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Abstract—The autonomous vehicle, as an emerging and rapidly
growing field, has received extensive attention for its futuristic
driving experiences. Although the fast developing depth sensors
and machine learning methods have given a huge boost to self-
driving research, existing autonomous driving vehicles do meet
with several avoidable accidents during their road testings. The
major cause is the misunderstanding between self-driving systems
and human drivers. To solve this problem, we propose a human-
like driving system in the paper to give autonomous vehicles
the ability to make decisions like a human. In our method, a
Convolutional Neural Network (CNN) model is used to detect,
recognize and abstract the information in the input road scene,
which is captured by the on-board sensors. And then a decision-
making system calculates the specific commands to control the
vehicles based on the abstractions. The biggest advantage of our
work is that we implement a decision-making system which can
well adapt to real-life road conditions, in which a massive number
of human drivers exist. In addition, we build our perception
system with only the depth information, rather than the unstable
RGB data. The experimental results give a good demonstration
of the efficiency and robustness of the proposed method.

Index Terms—Self-driving, autonomous vehicles, collision
avoidance system, vehicle control, machine learning.

I. INTRODUCTION

In recent years, autonomous vehicles have become a popular
topic, not only in the field of research but also in the appli-
cation domain. Many encouraging approaches and prototypes
have been made. However, the existing self-driving strategies
focus too much on the “correctness”, and, to some extent,
overlook the human personality and social intelligence [1].
For example, during the road testing on February 14th, 2016,
a Google autonomous car crashed into a municipal bus, which
does not give way to the car but is predicted to slow or stop
by the self-driving system. Google believes this accident is
due to some misunderstanding and can be used as a valuable
experience for the self-driving system [2]. They also state that
their cars will have the knowledge that the larger vehicles are
more unwilling to yield, and some software adjustments will
be made to avoid this type of collision in the future.

In some complex conditions, autonomous vehicles should
have the ability to perform human-like decisions and judg-
ments, in which both correctness and social intelligence are
essential. Undoubtedly, traffic regulations must be observed.
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But beyond that, predictions and understandings are also
required. From determining whether the car behind is going
to yield to avoiding a driver who seems drunk or tired, human
drivers do these speculations all the time behind the wheel.
Since human drivers will exist for a long time to come,
self-driving systems with poor human understanding ability
may struggle in the road testing, not to mention practical
applications. Indeed, in most accident reports of self-driving
vehicles, it is the human drivers that should bear the main
responsibility. Therefore, to improve the self-driving perfor-
mance in real-life road conditions, where most vehicles are in
the hands of human drivers, we design an autonomous driving
system in the paper to understand complicated road conditions
and, based on that, make human-like decisions. As shown in
Fig. 1, the proposed system prefers to thinking like a human,
while traditional approaches make decisions according to the
software settings.

In order to simplify the complexity of the decision-making
system, we adopt a scene understanding subsystem to generate
the abstractions from the raw input. This system only takes the
3D data from the light detection and ranging (LiDAR) sensor,
which is able to generate stable and robust images in both light
and dark environments. Using the past work experience, we
propose a LiDAR-only scene understanding and abstraction
method, as a component of the proposed system. In our
method, RGB data is only used in the detection of nearby
lane markings, which can always be covered by the headlight.
And only depth information is needed in the detection and
classification of other objects, e.g. cars, buses, trunks, etc.

In the paper, we focus on the autonomous decision-making
system and implement it on the basis of a deep learning model.
The main contributions of our work include:

• We work out an autonomous decision-making system
to imitate human drivers’ social intelligence, which can
better adapt the self-driving vehicles to the real-life road
conditions.

• We design an efficient training scheme for self-driving
systems, which can significantly improve the quality and
speed of data collection, and alleviate the tedious and
time-consuming manual labeling process.

• We find an approach to analyze the reason that the deep
learning system makes specific decisions. As far as we
know, this is one of the first attempts in the self-driving
area. In our opinion, this kind of analysis is of big
significance to testing and validating autonomous driving
systems.
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Fig. 1. Differences between traditional “correct” self-driving and the proposed
human-like driving. The former acts on the “correctness” defined by the
program, while the latter attempts to understand humanity and imitate their
thinking.

II. RELATED WORKS

A. Scene Understanding

There have been several attempts to adopt scene under-
standing methods in the self-driving area [3]. Generally, scene
understanding can be divided into three steps, i.e., image
acquisition, object proposal and object recognition. We will
give them a brief review.

Data acquisition for 2D images is simple. The key problem
is how to obtain the 3D information efficiently. Fortunately,
this is a fundamental task in robotic and self-driving systems,
and many effective approaches have been proposed, e.g. [4]–
[6].

Object proposal, which is also called the object detection
and localization, is the first step in the whole scene under-
standing procedure. Only with properly proposed object can-
didates, the following object recognition can work correctly.
While exhaustive search methods are able to correctly select
objects with appropriately selected detection methods, it is too
time-consuming and inefficient, considering the whole image
space. Uijlings et al. [7] present a novel selective search
method, which not only captures all scales but is fast to
compute. The authors adopt a diverse set of complementary
and hierarchical grouping strategies and work out an efficient,
robust and stable proposal method. And then, Ren et al. [8]
address this problem with fast-growing deep neural networks,
and successfully achieve state-of-art performance. This work
proves the feasibility and efficiency of the new emerging
machine learning technologies when applied to object proposal
problems. This is a totally new attempt and provides great
insight into the object proposal field. Then some researchers
begin to consider this problem in 3D images. Chen et al. [9]
formulate this problem as minimizing a function involving free
space, distance to the ground, point cloud densities and other
information. Then the proposed method is able to place 3D
box depending on the result to give out the object proposals.

There are also some scene recognition methods focused on
the 3D images, such as [10]–[12]. We also work out a view-
invariant 3D recognition method in [13], which can efficiently
recognize the 3D scenes captured by the depth sensors.

Our main objective in this paper is to find a robust scene
understanding and abstraction network for the subsequent
driving decision-making process. Therefore, we combine the
existing scene understanding approaches with the real-life
road conditions and propose a perception system applicable
to autonomous vehicles. The biggest difference between our
work with existing methods is, we avoid the use of unstable
RGB data for a more robust road scene understanding ability.

B. Driving Decision Making

With the rapid development of computer vision, engi-
neering, networking, etc. [14]–[21], the newly-emerged au-
tonomous vehicle has become a feasible and promising tech-
nology. However, the driving decision-making is still a re-
search area under development. Although many researchers
have proposed their theories and implementations [22]–[25],
there are lots of problems to be resolved. Currently, most
of the driving decision-making systems can be categorized
into two major paradigms, i.e., behavior reflex approaches and
abstraction calculation approaches.

Behavior reflex approaches directly map the input images
to several pre-defined driving commands. LeCun et al. [26]
propose an obstacle avoidance system for mobile robots. This
system is trained from end to end to map raw input images
to control commands. A CNN model is used in this system
to learn the mapping relationship between images and driver’s
steering angles. And the mobile robot achieves an excellent
performance in obstacle detection and path navigation. Hadsell
et al. [27] work out a self-supervised learning method for
mobile robots with long-range vision. In this system, a deep
CNN model is trained to extract informative and meaningful
features from captured images, and predict the transferability
of the input scene. The classifier is real-time and can obtain
obstacles and paths from 5 to 100 m.

Abstraction calculation approaches abstract the road con-
dition to some representations for better understanding and
calculation. Chen et al. [28] map the input scene to several
key perception indicators which are directly related to the
affordance of current road condition, and adopt a simple con-
troller to control the self-driving vehicles. Simulation results
demonstrate their system can generalize well to real driving
images. However, their controller logic is oversimplified for
real-life road conditions. Xiong et al. [29] combine deep
reinforcement learning and safety-based control, and propose
a self-driving and collision avoidance system, which can learn
the driving policy in a stable and familiar environment. This
is an interesting attempt, but their research is not complete
and sufficient enough for a truly feasible autonomous driving
system.

The proposed decision-making system in the paper belongs
to the abstraction calculation approaches. And the most sig-
nificant difference between our method and these existing
approaches is, we put our emphasis on the human-like thinking
ability. The proposed system has a complete and sophisticated
control logic. Also, we combine the decision-making with the
security control to make an efficient and secure self-driving
system.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2017 3

TABLE I
NOTATION LIST

Name Meaning

X An input scene, which is a set of images
A An input abstraction set
Y Set of true labels of the vehicle category
P Set of true labels of the vehicle speed
T Set of true labels of the vehicle steering
W Weights of the deep model
B Biases of the deep model
L The loss functions of the adopted deep models
λ The pre-defined term weights for each loss functions
U The repulsive potential
F The repulsive force
η Positive scaling factor

III. SYSTEM OVERVIEW

A. Problem Definition and System Framework

Given a collection of road scene images X , which are
captured by on-board sensors during driving and consist all
necessary information regarding the road condition at a certain
moment, we can describe the goal of the proposed self-driving
system as below. For each input scene X , the perception
subsystem will recognize as many as possible vehicles on the
road and give them accurate labels. Then the decision-making
subsystem should give out some advice Dh regarding the
speed and steering, according to the abstraction A of current
road condition, and, ultimately, generate the precise driving
command dfin, considering the security policy. We list the
adopted notations in Table I.

We introduce the system framework in Fig. 2 to give a
brief description of the proposed system. As can be seen,
the vehicles use the CNN models to respectively perform
the detection and recognition task, then the abstraction results
will be transferred to the decision-making system. As for the
markings, they are processed by several simple edge detection
methods. For brevity, they are omitted in the paper.

After the perception process, the decision-making network
calculates the driving decisions based on these abstractions.
The decision-making model is the focus of this research, and
we give it a detail introduction in Section IV. In addition, an
influence analysis module is included in the model to clarify
the specific relationship between the road conditions and the
output decision.

B. 3D Perception and Abstraction

One major characteristic of the abstraction calculation ap-
proaches is that the abstraction of the road condition is
generated before making driving decisions. In this procedure,
a robust and efficient 3D perception method is essential to
obtain the accurate understanding of the input images, which is
captured by the sensors equipped on the self-driving vehicles.
This task is also called scene understanding, one hot topic in
computer vision area. However, as mentioned above, the tra-
ditional methods struggle in the perception and abstraction of
road images, due to their dependences on unstable RGB data.
We propose a specially-designed perception method to under-
stand the input scenes, in order to improve the performance

sensor

controller
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Decision
Making

Self-driving Systems

Data
Encoding

Recognition
Results

Security Enforcements

CNN
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Generation
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Decisions

Fig. 2. System framework.

(a) (b)

Fig. 3. The perception and abstraction of road condition. (a) Road simulation
using the open racing car simulator (TORCS). (b) Generated abstraction using
the proposed road perception method.

of vehicle perception, and work out an abstraction approach
for simplified road representation. The road data comes from
two sources: the famous vision dataset for autonomous driving
KITTI [30] and the open racing car simulator (TORCS). KITTI
provides a great number of real-world road scenes, which is
captured by a real car equipped with a laser scanner and a
GPS localization system. And TORCS is a fully customizable
car racing simulation environment, where lots of cars and road
types are available. Both KITTI and TORCS are adopted in
the benchmarking and simulation tests.

In short, the main purpose of the proposed perception and
abstraction method is to understand the captured road images
and generate a simplified representation for the following
decision-making process. As shown in Fig. 3, the ego car in
TORCS is equipped with depth sensors and can send the depth
images to the scene understanding network in real time, and
then the current road condition is abstracted by the proposed
scene understanding method for the planar representation,
which can be directly imported into the decision-making
model. The perception and abstraction method is detailed
below.

We propose the road condition understanding network
(RCUN) to understand the road scenes, and adopt the famous
Alex model [31] as the recognition network, and its modified
version, which is compatible with 3D input data, as the vehicle
proposal network. The major difference between RCUN and
other perception methods is that we utilize different data en-
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codings in these two models. The original raw data generated
by the depth sensors is in the point cloud format, which is
shown in Fig. 4(b). There are two ways to process these
data. The first one is to map these data into RGB space,
using the Point Cloud Library (PCL) [32], and obtain the 2D
colored representation. The other one is the 3D representation,
in which the point cloud data is transformed into volumetric
encoding, which could be imported into computational models
with 3D spatial information preserved, using Octomap [33], as
shown in Fig. 4(c). The reason for this design is based on the
following facts.

These two approaches have their advantages and disad-
vantages. One huge superiority of 2D representation is that
there have been extensive research works regarding 2D image
descriptors and feature engineering, which is of great help
in our designing of 2D-encoded scene understanding models.
And also, tremendous 2D image datasets have been published,
and even more well-trained models relying on these datasets
have been made available, on whose basis we can establish
our own models. According to [34], low-layer features are not
specific to one particular task or dataset and can be applied
to many other networks. Similar to the physiological visual
mechanism of the human, neurons of lower layers merely
deal with the most specific and simplest tasks, which are
usually homogeneous between many different applications.
Therefore, the existing models are adopted as the basis of our
own model with further fine-tuning, learning abstract features
in high-layers once again and improving the training speed
and network precision of the newly-designed model. On the
contrary, works on 3D images are yet to be developed and
improved. Few large-scale 3D image databases or effective
trained models have been proposed. Another advantage of 2D
representation is its high resolution. Due to some restrictions
in principle and implementation, the volumetric representation
must be encoded in a lower resolution (0.02 m in Fig. 4(c)),
whereas 2D representations can preserve image details well.
On the other hand, the volumetric representation also has
some advantages. Unlike 2D encoding, 3D representation can
indicate the 3D spatial information of the original scene,
which is highly valuable for some applications. Therefore, we
design our system with two data encoding types, which are
respectively for the 3D detection and recognition.

After training, these two networks are able to perform the
proposal and recognition tasks.

IV. DECISION MAKING

After obtaining the abstraction of road conditions, the
system can work on the corresponding driving decisions.
Compared to behavior reflex approaches, which directly map
the input images to several pre-defined driving commands, the
proposed method, using the abstractions instead of original im-
ages to calculate reactions, is much simplified in the inherent
logic and structure, and as a result, is much more trainable
and can achieve higher network precisions.

The generated abstraction is shown in Fig. 3(b), however,
the abstraction data is still a bit complicated to be inputted into
the decision-making network, due to the massive possibilities

(a)

(b)

(c)

Fig. 4. Road scene encoding and representation [30]. (a) The original scene
captured by the RGB camera. (b) The point cloud captured by the depth
sensor. (c) 3D encoding.

of relative vehicle positions. For further simplification, we
define lots of grids all over the necessary road area, and
then each vehicle can be subjected to one grid, which can
be represented by one numerical value. This method gives a
huge convenience for data encoding and network input because
only a fixed number of girds exist in the interested zone of
the road. We give these grids two attributes to reflect the type
and speed of the vehicle on the road and adopt the girds as
the input matrix of the proposed network. More precisely,
each grid has two attributes, including one discrete attribute
value, representing the specific vehicle type including sedan,
bus, trunk, ego vehicle, none, unobservable, etc., and one
continuous value, representing the vehicle current speed. If
there is no vehicle in a grid, then its speed attribute is set to
zero. As shown in Fig. 7(a), the blue car is the ego vehicle,
and all the grids are labeled with a specific vehicle type and
corresponding vehicle speed. Notably, although the on-board
sensors improve a lot in the visual performance nowadays, it
is not possible to obtain accurate road conditions in all grids.
Especially, the vehicle perception system may fail to output
an exact result, due to the occlusion. In this situation, the
unknown or indefinite grids are labeled with “unobservable”
and painted blue in the figure.

In this section, we will detail the proposed decision-making
system, and also introduce an analysis method to clarify the
relationship between the road factors and the final decision.

A. Decision Model

We propose a six-layer decision-making network (DMN)
to learn human decision-making behaviors, as shown in Fig 5.
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The input is the generated abstractions of road conditions. And
the main objective is to make driving decisions based on these
input data. The proposed model contains five hidden layers and
one output layer. There are 1028 neurons in each of the first
two layers, and 512 in each of the following three layers. This
is a simple design because we focus on the data engineering
and network learning process. We believe, using an effective
training scheme, the proposed method can extract sufficient
information from the well-processed input data, even with a
simple model. Due to the superior feature extraction ability
of deep model, we demonstrate that six layers are enough
to obtain the relationship between road condition and driving
decisions.

The distinctiveness is that we design the DMN as a two-
part structure. Two individual sub-networks are adopted to
respectively calculate the speed and steering commands. Since
the low-level features are usually similar in neural networks,
the first three fully-connected layers are shared between two
sub-networks for training efficiency. There are two more layers
in each sub-network to extract the high-level features, which
is highly correlated to the target of each sub-network.

There are n input abstractions A = {a1, a2, ..., an} in
DMN, with their corresponding labels ai, including the speed
labels P = {pa1 , pa2 , ..., pan} and steering labels T =
{ta1 , ta2 , ..., tan}. t ∈ {t∗1, t∗2, t∗e} are the possible labels,
representing left and right lane changing or keeping the current
lane, and p should be real values representing the possible
vehicle speed. hspd(ai) and hstr(ai) are the results of each
layer.

According to the multi-task loss introduced in [35] and [36],
the loss function is defined as follows.

L = λ1Lspd + λ2Lstr (1)

where the loss functions, including Lspd and Lstr, are adopted
for different goals, and their parameters, including λ1 and λ2,
are pre-defined to give them respective weights according to
their importance.
Lspd is utilized to calculate the acceleration or deceleration

commands and it is a regression of desired vehicle speed.
Using the smooth L1 loss [36], Lspd can be defined as

Lspd =
1

n

n∑
i=1

smoothL1
(hspd(ai)− pai) (2)

Lstr is calculated using the softmax function. It is adopted
to compute the steering commands, i.e. changing lanes or not.
It can be expressed as

Lstr = − 1

n

[
n∑
i=1

3∑
j=1

1{yai = y∗j } log
eh

(L)
str (ai)∑3

φ=1 e
h
(φ)
str (ai)

]
(3)

where h(j)str(ai) varies from 0 to 1, according to the momentum
to change to different lanes.

Also, the SGD strategy is adopted in this work to perform
network training and the output results of the proposed net-
work are regarded as driving advice Dh for the final decision-
making strategy, which is detailed in the next section.
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Fig. 5. Architecture of the decision-making network.

Algorithm 1: Decision-making Logic
Input: Current Road Condition c
Output: Driving Decisions dfin

/* Make decisions constantly. */
while IsDriving do
A = GenerateAbstractions(c)
Dh = ComputeAdvices(A)
Ds = CollisionAvoidance(A)
/* Examine Dh in confidence order */

for dspdh , dstrh ∈ Dh do
dspdfin = dspdh + dspds , dstrfin = dstrh + dstrs
dfin = (dspdfin, d

str
fin)

dfin = RegulationsChecking(dfin)
/* Final Security Check. */
if isSafeDriving(dfin) = True then

output(dfin)
break

KeepSafeDriving()

B. Decision-making Strategy

The whole process of the proposed decision-making system
is presented in Algorithm 1. As mentioned above, at first, the
RCUN model generates abstractions of the inputted images
regarding current road conditions. And then DMN model
can calculate and output the human-like decisions. Although
these decisions are already very reasonable, they are still not
yet fully adaptable for actual driving situations, due to the
security reasons. We combine the driving advice generated by
DMN with a safety enforcement method, namely the repulsive
potential field (RPF) [29]. RPF is a famous method used for
robotic path planning. Its main objective is to control the
robots to safely reach destinations while avoiding collisions.
RPF mainly relies on the repulsive force of possible obstacles,
which is very suitable for driving safety control. In detail, we
regard all other vehicles and both road edges as the obsta-
cles and then calculate their repulsive forces. The repulsive
potential formula can be expressed as

Urep(o) =


1

2
η(

1

d(o)
− 1

d
), d(o) ≤ d

0 , d(o) > d

(4)

where o represents the obstacle object, d(o) is the distance
between the obstacle and ego vehicle, η is a positive scaling
factor. And, d is a pre-defined constant value representing
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Fig. 6. Repulsive force and security enforcement.

for the maximum obstacle distance. Any obstacles beyond
the distance d are neglected. Having the repulsive potential
formula, the repulsive force can be expressed as

Frep(o) = −∇Urep(o)

= η(
1

d(o)
− 1

d
)(

1

d2(o)
)∇d(o)

= η(
1

d(o)
− 1

d
)(

1

d2(o)
)

o− e

‖ o− e ‖

(5)

As shown in Fig 6, the objects in red color are regarded as
the obstacles, including two edges and two vehicles in front
of the ego car. The orange lines represent the repulsive force,
and the yellow coordinate represents the driving decisions. It
can be seen that the repulsive force and the ego car form an
angle θ, and the forces are respectively exerted on the steering
and speed axis. Then, the RPF security enforcement can be
written as

dspds = −
objects∑
o

‖ Frep(o) ‖ sin(θo) (6)

dstrs = −
objects∑
o

‖ Frep(o) ‖ cos(θo) (7)

In addition, since the steering command is a discrete value,
several thresholds are set to discretize dstrs .

We design the final decision-making equation as below.

dfin = ω1dh + ω2ds

s.t. ω1 + ω2 = 1
(8)

where dfin is the calculated final decision, dh and ds rep-
resent the human-like driving advice and safety enforcement,
respectively, and ω1, ω2 are the custom weights. In addition,

dh = [dspdh , dstrh ]

ds = [dspds , dstrs ]
(9)

are the output of DMN and RPF. As shown in Algorithm 1,
after the final decision is generated, it is regularized to follow
the traffic regulations, for example, driving along the lane, and
examined with some final security check, which is defined
according to local situations. Ultimately, the system can give
out a safe and human-like driving decision.

Algorithm 2: Scenarios Generation
Input: Desired Scenarios Number n; Vehicle Type

(including ”none”) V and their Propotions PV ;
Vehicle Type R, their Propotions PR and Speed
Distribution in each road type DS

Output: Simulation Scenarios S
scenario list = null
while length(scenario list) < n do

/* Generate a road r. */
r = RandomRoad(R,PR)
/* Try all available positions. */
for grid ∈ r do

/* Generate a new vehicle v. */
v = RandomVehicle(V,PV )
if ExistCarInFront(v) is False then

/* Assign vehicle speed v. */
v.speed = RandomSpeed(v, r,DS )

else
/* Adjust v according to the
speed of vehicles in front. */
v.speed = SpeedAdjust(r)

r.append([v,grid])
scenario list.append(r)

return scenario list

C. Network Training Scheme

As the proposed decision-making system is based on a
machine learning model, an important problem is how to
obtain sufficient learning materials for the underlying neural
network. One traditional way is, obviously, to record actual
human driving behaviors, using either a real car or a custom
gaming simulation environment. However, it is very inefficient
to conduct such data acquisition task, which usually needs
several months to get adequate road scenarios and driving
decisions, even for a small-scale dataset.

We implement a novel generation strategy of training mate-
rial to efficiently create driving scenarios for human reaction
recording, as shown in Algorithm 2. At first, the road type
is randomly selected from several templates according to the
pre-defined occurrence possibilities. Then the vehicles are also
generated in a similar way and get assigned to random grids
of the newly generated road. Each vehicle will be set with
a specific speed value, and be adjusted to be as realistic as
possible. The generated scenarios are shown in Fig. 7. The type
and relative position of the vehicles are all randomly selected,
on the basis of some common situations, traffic rules, driving
habits, etc. The last step is to import these scenarios into
some driving environments, such as the TORCS, and record
the driving decisions of test drivers. To improve the sense
of reality and interactivity, some peripheral equipment can be
used to emulate the actual driving experience, e.g. steering
wheel and pedals. Before each scenario, a brief buffer time is
available for the test drivers to get familiar with the current
road condition.

Compared to some commonly used data recording meth-
ods, the proposed scheme has a significant advantage at the
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(a) (b) (c) (d)

Fig. 7. Generated driving scenarios for network training. Subfigure
(a)(b)(c)(d) represent four different road types, and the blue car represents
the ego vehicle.

efficiency, and more importantly, the representativeness of
the generated scenarios. In fact, there are a large number
of unnecessary testing scenarios in the continuous driving
process. Therefore, our scheme can avoid this problem by
generating discontinuous scenarios.

Algorithm 3: Influence Analysis
Input: Trained Network N , Specific Road Abstraction A
Output: Visualized Unit Influences

/* Check all the unit values in both
two input channels. */
for att ∈ [vehicle type, vehicle speed] do

influences vector = null;
original output = hN(A)
for u ∈ Aatt do

/* Modify the unit value. */
if att is vehicle type then
A new = ChangeType(A, u)

else
A new = ChangeSpeed(A, u)

new output = hN(A new )
/* Compute the impact of the
changed unit value. */
influence = new output− original output
influence = Normalize(influence)
influences vector← influence

/* Generate the visualization. */
Visualize(influences vector)

D. Influence Analysis

We find it essential to figure out why the proposed neural
network can make human-like reactions to various road con-
ditions. Which parts of the input abstractions play a key role
in the final decision? What is the network focused on among
all the input values including the vehicle types and speed in
every road grid? Indeed, it is not easy to accurately visualize
the specific influences of the input units in a neural network. In
this section, we implement an ingeniously-designed visualiza-
tion method to analyze the mechanisms behind the proposed
decision-making network. There are two major benefits of

this analysis method. The first one is that, with an intuitive
heatmap, self-driving researchers can easily find the specific
areas and information which the decision-making system is
really interested in. And as a result, researchers can find
ways to improve the accuracy or clearness of these valuable
data, e.g., increasing the resolution of the back depth sensor,
refining the vehicle category of the road perception system,
improving the accuracy of velometer, etc. The other benefit
is, the generated heatmap is an important criterion reflecting
whether the decision-making network is overfitting or not.
Since the network architecture is defined according to subjec-
tive experience, it is possible that the deep network is designed
with too many layers or neurons. In this situation, if no enough
training material is available, the network will suffer the
overfitting problem. Although an overfitted network performs
well from the perception of training loss, it may easily fail
in some other road conditions. It is very difficult to judge
the overfitted networks using simple precision tests. However,
the overfitted networks show inexplicable and meaningless
heatmaps in most cases. By examining the generated influence
maps carefully, researchers can find some symptoms of the
overfitting problem. This algorithm is introduced below.

In a trained network, the influence of one input u, which is
a single value in the input vector, to the output of layer θ is
presented below

hNθ (u) =

{
Wθhθ(u) + bθ, θ ≥ 2

Wθu+ bθ , θ = 1
(10)

Notice that, with a fixed Wθ and bθ, the output of every layer
in the neural network, including the final output, is only related
to the input u. Therefore, the contribution of each input values
can be inferred using Algorithm 3. In the beginning, each
vector unit of both two attributes, i.e. grid type and vehicle
speed, will be checked for the influence calculation. Its value is
modified with a minor adjustment, and the difference between
the original and new output results is calculated to reflect the
contribution of this grid. The numerical results are normalized
and transformed into heatmaps.

An experiment is conducted in Section V-B to demonstrate
this analysis method.

V. PERFORMANCE EVALUATION

Several experiments are conducted in this section to evaluate
the performance of the proposed self-driving system. First, we
carry out a driving simulation to test the abilities of decision-
making method. Then a visualization of unit influences is
presented, using the strategy described in Section IV-D.

A. Decision-making System Evaluation

The best way to evaluate the performance of driving systems
is to conduct the road tests in a simulation environment.
As mentioned above, TORCS is a common choice for the
testing platform in driving simulations. Therefore, we also
adopt TORCS in this experiment for better comparability. In
this section, the focus problem is the rationality and security
of generated driving decisions, while the scene understanding
ability is not the emphasis. Therefore, the exact abstractions
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Fig. 8. Performance evaluation in driving simulation. (a) Comparison results
of average driving speed. (b) Comparison results of average driving accidents

of the road conditions are directly passed to the self-driving
methods by the TORCS platform, rather than the scene un-
derstanding methods. Then, the key problem is the experiment
design, which should give a comprehensive test on both the
advance speed and driving security.

The testing details are introduced below. First, we select and
modify an existing roadmap in TORCS, which is a two-lane
street with a total length of 15, 000 meters, making clearer
lane markers and richer roadside views. Then, an autonomous
vehicle, controlled by different self-driving methods, is added
to the track as player Ego. Up to eight human players are also
included in the same track, so the self-driving vehicle must
take other players into account when driving on the road.
There are nine test settings with different human numbers
for one self-driving method, and ten tests are conducted for
each test setting. The vehicle speed and total accident number
are recorded during these tests. Fig. 8 presents the average
results of vehicle speed and accident number. Four driving
methods are adopted for player Ego, i.e., the proposed DMN
method, the reinforcement learning method (RLM) [29], the
direct perception approach (DPA) [28], and manual driving
(Human), which is set for better understanding.

It can be seen that, in Fig. 8(a), with the increase of
player number, all the testing vehicles show slower average
speed. Among the self-driving methods, the proposed DMN
shows an obvious advantage beyond other two methods, due
to its intelligent decision-making ability. The RLM method is
implemented by us according to the principle introduced in the
original paper. It is a novel design, but does not consider the

human driving behaviors and social intelligence. Therefore, it
is slightly inferior in this test with human participants. DPA
is focused on the driving perception, and only has a simple
driving logic, which mainly cares about the security rules. So
it does not perform well in the speed testing. Unexpectedly,
the increase of player number has little influence on the
human driver, possibly because the human drivers have the
social intelligence ability and prefer to aggressive driving
strategies. Fig. 8(b) presents the results of security testing,
i.e., the average accident number. Contrary to the speed testing
results, DPA outperforms other methods because the security
regulations are carried out rigorously in DPA. And our DMN
has the second best security performance, due to the safety
enforcement and, more importantly, the human-like decision-
making ability. RLM also considers the safety requirement, but
is outperformed by DMN due to the lack of social intelligence.
Because the road conditions are directly sent to self-driving
systems, they can easily beat the human driver in this test-
ing, which, of course, is different with the real-life driving
environment, where the road conditions must be understood
and abstracted by the perception system. However, as a per-
formance evaluation, these results can sufficiently demonstrate
the feasibility and stability of our decision-making method.

B. Influence Analysis and Visualization
As it has been demonstrated that our self-driving system

is able to perform sound and safe decisions, an additional
experiment is conducted to clarify the relationship between
the road conditions and the driving decision. Fig. 9 shows the
visualization results of two randomly generated scenarios. The
input abstractions are presented in the first column of Scene
A and B in Fig. 9, and the second and third column give
out the unit contributions to the speed decision network and
steering decision network. The output decision of Scene A
is to keep the current lane and pick up speed; the decision
of Scene B is to deceleration and move away from the front
truck. It can be seen that, in Scene A, DMN notices there is an
extensive free area in front of ego-car. DMN also judges that
the cars in neighbor lanes are unlikely to change lanes, and,
therefore, have little impact on the final decision. In Scene B,
DMN decides not to change lane because of the unknown area
in the top-right corner, which is reflected in the vehicle-type
channel in the steering network. Instead, DMN prefers to slow
down and keep the speed slightly slower than the front truck.

Interestingly, the visualized unit contributions give us deep
insights into the mechanism of the decision-making neural
network. We find several interesting results after the unit
contributions are transformed into heatmaps. These results
are reasonable and explainable. The way DMN considers its
decisions is so similar to the human mind that, we believe, it
can achieve more amazing performance with a larger dataset.
The experiment results demonstrate that the proposed method
does have the ability to perform human-like decisions and
adapt well to various road conditions.

VI. CONCLUSION

A human-like autonomous driving system is proposed in the
paper. This system mainly includes two parts, i.e. a road scene
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Fig. 9. The visualization results of unit influence. Scene A and B are two random generated scenarios. The first column is the abstracted road condition; the
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perception method and an empirical decision-making network.
One obvious difference with the existing approaches is that it
can imitate human drivers’ social intelligence, which can better
adapt the self-driving vehicles to the real-life road conditions.
In addition, we implement an efficient training scheme to
improve the quality and speed of data collection, and alleviate
the tedious and time-consuming manual labeling process. We
also find a feasible approach to analyze the possible influence
factors in the decision-making process, which can help in
the testing and validating of autonomous driving systems.
The experimental results prove that the proposed method
is efficient, and shows meaningful analysis results in the
visualizations of unit influence.

Future work includes developing a more efficient optimiza-
tion method to decrease the time cost of the training process.
Also, some information may be extracted from RGB data, even
when it is incomplete and unstable, which can be a useful
supplement to our method. In addition, we will extend our
work by conducting more driving testings in order to further
expand the dataset for network training.
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