We attempted a new approach based on a modern dynamical system theory to reconstruct the arterial blood pressure signals in relation to heart rate fluctuations of developing chick embryos. The dynamical systems approach in general is to model a phenomenon that is presented by a single time series record and approximate the dynamical property (e.g., heart rate fluctuations) of a system based only on information contained in a single-variable (arterial blood pressure) of the system. The time-series data of the arterial blood pressure was reconstructed in 3-dimensional space to draw characteristic orbits. Since the reconstructed orbits of the blood pressure should retain information contained in the pressure signals, we attempted to derive instantaneous heart rate(IHR) from the reconstructed orbits. The derived IHR presenting HR fluctuations coincided well with the IHR obtained conventionally from the peak-to-peak time intervals of the maximum blood pressure. Movements of the reconstructed orbits of the arterial blood pressure in 3-dimensional space reflected HR fluctuations (i.e., transient decelerations and accelerations).