1109/TII.2019.2951766 |
DOI |
|
|
関連タイプ |
isVersionOf |
|
|
識別子タイプ |
DOI |
|
|
関連識別子 |
10.1109/TII.2019.2951766 |
日本十進分類法 |
|
|
主題Scheme |
NDC |
|
主題 |
007 |
ISSN |
|
|
収録物識別子タイプ |
PISSN |
|
収録物識別子 |
1551-3203 |
権利 |
|
|
言語 |
en |
|
権利情報 |
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
著者版フラグ |
|
|
出版タイプ |
AM |
|
出版タイプResource |
http://purl.org/coar/version/c_ab4af688f83e57aa |
フォーマット |
|
|
内容記述タイプ |
Other |
|
内容記述 |
application/pdf |