Item type |
学術雑誌論文 / Journal Article.(1) |
公開日 |
2020-12-08 |
書誌情報 |
en : IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE
巻 15,
号 1,
p. 32-43,
発行日 2020
|
タイトル |
|
|
タイトル |
Enabling Computational Intelligence for Green Internet of Things: Data-Driven Adaptation in LPWA Networking |
|
言語 |
en |
言語 |
|
|
言語 |
eng |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_6501 |
|
資源タイプ |
journal article |
アクセス権 |
|
|
アクセス権 |
open access |
|
アクセス権URI |
http://purl.org/coar/access_right/c_abf2 |
著者 |
ZHANG, Chaofeng
董, 冕雄
太田, 香
|
室蘭工業大学研究者データベースへのリンク |
|
|
表示名 |
董 冕雄(DONG Mianxiong) |
|
URL |
http://rdsoran.muroran-it.ac.jp/html/100000145_ja.html |
室蘭工業大学研究者データベースへのリンク |
|
|
表示名 |
太田 香(OTA Kaoru) |
|
URL |
http://rdsoran.muroran-it.ac.jp/html/100000140_ja.html |
抄録 |
|
|
内容記述タイプ |
Abstract |
|
内容記述 |
With the exponential expansion of the number of Internet of Things (IoT) devices, many state-of-the-art communication technologies are being developed to use the lowerpower but extensively deployed devices. Due to the limits of pure channel characteristics, most protocols cannot allow an IoT network to be simultaneously large-scale and energy-efficient, especially in hybrid architectures. However, different from the original intention to pursue faster and broader connectivity, the daily operation of IoT devices only requires stable and low-cost links. Thus, our design goal is to develop a comprehensive solution for intelligent green IoT networking to satisfy the modern requirements through a data-driven mechanism, so that the IoT networks use computational intelligence to realize self-regulation of composition, size minimization, and throughput optimization. To the best of our knowledge, this study is the first to use the green protocols of LoRa and ZigBee to establish an ad hoc network and solve the problem of energy efficiency. First, we propose a unique initialization mechanism that automatically schedules node clustering and throughput optimization. Then, each device executes a procedure to manage its own energy consumption to optimize switching in and out of sleep mode, which relies on AI-controlled service usage habit prediction to learn the future usage trend. Finally, our new theory is corroborated through real-world deployment and numerical comparisons. We believe that our new type of network organization and control system could improve the performance of all green-oriented IoT services and even change human lifestyle habits. |
|
言語 |
en |
出版者 |
|
|
出版者 |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
|
言語 |
en |
出版者版へのリンク |
|
|
表示名 |
10.1109/MCI.2019.2954642 |
|
URL |
https://doi.org/10.1109/MCI.2019.2954642 |
DOI |
|
|
関連タイプ |
isVersionOf |
|
|
識別子タイプ |
DOI |
|
|
関連識別子 |
10.1109/MCI.2019.2954642 |
日本十進分類法 |
|
|
主題Scheme |
NDC |
|
主題 |
007 |
ISSN |
|
|
収録物識別子タイプ |
PISSN |
|
収録物識別子 |
1556-603X |
権利 |
|
|
言語 |
en |
|
権利情報 |
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
著者版フラグ |
|
|
出版タイプ |
AM |
|
出版タイプResource |
http://purl.org/coar/version/c_ab4af688f83e57aa |
フォーマット |
|
|
内容記述タイプ |
Other |
|
内容記述 |
application/pdf |