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Abstract—Usage-based insurance (UBI) is regarded as a
promising way to provide accurate automotive insurance rates
by analyzing the driving behaviors (e.g., speed, mileage, and
harsh braking/accelerating) of drivers. The best practice that
has been adopted by many insurance programs to protect users’
location privacy is the use of driving speed rather than GPS data.
However, in this study, we challenge this approach by presenting
a novel speed-based location trajectory inference framework. The
basic strategy of the proposed inference framework is motivated
by the following observations. In practice, many environmental
factors such as real-time traffic and traffic regulations, can
influence the driving speed. These factors provide side-channel
information about the driving route, which can be exploited to
infer the vehicle’s trace. We implement our discovered attack on
a public dataset in New Jersey. The experimental results show
that the attacker has a nearly 60% probability of obtaining the
real route if he chooses the top 10 candidate routes. To thwart
the proposed attack, we design a privacy preserving scoring
and data audition Framework that enhances drivers’ control
on location privacy without affecting the utility of UBI. Our
defense framework can also detect users’ dishonest behavior (e.g.
modification of speed data) via a probabilistic audition scheme.
Extensive experimental results validate the effectiveness of the
defense framework.

Index Terms—Connected Vehicles, Location Privacy, Hidden
Markov Model, Secure Aggregation Protocol, Inspection Game

I. INTRODUCTION

THE current pricing policy of automotive insurance com-
panies around the world is based on traditional factors,

such as age, location of residence, history of accidents and traf-
fic violations. This means that all customers pay similar prices
for similar factors, despite potentially large variations in their
driving habits. The emerging telematics-based usage-based
insurance (or pay-how-you-drive programs) is dramatically
reshaping the landscape of the global auto insurance market.
Examples of such programs in North America and Europe
include Progressive’s Snapshot [2], AllState’s Drivewise [3],
State Farm’s In-Drive [4], and Travelers’ Intellidrive [5].

Usage-based insurance (UBI) relies on the collection of each
driver’s data using various technologies (OBD-II, Smartphone,
or Hybrid OBD-Smartphone) to calculate the risk score during
a monitoring period, which can reflect the probability of
getting involved in an accident. UBI provides a promising way
to differentiate safe drivers from risky ones, which forms the

Part of this paper has been presented in the 37th IEEE International
Conference on Distributed Computing Systems, ICDCS 2017 (short paper
track, six pages) [1].
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basis for risk categorization and, thus, for subsequent discounts
or surcharges on premiums depending on driving behavior.
The number of UBI market subscribers is expected to reach
approximately 100 million by 2020, and UBI is projected to
be used by approximately 50% of the world’s vehicles by 2030
[6].

Although UBI is regarded as a promising approach for
offering more accurate insurance services by profiling driving
habits, the data that are collected via this method can compro-
mise users’ privacy, especially users’ location privacy. Many
insurance programs, which are advertised as being privacy-
preserving, record the speed rather than directly using GPS-
based tracking. Previous works [7] [8] challenge this best
practice by proposing a tracking algorithm that is based on the
collected speed data. Unfortunately, the proposed algorithms
suffer from limited tracking performance. What is more im-
portant, how to design a privacy preserving UBI, which allows
the insurance company to provide fine-grained insurance plans
for drivers based on their driving habits without compromising
their location privacy, still remains a great challenge and has
received less attention so far.

To overcome the above research challenges, we investigate
the location privacy problem in UBI from the following
aspects: In our previous work [1], we proposed and designed
a novel speed-based trajectory inference algorithm that can
accurately track drivers based only on driving speed. The
proposed algorithm is motivated by the following observations:
Due to the development of various location-based services
(LBSs), it is easy to automatically retrieve the road speed
limit and real-time traffic information from publicly available
interfaces that are provided by mainstream navigation systems
such as Google and Baidu Map. These speed limits and real-
time traffic information provide us with important information
regarding the actual driving speed of the target vehicle on a
specific road, which can be exploited by an attacker to infer
the target vehicle’s real trajectory based only on the speed
data. We perform comprehensive experiments to evaluate the
proposed attack, which shows significant improvement in term
of the inference performance. We launch our attack with data
from 120 trips and the experimental results show that the
attacker has nearly 60% probability of obtaining the real route
if he chooses the top 10 candidate routes of a trip.

Our previous work [1] only considered the question of how
to infer drivers’ trajectories, and how to design a privacy-
preserving scoring framework without changing the current
architecture has not been solved yet. Furthermore, from the
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perspective of the insurer, it still remains a great challenge
to verify the authenticity of the uploaded data. In this paper,
to provide the privacy-preserving features and achieve secure
UBI, we introduce a general scoring method (in section III-B)
and propose a privacy-preserving scoring and data audition
framework for UBI, which is denoted as Pri-UBI. The basic
goal of Pri-UBI is to allow the driver to have enhanced control
of his driving data while ensuring the scoring accuracy, and
preventing him from forging data.

Pri-UBI is composed of two major modules: the private
usage-based scoring (Pri-UBS) algorithm and the probabilistic
usage data audition (Pro-UDA) protocol. Pri-UBS is designed
to enable the insurer to calculate the risk of a driver based on
his driving data without revealing the individual data, which
is expected to significantly enhance the driver’s control of
his privacy while still allowing the insurer to rate the driver
based on his driving habits. However, since these driving data
are collected from the driver’s smartphone, the driver has an
incentive to modify them to obtain the benefits. Inspired by
the Inspection game, we introduce a probabilistic usage data
audition scheme that can probabilistically audit the driver’s
driving data at a reduced cost.

The main contributions of this paper are summarized as
follows:
• We perform a comprehensive survey of the current UBI

system and propose a general scoring model based on the
existing industry practice and prior works.

• We propose a privacy preserving scoring and data au-
dition framework for usage-based insurance, which can
protect individual driving data while ensuring that insur-
ance companies can rate the driver based on his driving
habits. Our scheme can also prevent users from modifying
data by probabilistic audition.

• We add detailed experiments to explore factors that
potentially influence the performance of our trajectory
inference system, which have not been discussed in the
conference paper. Then, we design a comparative exper-
iment to demonstrate the performance of our proposed
inference system.

• We perform a detailed security analysis and experiment
to demonstrate our proposed framework. The results
demonstrate the proposed privacy-preserving framework
is robust against malicious/selfish attackers.

The rest of this paper is organized as follows. Firstly, we
introduce the related work in Section II. We then briefly
introduce the current architecture and the scoring model of
UBI in Section III. Section IV and Section V present the
attack model and the novel trajectory inference attack system
including problem formulation and the attack framework.
Section VI gives the privacy-preserving scoring and data
audition framework. Then we give the experimental evaluation
in Section VII based on an inference system implementation
on a public dataset in New jersey. Finally, we conclude the
paper in Section VIII.

II. RELATED WORK

In this section, we will introduce existing works on usage-
based insurance from the perspective of the architecture and

scoring models, security and privacy issues, and countermea-
sures.

A. The Architecture and scoring models of UBI

Nowadays, UBI has received the wide attentions from both
of the academia and the industry. In [9], the authors proposed
an overall smartphone measurement system model, spanning
from the physical layer to the business model at the top layer.
Some existing works [10], [11] proposed many scoring models
for providing a more reasonable scoring for UBI. Among
the different models, Pay-How-you-Drive (PHYD) model is
widely adopted by the industry. In [11], the authors proposed a
PHYD platform which has the ability of data acquisition, anal-
ysis, transmission and reasonable score computation. Without
loss of the generality, in this study, we follow this PHYD
model and introduce a general scoring method in Section III-B.

B. Location Privacy based on The Side-channel Inference

Location privacy is a long-standing topic [12], [13], [14],
[15], [16]. Recently, there is an increasing interest in tracking
the people’s trajectory by leveraging the side-channel informa-
tion including mobile device power [17], accelerometers [18]
and other zero-permission mobile sensors [19]. Michalevsky
et al. [17] proposed an approach which can use device
power as the side-channel information to track users. The
basic idea is the attacker can track a user by exploiting the
correlation between the power consumption and the distance
with the cellular tower. The previous works have discussed the
location privacy in the new insurance mode, but the proposed
algorithms suffer from limited tracking performance[7] [8].

Different from any previous work, we propose a novel
approach to infer the trajectories by merely exploiting the
driving speed, which outperforms the peer algorithms. What
is more important, we present the first privacy-preserving data
aggregation framework for UBI under the current architecture,
which allows insurance companies to analyze the driver’s
driving habits without compromising his location privacy.

C. Secure Aggregation Protocol

The secure aggregation protocol is an approach to protecting
the user’s privacy while ensuring the computability of the
uploaded data [20], [21], [22], [23], [24], [25]. A scheme
that is based on cryptographic techniques and differential
privacy was proposed in [20], which could be used to compute
the aggregated sum on an untrusted server. Keith Bonawitz
et al. [21] considered the situation when some users drop,
and proposed a secure aggregation protocol that is based on
one-time pads and secret sharing. Few works focus on the
privacy-preserving architecture of the UBI. Carmela Troncoso
et al. [26] presented PriPAYD, which locally performs the
premium calculations and sends only aggregated data to the
insurance company. However, only uploading aggregated data
will require changes in the existing architecture that is used by
the mainstream insurance companies. Moreover, the PriPAYD
scheme can only resist GPS attacks (uploading full GPS data)
which do not exist under the current insurance mode. Com-
pared with PriPAYD, the proposed scheme can achieve the
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privacy-preserving UBI without changing the current industry
practice.

Furthermore, current secure aggregation protocols are not
suitable our problem. In UBI, the insurer should choose
specific data rather than all the data and sum them; current
protocols do not achieve this goal. More important, current
methods do not consider how to verify the authenticity of the
uploaded data while ensuring their security. Based on this ob-
servation, we propose a novel privacy-preserving aggregation
and data audition protocol that achieves our security and utility
goals.

III. OVERVIEW OF USAGE-BASED INSURANCE

UBI is a telematics-based insurance service in which premi-
ums are based on driving behavior of consumers (e.g., braking
and cornering pattern). Different from traditional insurance,
in which premiums are based on driving history, in UBI, the
insurance premium is calculated dynamically based not only
on how much one drives but also on how and when one drives.

A. Driving Behavior Risk Indicators

Usage-based insurance relies on the following technologies
to collect the data related to the driver’s driving habits.
• OBD-II: Drivers plug a device into the vehicle’s di-

agnostic port. It captures mileage, speed, braking and
other measurements. Insurers often give them for free
to prospective customers. This method is still expensive
because of the device, data plan and distribution costs.

• Smartphone: In smartphone-based method, the installed
application uses sensors to collect the metrics as OBD.
A smartphone program like Drivewise can provide rating
factors that are accurate enough for insurance premiums
and cost 50− 75% less than an OBD program.

• Hybrid OBD-Smartphone: This approach combines
smartphone and OBD based approaches.

We have surveyed the major players in US and China
markets. Their interested data are summarized in Table I.
According to Table.I, although the data collected by different
companies are slightly different, some factors such as speed
per second, hard braking, mileage, time of day are widely
adopted by the insurers for insurance calculation. We will give
a more detailed discussion on how to model the behavior-based
insurance in the following.

B. Usage-based Insurance: Pay-How-You-Drive Model

Insurance policies that are based on vehicle use (usage-
based insurance or UBI) include pay-as-you-drive (PAYD)
and pay-how-you-drive (PHYD) systems. The PAYD system
[6] charges premiums that are based on total travel behavior
characteristics such as mileage and which roads network are
used while in PHYD [27] premiums are based on parameters
that measure individual driving behavior such as speed, harsh
acceleration, and hard braking. Since evaluating how a user
is driving is more critical for estimating the crash risk than
how much he drives, the PHYD model is regarded as a
more promising model for a UBI insurance policy. Therefore,

TABLE I: Data Collected from Some Mainstream Insurers

Company
Data

Hard Braking Mileage Time of Day Speed Acceleration Turn

StateFarm
√ √ √ √ √ √

Progressive
√ √ √ √

Allstate
√ √ √ √

Esurance
√ √ √ √

ZhongHua Insurance
√ √ √ √

before investigating the privacy threats, we briefly introduce
the PHYD insurance model.

The basic concept of PHYD insurance system is to construct
a cost model based on how much (mileage), when (day/night)
and how (overspeeding, harsh accelerations, hard brakes) a
vehicle is driven [6]. Most of the existing researches [11] adopt
a linear method to model PHYD insurance. Without loss of
the generality, we consider the following PHYD model, which
is a general model based on the existing industry practice and
previous works.

P = Pb +
k∑
i=1

wi ∗ RSi, (1)

where P refers to the total price of car insurance, Pb is the
fixed charge, {RSi|1 ≤ i ≤ k} are the risk scores introduced
by a particular driving behavior and {ωi|1 ≤ i ≤ k} are
their corresponding weights. In the following, we take three
potential behavior risks as an example. It is noted that it is
easy to generalize this model to other behavior risks.

Risky Hour Driving: It is obvious that it is more dangerous
to drive in the evening. So it is reasonable to assign a bigger
risk factor α (> 0.5) to the driving at night due to the higher
risk. The risk score of time of day RS1 can be written as:

RS1 = (1− α) ∗ timeday + α ∗ timenight (2)

where timeday and timenight are the total travel time during
the daytime and the evening, respectively.

Speeding: Speeding reflects the driver’s driving habits and
thus represents an important risk indicator. Without loss of
generality, we set a threshold s0, which is denoted as the speed
limit (set as 80 mph in Allstate). Following the similar strategy
in [11], we consider the speeds over the threshold and sum
them up after subtracting the threshold, which is defined as:

RS2 =
∑
si>s0

(si − s0) (3)

whereRS2 is the score and si is the driver’s speed per second.
Harsh Acceleration and Hard Braking: Hard braking and

harsh acceleration are important indicators for risky driving.
As pointed out by Allstate, hard braking events are recorded
when the vehicle decelerates more than 8 mph in one second.
We use the symbol of Chd,acc to denote the number of harsh
acceleration/braking events.

Based on the discussion of three different kinds risk indi-
cators, we get the final price by updating the Equation (1).

P = Pb + ω1 ∗ [(1− α) ∗ timeday + α ∗ timenight]
+
∑
si>s0

ω2 ∗ (si − s0) + ω3 ∗ (Chb,acc)
(4)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

C. Privacy Concerns

Although some of the UBI are based on collected GPS
information without considering any privacy issue, many other
UBI programs are advertised as being privacy-preserving.
Some insurance companies only record speed, mileage and
hard braking, and claim that they do not intend to collect the
user’s location. According to existing research works [7] [8],
it may be possible to infer driving routines based only on
driving speed. However, the existing researches suffer from
low successfully rates. In this paper, we will present a novel
routine inference scheme, which can significantly improve the
inference accuracy. Firstly, we will analyze the security and
privacy issues of usage-based insurance and present the rel-
ative attack model and assumptions regarding the considered
issues.

IV. ATTACK MODEL AND ASSUMPTIONS

In this study, we jointly consider the security and privacy
issues of UBI from the perspectives of insurance companies
and drivers. On one hand, insurers are assume to be honest-
but-curious, which means they are honest in executing the
protocol, including data collection and score computation,
but curious in inferring the driver’s trajectories based on the
collected data. On the other hand, since the data collection is
performed at the user side, we consider that the misbehaving
drivers may intentionally upload modified driving data to enjoy
a lower premium. Existing researches [28], [29] show that
it is technically possible for drivers to modify the GPS or
sensor readings to mislead the insurer into thinking that he
is “safe” and, thus, enjoy a lower premium. Therefore, it is
reasonable to consider the data authentication problem from
the perspective of insurers. Based on the above analysis, we
define the following two attacks which will be considered in
our paper:
• Location Tracking Attack: In this attack, the adversary

may be the honest-but-curious insurer or the external
attacker that can hack the storage system of insurance
companies and gain access to the speed data of drivers.
Similar to the attack model that was adopted in [7] [8],
the attacker is assumed to have the initial location and
speed data per second, and his aim is to track the target
driver based only on these data.

• Data Forgery Attack: In this attack, a misbehaving or
selfish driver may forge driving data by manipulating the
GPS module or sensors so that he can mislead the insurer
and enjoy a lower premium.

As shown in [28], attackers can generate fake data by
manipulating the GPS module or sensors. Therefore, it is
feasible and easy to launch the data forgery attack. In the
next section, we mainly focus on how to execute the location
tracking attack by presenting a novel routine inference system,
which can significantly improve the inference accuracy.

V. NOVEL TRAJECTORY INFERENCE ATTACK SYSTEM
BASED ON THE DRIVING SPEED

In this section, we introduce the location tracking attack in
detail, which aims at inferring the driving trajectory from only

(a) Speed Limit From OSM (b) RRT Data From Google

Fig. 1: Real World Data

the driving speed and the initial location. With the input of the
initial location, speed data and pre-processed map information,
the proposed inference system can automatically infer the
driver’s trajectory.

A. Attack Overview

The basic strategy of the proposed attack is based on
the following insight: driving speed is influenced by many
environmental factors, such as road condition, real-time traffic,
and even traffic regulations. From the attacker’s perspective,
these environmental factors and the real-time speed provide the
side-channel information about the driving routes, which can
be exploited to filter out impossible routes and determine the
most likely candidate routes. We summarize the environmental
information as follows:
• Advised Speed Limit for Non-Curved Roads: Vehicles

should follow advised speed limit smax that is rec-
ommended by the government. If the vehicle exceeds
the speed limit, the exceeding proportion must remain
below a threshold σ. Otherwise, the driver will receive a
speeding ticket. In general, advisory speed limit provides
upper bound of the speed and can be automatically
extracted from the map shown in Fig. 1(a). Therefore,
the advisory speed limit can be exploited by an attacker
to infer the user’s trajectory. For further discussion, we
give the definition as follow: for a series of speeds
S = {s1, s2, . . . , sn}, the percentage of speeding is∑
si
I(si)/|S|, where I(si) = 1 if si > smax, otherwise

I(si) = 0.
• Impact of Real-time Road Traffic (RRT): In practice, the

speed of the vehicle is highly influenced by the road
traffic, especially during rush hours. Many maps (e.g.,
Google maps and Baidu map) offer an API that can
display real-time traffic for the road, which facilitates the
tracking attack by the attacker. As shown in Fig. 1(b),
different colors represent different traffic statuses, includ-
ing: “Good” (e.g., driving at vmax), “Slow” (e.g., 2

3vmax),
and “Stagnated”(e.g., 1

3vmax). Some map systems even
offer the theoretical driving time tquery for a specific road
segment based on the current road traffic.

• Speed Limit for Driving through a Curve: When a vehicle
approaches a curve of radius r, the driver should slow
down by following the speed limit. If the vehicle speed
is higher than the speed limit, the vehicle speed control
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system provides a warning [30]. Specifically, vehicle’s
friction must be greater than centrifugal force to ensure
the safety:

fr ·m · g > m · r · ( vbr )
2 (5)

where fr is the friction coefficient of the road, m, g
refer to the weight of the vehicle and the gravitational
acceleration respectively. Then we can get the maximum
turning speed vb =

√
fr · g · r. Note that, the parameters

of the road can be obtained from the map.
Based on the above observations, it is possible for the

external attacker to rule out less-likely routes and calculate
the most-likely candidate routes. Our basic strategy which is
illustrated in Fig. 2 is to build the speed model for various
road conditions based on advisory speed limit, real-time road
traffic, and speed limit for driving a curve. By comparing the
speed model and the collected speed, we can calculate the
probability for each road segment by adopting the Dynamic
Time Warping (DTW) algorithm. The details of the proposed
attack are presented in Section V-C.

B. Problem Formulation

It is assumed that the attacker knows the starting point of
the trip and can exploit publicly available information (e.g.,
road information from OpenStreetMap) to launch the attack to
track the target driver. Let N be the number of intersections
in the area. A directed graph G = (V,E) can be used to
represent all the intersections. V = {1, 2, · · · } refers to the
set of intersections and exy ∈ E stands for a road between
intersection x and intersection y. The basic goal of the attacker
is to identify the route that fits the speed model best.

Then we formalize the problem of inferring users’ trace as
a Hidden Markov Model (HMM). We define the route of the
vehicle as (Q,T ):

Q = {q1, q2, ...}, qi ∈ E T = {(t0, t1), (t1, t2), ...} (6)

where Q is the set of road segments and (ti−1, ti) are the start
time and end time driving on the road qi.

Formally, an HMM is characterized by the following:
• The state transition probability distribution A =
{aexy→emn |∀exy, emn ∈ E}, where

aexy→emn = p(qi+1 = emn|qi = exy) (7)

aexy→emn
means the probability of directly moving from

road exy to road emn. We set aexy→emn
= 0 if y 6= m and

set other probabilities to be uniformly distributed over all
possible transitions.

• The observation symbol probability distribution B. In
our model, observation is a series of speed values and
corresponding timestamps. We denote the observation as
O = {o1, o2, . . .}. Then B can be denoted as

B = {bexy (ok) = p(ok|qt = exy)} (8)

where bexy
(ok) is the probability of generating the given

speed values ok while the vehicle drives through the
road segment exy . In this work, this probability can

Fig. 2: The Framework of the Trajectory Inference Attack

be calculated by comparing the distance between the
collected speed values and built speed model by running
the DTW algorithm.

• We define π = {πexy
} as the initial state distribution,

where πexy
is the probability that the vehicle initially

goes through the road segment exy . Since the starting
location (at a intersection) is known, we set obtain πeon
to 1/k. Here, eon refers to the neighboring road segments
of original location and k refers to the total number of
neighboring segments. Others is set to 0.

We can define our problem as a classical HMM problem.
Given an observation O, and λ = (π,A,B) which denotes
the parameter set of the model, our goal is to choose an
optimal state sequence Q for this observation. According to
[17], this problem is equivalent to maximizing P (Q,O|λ) =
P (O|Q,λ)·P (Q|λ). Since the attacker has no prior knowledge
about the drivers destination without the observation, we
assume the driver has equal probability of travelling these
routes. Therefore, this problem can be interpreted as the
problem of finding an optimal route Q such that P (O|Q,λ)
is maximized. In the remainder of the paper, we denote
P (O|Q,λ) as P (O|Q) for ease of presentation.

C. Attack Framework

For a route with m road segments, we split the observation
into m sub-observations. Every pair of sub-observations oi and
oj which are series of discrete speed values, are assumed to be
mutually independent according to [31]. Therefore, based on
the property of the output independence assumption, we can
divide a route into many road segments and compute them
iteratively:

p(O|Q) = p(o1, ..., om|q1, . . . , qm)
=

∏
p(oi|q1, . . . , qm)

=
∏
p(oi|qi)

=
∏
bexy

(oi)

(9)

We can use the forward algorithm to calculate the proba-
bility of the state sequence in a specific HMM and find the
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most possible sequence. However, the total number of possible
routes in a large area may be too large for computation. In
general, the complexity of this problem is O(NM ), where
N is the number of all roads and M is the possible number
of road segments which vehicle traveled. So it is difficult
to perform an exhaustive search in our problem. Fortunately,
for the considered problem, we know the initial location and
consider only four options for the next road segment, rather
than randomly selecting from N roads. Thus, the complexity
is reduced to O(4M ). It is possible to further reduce the
complexity by the following steps shown in Fig. 2:

• Speed Model Checking: In Section V-D, we introduce a
speed model (Step. 2). At each iteration i, we will check
whether oi satisfies the constraints defined by the speed
model (Step. 3). If it does not match, p(oi|qi) is set to 0
and this road segment is not considered.

• Probability Calculation: If a road segment passes the
speed model checking, which means it satisfies the speed
limits and constraints. We can further calculate p(oi|qi)
by DTW (Step. 4), which represents the probability of
the vehicle traversing a given segment qi.

Algorithm 1: Pruning-based DFS(node,timestamp)
Input: original locationx, currentTimestamp t0
Output: candidate road segments H

I1 ← query nextnodelist(x) by state transition matrix A;
for every node y ∈ I1 do

di ← calculate distance(exy);
mi ← generate speed model(exy);
tstart ← currentTimestamp;
tend ← determine endtime(tstart, di);
oi ← observation(tstart, tend);
if vturn > vb ||

∑
si
I(si)/|S| > σ ||

(tend − tstart) /∈ [η1 · tquery, η2 · tquery] then
p(oi|qi) = 0;
choose another node from I1;

end
else

di = DTW (oi,mi);
ds = DTW (mi −mthreshold,mi);
d0 = DTW (0,mi);
get p(oi|qi) by Equation 10
H ← store(x, y, tstart, tend, di, p(oi|qi));
Pruning-based DFS (y, tend)

end
return H

end

Based on the above observations, we introduce a pruning-
based depth-first search (DFS) algorithm for addressing the
target problem. We introduce a pruning heuristic DFS so that
candidate routes can be computed efficiently. The basic strat-
egy is to remove the routes that contain road segments which
are not reachable (the probability p(oi|qi) = 0) during the
algorithm running time. Through setting reasonable constraints
and speed model, we can remove most routes and generate the
candidate routes from H . Then we sort the candidate routes
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according to P (O|Q) to obtain the top-k routes. Algorithm 1
describes this strategy in pseudocode.

D. Building the Speed Model

The goal of the speed model is to filter out the impossible
routes, which fail to satisfy the speed limits that were intro-
duced in section V-A. The speed model describes a theoretical
maximum speed for a road segment at a specific time and
is defined by a series of continuous speed values. We use
a method that was proposed in [7] and extend it by adding
real time-traffic information to fit various situations. The basic
model comes from the value of the maximum speed for each
road, which can be collected from OpenStreetMap (OSM) and
Wikipedia. If a turning event occurs, we improve the speed
model by adding a turning speed limit which is calculated via
the law of cosines according to the previous road segment.

Adding the real-time traffic information: It is obvious that
the vehicle cannot reach its maximum speed limit of a specific
road during the rush hour. Therefore, the real-time traffic
is critical for improving the tracking precision. In practice,
the real-time traffic has been provided by several navigation
engines (e.g., Google map), which will be integrated into our
speed model as shown in Fig. 3. This figure compares the
practical data with the values produced from the speed model
of a same road segment under different road conditions, which
indicates that drivers’ speed will be close to (maybe slightly
greater than) the speed model. Based on the speed model, we
can rule out the impossible routes and calculate the probability
by DTW as shown in the following section.

E. Calculating the Probability of a Possible Route by DTW

Drivers are more likely to drive close to the maximum
speed if road condition permits and safety is guaranteed. For
example, drivers will not drive at a speed of 30km/h if the
maximum speed is 60km/h. Thus, we have the following
insight: the smaller the difference between the speed model
and the collected data, the higher the probability of a specific
route being the driving route of the target vehicle.
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Fig. 4: Error between calculated distance and actual distance

DTW algorithm [32] is an algorithm that can compute
the difference between two given sequences which may have
different lengths (e.g. time series) with certain restrictions. We
adopt the DTW algorithm to calculate the probability of the
vehicle being on a specific route. In particular, given a specific
road, the corresponding speed model and the observed speed
are mi and oi, respectively. Then we compute the Euclidean
distance di between the speed model and observation oi,
and the Euclidean distance d0 between the speed model and
zero. The latter indicates the maximum distance between the
speed model and the possible vehicle speed. In addition, we
define the Euclidean distance ds between the speed model
and the speed model minus a threshold, which means that
the probability is the same if the driving speed is within the
scope. Based on the above parameters, we can calculate the
probability of a specific route being the driving route of the
target vehicle as follows:

p(oi|qi) =

{
1, di ≤ ds

1− (di−ds)
(d0−ds) , di > ds

(10)

Based on the calculated probability, we can maintain a list
of possible locations. Then we sort the candidate routes that
are obtained from H and select the top-k routes.

F. Choosing the Corresponding oi with Road Segment qi

We know the time tstart when the vehicle enters into the
road segment qi. To obtain the corresponding oi, we should
determine the end time tend leaving qi. Because we only have
pairs of speed per second and timestamp, we use a method
for approximating the driving distance per second: we assume
the movement at every second is a uniformly accelerated
(retarded) rectilinear motion. Fig.4 shows the error between
the calculated distance and the actual distance of a trip, which
is small compared with the total distance.

According to the calculated distance per second and road
distance, we can obtain the end time tend. Then we can obtain
the corresponding speed values in time interval [tstart, tend],
which is oi that corresponds to the segment qi.

Fig. 5: Inferred Result of a Trip

G. Experimental Results

We launch our attack using data from 120 trips. Each trip
varies in the range of (7 km, 21 km) and the average length is
12 km. Experimental results show that the attacker has nearly
60% probability of obtaining the real route if he chooses the
top 10 candidate routes of a trip. Fig. 5 shows the inferred
candidate routes of a trip. The best match is an inferred
route that completely matches the real route. Based on our
algorithm, we can identify a few candidate routes (destinations
of those routes are marked in green) from massive routes.
Many of the candidate routes end are near the destinations.
The main reason for this is that when a trip is nearly over, most
users will slow down and speed limitations will not function
properly. The detailed experimental results for all the trips are
introduced in Section VII.

VI. PRIVACY-PRESERVING SCORING AND DATA AUDITION
FRAMEWORK

In this section, we will present our novel defense framework
by jointly considering the location privacy attack and data
forgery attack that are defined in the above sections, which
can protect drivers’ location privacy without compromising its
utility.

A. Design Goals

As shown in the above sections, we know how to launch
the two attacks: the location privacy attack and the data
forgery attack. For thwarting the defined attacks, we design a
privacy preserving scoring and data audition framework, which
is denoted as Pri-UBI. The design goals of Pri-UBI are as
follows:
• Security Goal: Pri-UBI is designed to defend against the

location tracking attack and the data forgery attack. Our
objective is to protect the driver’s privacy while allowing
the insurer to perform risk calculations.

• Utility Goal: With Pri-UBI, the insurer can still calculate
the risk of a driver based on the collected data and verify
the data’s authenticity without leaking drivers’ privacy.

• Deployability Goal: Pri-UBI is incrementally deployable
as a complement to the existing system rather than
displacing it, which should follow the current protocol.
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Fig. 6: Overview of our system

Our ultimate goal is to protect the driver’s privacy and, at the
same time, allow the insurer to perform risk calculation.

B. Framework overview

As shown in Fig.6, the proposed Pri-UBI is comprised of
two parts: the Private Usage Based Scoring (Pri-UBS) protocol
and Probabilistic Usage Data Audition (Pro-UDA) protocol,
which are designed to enable insurers to calculate risk scores
based on driving data without revealing their privacy and to
prevent drivers from forging data. Our scheme serves as the
interface between drivers and the insurer to provide privacy
preserving functionality without changing the current system
architecture.

To thwart the Location Tracking Attack, the Pri-UBS proto-
col use a novel privacy-preserving aggregation scheme to allow
the insurer to perform the risk calculations without revealing
individual data. In particular, Pri-UBS add noises (or random
numbers) to the speed data that are indicated by a flag bit,
which can be canceled after uploading.

To thwart the data forgery attack, the basic strategy of the
Pro-UDA protocol is to verify the authenticity of driving data
by checking the heterogeneous sensor readings from various
sources (e.g., a smartphone and an OBD device that is plugged
into the OBD-II port) [33], [34]. It is technically possible
for users to manipulate the GPS readings or the OBD device
[35]. However, existing research shows that the readings from
different sensors on the OBD device or the smartphone are
highly correlated. Therefore, we assume that malicious/selfish
users cannot forge all the sensing data from smartphones
or OBD devices, which allows the detection of the data
forgery attack by cross-checking all the sensor-readings from
various sources. However, this approach inevitably incur high
communication and transmission overhead by transmitting all
the sensing data to the cloud and introduces privacy concerns.
Therefore, in this article, we propose a probabilistic checking
framework that achieves data forgery attack detection with
reduced overhead.

Since the insurance company is assumed to be honest-
but-curious, the OBD device is expected to honestly follow
the proposed encryption protocol (defined in this section).
Although the OBD device is provided by the insurer, its

misbehavior (e.g., Uploading ) can be examined and detected
by adopting the existing firmware analysis tools (e.g., Binwalk
and IDA [36], [37]). Furthermore, along with General Data
Protection Regulation (GDPR), a regulation in EU law on
data protection and privacy for all individuals, coming into
effect, the insurance companies are motivated to take actions
to protect the customer’s personal data (e.g., encryption) in
compliance with the GDPR [38].

In addition to score computation, we refer to the smartphone
as the edge node for providing real-time feedback reports on
driving behaviors by analyzing these data, which can provide
safe driving functions such as emergency response, speed
alerts and real-time vehicle diagnostics.

C. Collected Data Format

In our survey, we examine the data that are collected by the
mainstream insurance companies (e.g., Progressive, AllState,
State Farm, and others) in Table.I. We present a symbolic
representation of these data, which is defined as a five tuple:

Tri =< ML,Ta, S,Hc, Ac > (11)

where Tri is the identifier of a trip, ML and Ta are the
whole mileage and time of Tri respectively. S is a set,
containing all pairs of speed data per second si and cor-
responding UNIX timestamp ti, which can be shown as
S = {(s1, t1), (s2, t2), ...(sn, tn)}. For further discussion,
we use Ss = {(ss1, t1), (ss2, t2), · · · , (ssn, tn)} and So =
{(so1, t1), (so2, t2), · · · , (son, tn)} to represent the speed data of
a same trip collected by the smartphone and the OBD device
respectively. We use Hc and Ac to represent the numbers of
harsh braking and acceleration events.

According to the current UBI policy, insurer I aggregates
the data that are collected from each driver to calculate the
risk scores and determine the insurance premium as shown in
Equation (4). Our proposed framework will ensure that insurer
I can compute the speeding risk score RS2 =

∑
si>s0

(si −
s0) securely. Specifically, the insurer I only knows the sum
of the speed data that are greater than s0 rather than any
individual data.

D. Pri-UBS Protocol for Thwarting the Location Tracking
Attack

In this section, we propose a novel Pri-UBS protocol for
protecting drivers’ privacy while allowing insurers to calculate
the risk score based on driving data. The basic strategy
of Pri-UBS is to add randomly generated numbers, which
can be removed during the aggregation process [20]. Using
this approach, the insurer can obtain the aggregated results
without revealing any individual data. Different from any
traditional approach, in UBI, insurer is more interested in
data that directly impact the risk scores (e.g., the data that
are greater than s0, as defined in Equation (3)). Therefore,
we further extend the privacy-preserving scheme by adding a
series of flag bits that indicate sensitive data beyond a specified
threshold.
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1) Indicating Sensitive Data via Flag Bits: To enable the
encryption of sensitive data, the driver should indicate whether
the speed data ssi is greater than a specified threshold (e.g.,
the dangerous speed s0), which can be achieved by adding a
flag bit fsi for each data ssi , with a value of 0 for “no” and 1
for “yes”. The flag bit enables the insurer to determine which
data he needs to sum up without knowing their specific values.
Note that, the user may modify the flag bits for cheating. We
will address this issue in Section VI-E with the probabilistic
audition scheme.

2) Privacy Preserving Speed Data Aggregation: To pre-
serve the privacy of individual data, the proposed privacy pre-
serving aggregation scheme introduces a randomly generated
number before uploading. In particular, the smartphone sends
the index set Ids of the data with the flag bit fsi = 1 to the
OBD device to obtain the random numbers, which are denoted
as Ids = {m1,m2, . . . ,mk},mj ∈ [1, n]. After receiving
the set Ids, the OBD device generates k random numbers
{rm1 , rm2 , . . . , rmk

} via the following equation.

k∑
j=1

rmj
= rm1

+ rm2
+ · · ·+ rmk

= 0 (12)

Then, it will generate another random number ri with index
i ∈ {1, 2, . . . , n}\Ids and send all of the random numbers
Rn = {r1, r2, . . . , rn} to the smartphone.

Note that, under the honest-but-curious model, the OBD
device is expected to honestly follow the proposed encryption
protocol and thus can be used to generate the random numbers.

3) Obfuscation with Random Numbers:
• NoisyEnc(param, ri, ssi ): At the smartphone side, speed

data ssi is masked by the random number ri as follows:

csi = ssi + ri (mod R) (13)

Under this situation, the speed data can be protected by
the random numbers, which can ensure the computability.

• AggrDec(param, csi , fsi , ti): At the server
side, after receiving the encrypted data
Cs = {(cs1, fs1 , t1), (cs2, fs2 , t2), . . . , (csn, fsn, tn)},
where ti is the timestamp, the insurer selects the partial
data whose flag bits are one and computes∑

fs
i =1 c

s
i = csm1

+ · · ·+ csmk

= ssm1
+ rm1

+ · · ·+ ssmk
+ rmk

=
∑k
j=1 s

s
mj

+
∑k
j=1 rmj

=
∑k
j=1 s

s
mj

(mod R)

(14)

Since
∑k
j=1 rmj

= 0 , we can derive
∑
fs
i =1 c

s
i =∑k

j=1 s
s
mj

, which means the sum of the speed data that
exceeds the threshold s0. Based on this result, insurers
can calculate the speed risk score:

S2 =
∑
si>s0

(si − s0) =
∑
fs
i =1

csi − k · s0 (15)

With the pri-UBS, the risk score can be calculated in a
privacy-preserving manner without losing its accuracy. We’ll
discuss the privacy enhancement in the subsequent section.

4) Defending Against the Location Tracking Attack: In the
Location Tracking Attack, insurer I constructs the relationship
between the speed data and the roads based on the insight that
the driving speed is influenced by many environmental factors,
including real-time traffic and traffic regulations. However, it is
impossible to determine the relationship between the encrypted
speed and environmental factors because the encrypted data do
not suit the physical limitations of the road (defined in Section
V-A). I cannot identify the real route from massive routes.
Thus, Pri-UBS can successfully thwart the Location Tracking
Attack.

E. Pro-UDA protocol for Thwarting the Data Forgery Attack

In the previous section, we presented Pri-UBS, which is
expected to protect the user’s location privacy. In this section,
we will discuss how to prevent malicious users from gener-
ating fake data to obtain a lower premium. We leverage the
probabilistic audition to check whether drivers modify the data
by comparing the speed data that are collected by the sensing
devices ( e.g., the smartphone and the OBD device) for the
same trip.

1) Basic Flow of Pro-UDA: As described in Section VI-B,
malicious/selfish users cannot forge all the sensing data from
the smartphone or the OBD device. Based on the above insight,
it is possible to verify the authenticity of the data by comparing
these data from different devices. Therefore, we propose the
following protocol: the insurer I audits the data (Ss and So)
by requesting the smartphone and the OBD device to upload
their encrypted data, and comparing these two data which have
the same timestamp (ssi

?
= soi ).

However, we need to consider the following issues:
(1) To ensure drivers’ privacy, two pieces of data need to

be encrypted. Therefore, how to keep the computability in the
case of encryption? We solve this problem by encrypting the
data that have the same timestamp with the same exchanged
key (Section VI-D2) before uploading.

(2) Due to the measurement error, these two data may
not be exactly equal and even have a significant difference.
Fortunately, according to the existing study proposed in [39],
it is possible to control the error in the range of (0, 3.8) mph.
Therefore, we should check whether the difference between
these two data is in a reasonable range rather than just
checking whether these two data are equal.

The detailed protocol is described as follows:
• NoisyEnc(param, ri, soi ): To ensure the computability for

auditing, soi is encrypted with the same random number
ri generated in Section VI-D2:

coi = soi + ri (mod R) (16)

Then the OBD device sends the encrypted data Co =
{(co1, fo1 , t1), (co2, fo2 , t2), . . . , (con, fon, tn)} to the insurer
I, where foi denotes the flag bit.

• Data Audition(param, ssi , s
o
i , ti): After receiving the

encrypted data, the insurer could get the difference vi
of these data whose timestamps are equal:

vi = |csi − coi | = |ssi − soi | (17)
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TABLE II: Payoff Matrix

M0

M1 Bc Bn

Am −Fs − Cu, Fs − Ic Rw + Ld,−Rw

An Rw − Cu, Ri − Rw − Ic Rw, Ri − Rw

With the proposed approach, the insurer can detect whether
a driver is honest by comparing vi with a threshold v0,to
determine whether the driver modifies his data. To alleviate
the issue that are caused by measurement error, drivers will be
punished only when mismatched data appear multiple times.
Then, the insurer will impose a punishment Fs or reward Rw
which can influence insurance premium based on the results.

To ensure the authenticity of the flag bit, the insurer should
compare the corresponding flag bit for every pair of data (fsi

?
=

foi ) in Cs and Co and set the count Cf as Cf =
∑
fs
i <f

o
i
(foi −

fsi ), which means the insurer only counts when fsi = 0 and
foi = 1. If Cf is greater than a threshold, the insurer I regards
the driver as a dishonest user.

2) Leveraging Probabilistic Audition to Reduce the Over-
head: In general, most drivers are honest. Therefore, it is
unnecessary to audit all the data since this will incur sub-
stantial overhead. To reduce the cost that is incurred by
auditing, we refer to a probabilistic misbehavior detection
scheme [40]. First, we model the driver’s and the insurer’s
actions as an inspection game. Then, we demonstrate that
we can achieve audition with minimum cost by setting an
appropriate auditing probability. The game is defined as G =<
M, {e0, e1}, {π0, π1} >:
• M = {M0,M1} is the set of players. M0 denotes the

driver, and M1 denotes the insurer.
• e0 and e1 are the sets of players’ strategies. Drivers have

two strategies, modifying (Am) and not modifying (An).
Insurers also have two strategies, auditing (Bc) and not
auditing (Bn).

• π0, π1 are the payoffs of players.
Then we define the cost and payoff of the players as follows:
• Fs is the punishment if the driver is detected for modi-

fying and Rw is the reward if the driver is honest.
• We use Cu and Ic denote the cost that the driver spends to

upload the data and the cost to check the data by insurers.
• Ld is the benefit of the driver if he modifies the data.

Similarly, the insurer has the benefit Ri if the driver
honestly uploads the data.

We assume pa is the modifying probability, and pb is the
auditing probability. Then we can obtain the payoff matrix of
the players as shown in Table. II.

We can compute a Nash Equilibrium point by the equation:

(−Fs − Cu) · pb + (Rw + Ld) · (1− pb) = (Rw − Cu) · pb +Rw · (1− pb)
(Fs − Ic) · pa + (Ri −Rw − Ic) · (1− pa) = −Rw · pa + (Ri −Rw) · (1− pa)

(18)
where

(p∗a, p
∗
b) = (

Ic
Fs +Rw

,
Ld

Fs +Rw + Ld
) (19)

It means the driver has the same payoff regardless of the choice
of the strategy if insurer the audits data at the probability p∗b .

Then we set the auditing probability pb = Ld+δ
Fs+Rw+Ld

, δ >
0, and compute the driver’s payoff of the two strategies:

π0(An)− π0(Am) = (Fs +Rw + Ld) · Ld+δ
Fs+Rw+Ld

− Ld
= δ > 0

(20)
It means the driver has more payoff if he chooses the strategy

of “An” when pb > Ld

Fs+Rw+Ld
, so rational driver will choose

this strategy. The insurer can set a higher punishment to reduce
the audition probability while ensure the detection accuracy.

3) Defending Against the Data Forgery Attack: In the Pro-
UDA protocol, if a driver modifies the speed data or the flag
bit, this dishonest behavior will be detected by the detection
scheme. Inspection game can ensure that if the auditing proba-
bility is greater than Ld

Fs+Rw+Ld
, a rational user will follow the

protocol. Furthermore, the probability that a dishonest driver
cannot be detected after m rounds is (1− Ld+δ

Fs+Rw+Ld
)m → 0,

if m→∞. Thus, the security of the protocol can be ensured.
Since the OBD device obeys the protocol and does not

collude with I (as described in Section VI-B), insurer I has
no idea about the speed data. Thus, the Pro-UDA protocol can
thwart the Data Forgery Attack defined in Section VI-A while
ensuring drivers’ privacy. By combining the pri-UBS and pro-
UDA protocols, we can precisely compute the real risk score
without compromising the driver’s location privacy.

F. Security Analysis

In this section, we give a formal proof that insurer I can
know only the sum of partial data for a driver. First, we define
the following security game to describe our security model.
Then, we refer to the proof that was proposed in [20], [21] to
provide the security proof of our scheme.

Setup In this phase, the challenger generates random num-
bers r1, r2, . . . , rn ∈ Zp such that

∑k
j=1 rmj

= 0, where rmj

is the index whose flag bit is equal to one.
Query The adversary chooses the index from the set U ⊆
{1, 2, . . . , n} and requests the ciphertext of these indices.

Challenge phase In the challenge phase, the challenger ran-
domly flips a coin m. The challenger sends the real encrypted
results {ci|i ∈ U} if m = 0. Otherwise, he randomly chooses
n elements c

′

1, c
′

2, . . . , c
′

n which meets∑
i∈U

c
′

i =
∑
i∈U

ci (21)

Guess The adversary outputs a guess of whether m is 0 or
1. We say that the adversary wins the game if he correctly
guesses m.

Theorem 1. Our scheme is computational security if
no probabilistic-polynomial adversary has more than non-
negligible advantage in winning the above security game.

Proof. In the following, we will prove the security of our
scheme by the hybrid argument. First, we introduce the fol-
lowing n hybrid games. In Gamed, we define the information
that the challenger sends to the adversary as

R
′

1, R
′

2, . . . , R
′

d, cd+1, . . . , cn (22)

where R
′

i is a random number that has the following property:
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∑
1≤i≤d

R
′

i =
∑

1≤i≤d

ci (23)

If d = 0, the challenger sends c1, c2, . . . , cn, which corre-
sponds to the case of m = 0. Similarly, Gamen corresponds
to the case of m = 1.

To prove the security of our scheme, we should demonstrate
that neighboring games Gamed−1 and Gamed are computa-
tionally indistinguishable, which means attackers do not have a
non-negligible advantage in differentiating the random number
and the ciphertext.

In the following, we will compute the correlation between
the predictive value and the ciphertext based on the concept
of mutual information, which is the information about the
plaintext that the attacker could obtain from the ciphertext.

Definition 1. (Mutual Information) Let ci denote the cipher-
text of the speed data and s̃i denote the predictive value of the
speed data by the attacker. We define the mutual information
−I(s̃i, ci) as:

−I(s̃i, ci) = −
smax∑
s̃i=0

smax∑
ci=0

p(s̃i, ci) log
p(s̃i, ci)

p(s̃i)p(ci)
(24)

We assume the encryption has the same plaintext and cipher-
text spaces, and smax is the maximum value of the s̃i and
ci.

The equation indicates the possibility of the attacker to infer
the real value from the ciphertext, which is the successful
guess rate of the attacker. According to the definition, mutual
information is non-positive, and this metric is inversely pro-
portional to the information that the attacker learns from the
ciphertext.

According to the law of total probability, we have,

p(ci) =

smax∑
k=0

p(ci|s̃i = k)p(s̃i = k) (25)

p(s̃i, ci) is the joint probability distribution. We also have,

p(s̃i, ci) = p(ci|s̃i)p(s̃i) (26)

Suppose αj is the rate that the encryption scheme chooses the
random number rj , we have

p(ci|s̃i) =
smax∑
j=0

αj [p(si ⇔ ci|s̃i) + p(si < ci|s̃i)] (27)

where ⇔ represents ci is the ciphertext of si, and < has the
opposite meaning. Especially, our scheme choose the random
number independently, which can ensure ∀j, αj = 1

|smax| .
If the attacker has no prior knowledge about the plaintext

and there is no collusion attack, we could find the probability
p(s̃i) fits a uniform distribution and p(s̃i = k) = 1

|smax| . Then
we have,

−I(s̃i, ci) = 0 (28)

Based on the above analysis, the mutual information is zero,
which means the attacker cannot obtain any information about
the plaintext from the ciphertext. The mutual information

between the predictive value s̃i and the random number R
′

is also zero. Therefore, the adversary can obtain the same
information from the random number and the ciphertext, which
means he/she cannot differentiate them and neighboring games
Gamed−1 and Gamed are computationally indistinguishable.

G. The Transmission Cost of Pri-UBI

We evaluate the transmission cost of the proposed scheme
by the following theorem.

Theorem 2. Given n as the cardinal number of the set S and m
as the number of bits of the random number, the transmission
cost is at most 3mn bits.

Proof. In the key exchanging phase, the OBD device will send
the random numbers Rn to the smartphone for encryption.
Therefore, it should send at most mn bits. The cost of sending
the index by the smartphone can be ignored.

In the uploading phase, the smartphone sends the encrypted
data and the OBD device probabilistically uploads the data.
Thus, the total size of the data is less than 2mn bits.

By using an inspection game, it is not necessary to collect
the data and send it to the insurer. The OBD device needs to
only collect, encrypt and upload the data at the probability
pb = Ld+δ

Fs+Rw+Ld
. under other conditions, It is used as a

random number generator. Therefore, we can obtain a lower
transmission cost from the probabilistic audition.

VII. IMPLEMENTATION AND EVALUATION

In this section, we first implement our attack framework on
a real world dataset to demonstrate the performance in terms
of the inference accuracy. Then, we evaluate the efficiency of
the proposed Pri-UBI under different parameters with respect
to the audition probability and data size.

A. Implementation of the Inference System

We use a public dataset [8] that was collected by volunteers
in New Jersey, which contains the timestamped speed data and
the ground truth of GPS data. We fetch the street information
from OSM, including nodes, ways and relations. In addition,
given that most cars travel without speeding, the value of
the maximum speed for each path is a vital criterion in our
estimation. Some of the values could be obtained from OSM,
while others are from Wikipedia and the Department of Motor
Vehicle (DMV) in United State.

As the real-time traffic is taken into consideration in our
algorithm, we implement this part by calling Google Maps
API. For Google Map only provides traffic conditions at
present or in the future, we could not fetch it corresponding
to the collection time of the dataset. However, the real-time
traffic have a close relationship with historical data and often
fluctuate within a small scope, so it is reasonable to request
the traffic in the same time slot of the day as the traces.

In our experiments, we set σ = 0.2, η1 = 0.5 and
η2 = 2. With the input of the initial location, speed data
and pre-processed map information, as described above, our
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Fig. 7: The Accuracy of Our Inference Framework

trajectory inference framework can automatically infer the
driver’s candidate routes. For convenience of description, we
define an inferred route as the best match if the inferred route
completely matches the real route.

1) Route distinguishability: To evaluate the framework for
distinguishing the real route from massive routes, we launch
our attack with the data from 120 trips, which vary in the range
of (7 km, 21 km) and the average length is approximately
12 km. After generating the candidate routes, we will sort
them according to the probability of each route, which is
computed by DTW. This probability describes the degree of
similarity between a candidate route and the real route.

In Fig. 7, the histogram shows the ranking (probability) of
the real route among the candidate routes. For example, top
one means the real route has the highest probability among
massive candidate routes. According to this histogram, the
ranking of most trips’ real route are always in the top 10. The
line chart shows the accuracy of our inference framework for
selecting the real route among the candidate routes. There is a
probability of nearly 60% when selecting the top 10 candidate
routes, which means the attacker has nearly 60% probability
of obtaining the real route if he chooses the top 10 candidate
routes of a trip.

Due to the influence of positively reducing the speed at the
end of a trip, different driving habits, and the high updating
frequency of ground information, it is difficult to accurately
select the real route from massive routes in practice. Therefore,
we introduce a new metric, top 10 routes, to show the
performance of our inference system. In practice, choosing top
10 routes is sufficient for attackers to obtain extra information
for inferring drivers’ location privacy [41], [42], which can
be used to narrow down the candidate routes (approximately
1056 for a 12 km trip [8]) as much as possible.

Then, we evaluate the relationship between the trip’s length
and the inference accuracy in Fig. 8. Our evaluation shows
that the accuracy does not decrease with increasing trip
lengths, which demonstrates the stability of our algorithm
under various situations. Furthermore, we list the candidate
routes and real route’s rankings (the junction of the two colors,
the ranking is larger from top to bottom) of the trip whose
length exceeds 10000m in Fig. 9. It can be seen from the
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sorting results that the real route’s ranking is always on the
top of all candidates regardless of the number of candidates,
which means DTW performs well in selecting the best match
(real route) from the candidate routes.

To illustrate the function of the real time traffic, we conduct
a set of comparative experiments. Table III shows that real-
time traffic has a significant effect on reducing the recursive
times and increasing the inference accuracy.

2) Endpoint Error between Candidate Routes and the Real
Route: To further show the performance of our trajectory
inference system, we define another metric for calculating the
endpoint error between candidate routes and the real route
in Table IV. First, we compare the average error, which is
defined as the average distance between the destinations of the
real route and the candidates (we only compute the candidates
whose rankings is greater than the real route) destination. The
results show the percentage of the trips is 35.30% when the
average endpoint error is within 0.5 km and 67.65% when the
average endpoint error is within 1 km.

3) Performance Comparison with Other Method: To eval-
uate the proposed scheme’s performance, we compare our

TABLE III: Effect of RRT

Without RRT With RRT
rank/candidates recursion times rank/candidates recursion times

4/23 719 3/12 664
3/24 545 2/22 501

16/70 460 8/31 309
2/40 315 1/30 154
5/16 566 4/11 452
9/33 2732 5/15 2195
3/32 358 3/22 220
4/9 507 4/6 286

26/136 877 20/106 675
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TABLE IV: Endpoint Error Between Candidate Routes and
the Real Route

Endpoint error (avg.) Endpoint error (Top One)

Error (m) Percent Error (m) Percent
(Our Scheme)

Percent
(Ubicomp’ 14)

0-500 35.30% 0-500 35.29% 23.62%
500-1000 32.35% 500-1000 41.18% 9.84%
>1000 32.35% >1000 23.53% 66.54%

TABLE V: Costs for OBD to generate random numbers

Length/bits
Amount 1800 3600 5400 7200 9000

512 11ms 21ms 30ms 42ms 52ms
1024 20ms 41ms 62ms 81ms 102ms
2048 41ms 81ms 122ms 162ms 205ms

scheme with the method proposed in Ubicomp’ 14 [8], which
is the most closely related work to ours. This method (Ubi-
comp’ 14) was able to identify an endpoint for a trip, and
used the endpoint error which represents the distance between
the the real route’s destination and the endpoint to evaluate its
performance. We select the candidate route whose probability
is the highest (the method that was proposed in Ubicomp’
14 only inferred a candidate route for a trip) and compute
the endpoint error with the real route’s destination. According
to Table IV, 76.47% (35.29% + 41.18%) of trips have an
endpoint error that is within 1 km, which is far higher than
the percentage that is claimed in Ubicomp’ 14 (33.46%). Our
experiment demonstrates that our scheme has smaller tracking
error compared with the other method.

B. Encryption Ratio’s Impact on the Security

Encryption will generate additional overhead, which may
affect the performance of the system. Therefore, it is reason-
able to adjust the encryption ratio to seek a balance between
the security and the performance. To evaluate the encryption
ratio’s impact on the security, we define a new metric, δ%
Pri-UBI, which means we randomly encrypt δ% of the data to
reduce the overhead. Then, we evaluate the inference success
rate under different δ. Since the attacker cannot launch the
location tracking attack with the ciphertext, we consider a
smarter attack: the attacker replaces the ciphertext based on
the adjacent plaintext (speed data).

In the experiment, we set parameter δ = 50 or 100. From
the Fig. 10, we could see that the attacker cannot infer any
route after deploying the 100% Pri-UBI (red line), which
demonstrates the effectiveness of the proposed scheme. With
the 100% Pri-UBI, it is impossible to find the relationship
between the encrypted speed data and environmental factors
because the encrypted data do not fit the physical limitations
of the road (defined in Section V-A). Thus, the attacker cannot
infer any useful information. With 50% Pri-UBI (the middle
line), the attacker could infer drivers’ routes with a very low
probability (12.8% when choosing top 10 routes). Therefore,
we could adjust the encryption ratio to reduce the overhead
according to the privacy requirements.
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Fig. 11: Cost of data encryption on smartphone

C. Efficiency of Pri-UBI

The proposed protocol is evaluated on three types of de-
vices: a computer, smartphones and a microcontroller that
has similar calculation ability to the OBD device. We use
a computer with an Intel i5 CPU of 2.8 GHz, two android
smartphones with a Exynos 2.1 GHz CPU and a Snapdragon
1.5 GHz CPU respectively, as well as a 32-bits microcontroller
with Intel Atom CPU of 500 MHz as the implementation
platform. We evaluate the efficiency of Pri-UBI under different
parameters with respect to audition probability and data size.

1) Cost of Random Number Generation at Microcontroller
Side: The first metric measures the ability of microcontrollers
to generate random numbers. We represent the cost of generat-
ing random numbers by the computation latency. The relation
between the data size and the bits of random number is shown
in Table. V. We can see the latency has increased from 20ms
to 102ms with the data size changing from 1800 to 9000 when
random number is 1024 bits. It indicates the microcontroller
can generate random number easily.

2) Cost of Data Encryption at User Side: The second
metric is about encrypting data at user side. We set random
number as 1024 bits and evaluate it by different smart phones.
Fig. 11 shows that the cost of encryption is linear with the data
size. Also, the execution cost of the user side is influenced by
the data size directly. Generally, the cost on user side can be
completed within 300ms.
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3) Impact of Choosing Different Detection Probability: In
this section, we evaluate the impact of the different detection
probability on the performances of the microcontroller and the
server. We set random number as 1024 bits and the driving
time as one hour, which will generate 3600 data instances.
Fig.12 illustrates that our protocol performs well in reducing
the cost. The transmission cost can therefore be cut off by
reducing the detection probability. And insurance companies
could set a proper punishment to ensure the lower detection
probability, which can reduce the cost of both sides.

VIII. CONCLUSION

In this paper, we find that attackers can track drivers
by only the speed data and their initial location. By using
the physical limitations of a road, attackers can identify the
possible routes from the massive routes. To thwart the attack,
we propose Pri-UBI, which can protect the user’s privacy
while not affecting score computation. Our scheme can also
detect users’ dishonest behavior via a probabilistic audition.
We demonstrate the efficiency of our discovered attack and
the proposed framework in the detailed experiments.
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