Item type |
学術雑誌論文 / Journal Article.(1) |
公開日 |
2019-06-27 |
書誌情報 |
en : IEEE journal of biomedical and health informatics
巻 22,
号 6,
p. 1754-1764,
発行日 2018-03-26
|
タイトル |
|
|
タイトル |
Robust Activity Recognition for Aging Society |
|
言語 |
en |
言語 |
|
|
言語 |
eng |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Industry 4.0 |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
human activity recognition |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
elderly healthcare |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
unobtrusive monitoring |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
CNN |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_6501 |
|
資源タイプ |
journal article |
アクセス権 |
|
|
アクセス権 |
open access |
|
アクセス権URI |
http://purl.org/coar/access_right/c_abf2 |
著者 |
CHEN, Yi
YU, Li
太田, 香
董, 冕雄
|
室蘭工業大学研究者データベースへのリンク |
|
|
表示名 |
太田 香(OTA Kaoru) |
|
URL |
http://rdsoran.muroran-it.ac.jp/html/100000140_ja.html |
室蘭工業大学研究者データベースへのリンク |
|
|
表示名 |
董 冕雄(DONG Mianxiong) |
|
URL |
http://rdsoran.muroran-it.ac.jp/html/100000145_ja.html |
抄録 |
|
|
内容記述タイプ |
Abstract |
|
内容記述 |
Human activity recognition (HAR) is widely applied to many industrial applications. In the context of Industry 4.0, driven by the same demand of machines' self-organizing ability, HAR can also be adopted in elderly healthcare. However, HAR should be adaptive to the application scenarios in elderly healthcare. In this paper, we propose a nonintrusive activity recognition method that can be applied to long-term and unobtrusive monitoring for elderlies. The method is robust to obstruction and nontarget object interference. Skeleton sequence is estimated from RGB images. Based on two activity continuity metrics, an interframe matching algorithm is proposed to filter nontarget objects. In order to make full use of spatial-temporal information, we propose a novel activity encoding method based on the interframe joints distances. A convolutional neural network is used to learn the distinguishing features automatically. A specific data augmentation method is designed to avoid the overfitting problem on small-scale datasets. The experiments are performed on two public activity datasets and a newly released noisy activity dataset (NAD). The NAD contains obstruction, nontarget object interference. The experimental results show that the proposed method achieves the state-of-the-art performance while only using one ordinary camera. The proposed method is robust to a realistic environment. |
|
言語 |
en |
出版者 |
|
|
出版者 |
IEEE |
|
言語 |
en |
出版者版へのリンク |
|
|
表示名 |
10.1109/JBHI.2018.2819182 |
|
URL |
https://doi.org/10.1109/JBHI.2018.2819182 |
DOI |
|
|
関連タイプ |
isVersionOf |
|
|
識別子タイプ |
DOI |
|
|
関連識別子 |
10.1109/JBHI.2018.2819182 |
日本十進分類法 |
|
|
主題Scheme |
NDC |
|
主題 |
007 |
ISSN |
|
|
収録物識別子タイプ |
PISSN |
|
収録物識別子 |
2168-2194 |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AA12720964 |
権利 |
|
|
言語 |
en |
|
権利情報 |
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
著者版フラグ |
|
|
出版タイプ |
AM |
|
出版タイプResource |
http://purl.org/coar/version/c_ab4af688f83e57aa |
フォーマット |
|
|
内容記述タイプ |
Other |
|
内容記述 |
application/pdf |