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Multi-objective Network Opportunistic Access for
Group Mobility in Mobile Internet

Ming Tao, Member, IEEE, Mianxiong Dong, Member, IEEE, Kaoru Ota, Member, IEEE, and Zhimin He

Abstract—The integration of existing and emerging heteroge-
neous wireless networks in Mobile Internet is a combination of
diverse but complementary wireless access technologies. Satisfy-
ing a set of imperative constrains and optimization objectives,
access network selection (ANS) for mobile node (MN) is an
inherent procedure in mobility management that needs to be
solved in a reasonable manner for the whole system to operate
in an optimal fashion. However, ANS remains a significant
challenge. Because many MNs with distinctive call characteristics
are likely to have correlated mobility and may need to perform
mobility management at the same time, this paper, with the goal
of investigating group mobility solutions, proposes a Network
Opportunistic Access for Group Mobility (NOA-GM) scheme.
By analyzing the directional patterns of moving MNs and intro-
ducing the idea of opportunistic access, this scheme first identifies
underloaded access networks as candidates. Then, the candidates
are evaluated using normalized models of objective and subjective
metrics. On this basis, the ANS problem for group mobility can
be conducted as a multi-objective combination optimization and
then transferred to a signal-objective model by considering the
optimization of the performance of the whole system as a global
goal while still achieving each MN’s performance request. Using
an improved Genetic Algorithm with newly designed evolutionary
operators to solve the signal-objective model, an optimal result
option for ANS for group mobility is achieved. Simulations
conducted on the NS-2 platform show that NOA-GM outperforms
the compared schemes in several critical performance metrics.

Index Terms—multi-objective, moving direction pattern, net-
work opportunistic access, group mobility, genetic algorithm.

I. INTRODUCTION

Recently, the number of real-time mobile applications that
require high data rates (such as mobile augmented reality)
running on mobile devices has been growing rapidly. These
applications need to be able to roam across internetworks
to remain constantly connected, enabling mobile users to
experience uninterrupted, anywhere, anytime services. Con-
sequently, one important research issue lies in investigating
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efficient and optimum solutions to handle IP mobility [1]–
[8]. Generally, mobility management involves two operations:
handoff management and location management. The former
may be divided into three phases on the time dimension:
i) Network Discovery, ii) Handoff Determination and iii)
Handoff Execution. During the Network Discovery phase,
information concerning the networks available for access can
be obtained by performing a port scan. The Handoff Deter-
mination phase then selects the next network to access for
the roaming MN and decides when (or whether) to perform
the handoff. Based on these decisions, the Handoff Execution
phase completes the specified handoff procedures. Therefore,
access network selection (ANS) is an inherent procedure in
handoff management that needs to be solved in a reasonable
manner to preserve the quality of experience (QoE) for mobile
users and improve the performance of the whole system.

Selecting an optimal access network for a single MN is
already a well-investigated research area. Traditionally, stud-
ies have assumed that there is only one choice for access
technology; therefore, ANS has been performed based on
channel quality as indicated by the received signal strength
(RSS) or other measurements and the available resources
in the access networks (e.g., bandwidth). However, an ANS
decision made by only a single criterion (e.g., RSS) may be
not the optimal one. Recently, with the development of mobile
wireless technology, the prevalent mobile Internet has been a
combination of diverse but complementary access technolo-
gies. Such a mobile communication environment with complex
network coverage, access networks with heterogeneous access
technologies and service abilities, MNs with distinct call
characteristics, and running applications with different Quality
of Service (QoS) requirements have all raised new challenges
for the ANS problem.

In this paper, group mobility is considered a group-based
behavior because many MNs have distinct call characteristics
but are likely to have correlated mobility and may perform
mobility management at the same time. Rather than focusing
only on achieving individual performance of a single MN,
ANS for group mobility is investigated here to satisfy the
respective access requests and operate across the entire system
in an optimal fashion. The scenario of ANS for group mo-
bility discussed here can be illustrated as follows. Assuming
that MN = {MN1,MN2, ...,MNi, ...,MNm} is a group of
mobile nodes with distinct mobility and call characteristics
and AN = {AN1,AN2, ...,ANj , ...,ANn} is a set of hetero-
geneous access networks, the final results of ANS for group
mobility can be expressed as a 0–1 matrix A = {aij}m×n

.
Because a MN is served by only one access network at a time,
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if i-th MN is served by j-th access network, aij=1; otherwise,
aij=0. To address this issue, this paper proposes a Network
Opportunistic Access scheme for Group Mobility (NOA-GM)
that makes the following contributions.

1. By considering the directional patterns in which MNs
are moving, the access networks along those paths all have
the opportunity to be visited. By introducing the idea of op-
portunistic access, only underloaded networks can be selected
as candidates. This reduces the probability of handoff dropping
and new call blocking.

2. To evaluate the candidate networks, both objective (Ap-
plication QoS and Network Conditions) and subjective (User
Preferences) evaluation metrics are considered to achieve the
tradeoff, respectively, to formulate a normalized model. In the
evaluation system for these metrics, membership functions
are employed to unify the value directions of the involved
evaluation attributes.

3. Based on the formulations of the evaluation metrics, the
addressed ANS for group mobility is conducted as a multi-
objective combination optimization. By making the goal of
optimizing the whole system performance while maintaining
each MN’s performance request, the multi-objective optimiza-
tion is transferred to a signal-objective model. To achieve unity
between the subjective preference and the objective authentic-
ity of ANS decisions, the theory of information entropy is
used to balance the weights of the evaluation metrics.

4. The stated ANS problem with many imperative con-
straints and optimization objectives has been proven to be
NP-hard; therefore, an improved genetic algorithm with newly
designed evolutionary operators and good convergence is
developed to solve this problem in a reasonable fashion and
achieve an optimal result.

The remainder of this paper is organized as follows. Section
2 discusses the current related research achievements. Section
3 thoroughly investigates the scheme of multi-objective net-
work opportunistic access. Section 4 introduces an improved
genetic algorithm to solve the addressed problem. Based on
elaborately designed experiments, Section 5 investigates the
performance of NOA-GM compared to available alternatives.
Section 6 summarizes and concludes this paper.

II. RELATED WORK

To provide mobility services that have better robustness and
scalability, the mobile Internet employs a multilevel hierarchi-
cal architecture in which the lower layers in the hierarchy
consist of high-bandwidth wireless cells with small coverage
areas, and the upper layers consist of cells that provide lower
bandwidth but a much wider coverage area. MNs equipped
with multiple wireless interfaces can access these networks on
the move. Because each node must follow a specified process
to perform binding updates [9], this hierarchical architec-
ture causes additional signal and packet processing overhead.
Therefore, it is necessary to find an optimal hierarchy to
minimize the overall cost. By investigating different network
parameters, such as transmission/update costs and session-
to-mobility (SMR), there are some analytical models for
determining the optimal hierarchy. With such hierarchical and

complex coverage, determining the best access network for a
roaming MN in a visited area is a critical issue that involves
improving system performance. This topic has received much
attention over the past few decades. The proposed methods can
be broadly divided into two categories: static and adaptive.

As a representative static scheme, distance-based selection
often chooses server network access in terms of distance
criteria, mobility patterns (e.g. velocity), and so on [10]. For
example, the upper layer access network has wider coverage
and is particularly suitable for MNs undergoing frequent
handoffs to reduce the cost of global binding updates, while
the lower layer access network is preferable for slower-moving
MNs to reduce the packet transmission cost. Because the
mobility state of an MN may vary over time, defining precise
and universal thresholds that clearly distinguish MN mobility
patterns is still critical.

The alternative adaptive scheme usually considers factors
such as traffic loads, mobility patterns, service characteristics
and so on. In the distance-based ANS with dynamic load
control (DMS-DLC) mechanisms proposed by Kusin et al.
[11], a current load-based preference value for an access
network is first defined. Then, this mechanism makes ANS
decisions using distance criteria and the preference value.
However, because the load option for achieving dynamic load
control is continually updated, coordination among access
networks requires additional signaling overhead. In contrast,
the mobility-based load control (MLC) proposed by Pack et
al. [12], integrates a threshold-based admission control algo-
rithm with an SMR-based replacement algorithm to adaptively
mitigate the burden of accessing a network.

Additionally, due to the imperative constraints and desired
optimal goals, ANS also can be conducted as an NP-hard
problem. Both game theory and heuristic algorithms have
attracted significant attention as solutions to this problem.
By considering factors such as the MN mobility pattern,
network load status, and call request preference, Liou et al.
[13] propose a bargaining game-based ANS. Using a Fuzzy
Set Representation TOPSIS (FSR-Utility-TOPSIS) method to
resolve the inconsistencies of conflicting decision criteria,
Chamodrakas et al. [14] attempt to optimize ANS decisions
with parameterized utility functions using multiple criteria.
Feng et al. [15] propose an evolutionary game model to
describe the dynamics of ANS and used a reinforcement
learning algorithm based on evolutionary equilibrium as the
solution. By formulating ANS as a stochastic game with
negative network externality and modeling the operation of
achieving the optimal decision as a multidimensional Markov
Decision Process, Yang et al. [16] propose a modified value
iteration algorithm to obtain an ANS decision. Ge et al. [17]
formulate ANS as a restless bandit problem and solve it
using a first-order relaxation-based primal-dual index heuristic
algorithm. By taking the efficient resource management of
different networks as an optimization problem and transferring
the problem into a good selection of weights to match their
QoS parameters, Maria et al. [18] develop several heuristic
methods using simple rules to find the best available network.
By considering varying channel contention and transmission
data rates, Cheung et al. [19] formulate ANS as a finite-horizon
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sequential decision problem and solve it using a dynamic
programming (DP)-based optimal random access algorithm.

While acknowledging these proposals in the literature,
which have been found to be efficient, each still has some
limitations and works effectively only in certain specific
cases. In the emerging integrated hybrid wireless network
environment, ANS can be further optimized by taking into
account additional suitable access networks that can provide
roaming MNs with better mobile services. Additionally, this
paper focuses on ANS for group mobility, which raises new
challenges in operating the whole system in an optimal fashion
while maintaining each MN’s performance request.

III. MULTI-OBJECTIVE NETWORKS OPPORTUNISTIC
ACCESS

A. Determining Candidate Access Networks Determination
Based on Moving Direction Patterns

In practical scenarios, most end users follow regular routines
during business hours and might do similar things within
a geographical area, so the mobility profile of an MN is
typically regular to a certain extent [20], [21]. In terms of
a mobility profile, the moving direction, denoted as θ, can be
obtained from GPS location data. These data are used as the
major metric to predict the moving direction pattern for an
MN. Assuming that the MN can move in any direction with
equal probability, the probability density function of θ can be
represented as f(θ) = 1/2π, (−π < θ < π).

By considering the moving direction pattern of an MN, it
is logical that access networks along the moving direction
all have the opportunity to be visited. To reduce the handoff
dropping probability and new call blocking probability, the
idea of opportunistic access is introduced, in which only
underloaded access networks can be chosen as the candidates.
To reflect the differences and the underlying communication
strength of access networks, the load intensity, denoted as
Load[i], is normalized in (1) [9], and a threshold ρ is employed
to divide the load status into two types: Normal and Overload.

Load[i]

=


1, if (qi = Qi or si ≥ Si or ki ≥ Ki ‖ Load[i] ≥ ρ)

w1
qi
Qi

+ w2
si
Si

+ w3
ki
Ki

, others, (

3∑
j=1

wj = 1)

(1)

For the i-th access network, qi and Qi are the current queue
length and maximum queue length, respectively, si and Si are
the gained session arrival rate in the latest period and the maxi-
mum session arrival rate within the capacity, ki and Ki are the
number of currently served MNs and the maximum number
of served MNs within the capacity. The normalized values are
qi/Qi, si/Si and ki/Ki within [0, 1]. The transmission ability
can be obtained by qi/Qi, while the strength of underlying
communications can be obtained by si/Si and ki/Ki. In
addition, the weighted factors wj(j = 1, 2, 3) are introduced.
These weighted factors can be adjusted dynamically to achieve
the expected focus. Because the three parameters have the
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Fig. 1. The evaluation system employed for the candidates.

same value direction, which affects the load evaluation, the
evaluated effect is consistent no matter how it is adjusted.

Based on these stated definitions, access networks period-
ically evaluate their load status using the dynamic weighted
load evaluation algorithm implementation shown in Algorithm
1. To avoid further aggravating the workload of overloaded
networks, only underloaded access networks should admit a
handoff or take new call requests.

Algorithm 1 Dynamic Weighted Load Evaluation
Input: qi: current queue length; Qi: maximum queue length;

si: gained session arrival rate in the latest period; Si:
maximum session arrival rate within the capacity; ki:
the number of currently served MNs; Ki: the maximum
number of served MNs within the capacity; ρ: a threshold
value.

Output: Load[i]: load intensity; AN State: load status.
1: Calculate Load[i] using Eq. (1);
2: if (qi = Qi or si ≥ Si or ki ≥ Ki ‖ Load[i] ≥ ρ) then
3: AN State =“Overload”
4: else
5: AN State =“Normal”
6: end if

B. Formulations of Evaluation Metrics

To achieve an optimal result option that maximizes the
whole system performance while maintaining each MN’s per-
formance, the evaluation system employed for the candidates
is shown in Fig. 1, which includes three dimensions of
objective and subjective metrics. In the following formulations
of the evaluation metrics, the symbols used along with their
corresponding explanations are listed in Table. I.

Because of intensive resource competition for network re-
sources or conflicts, an ongoing handoff process for an MN
might be dropped. Similarly, if the current service capability of
the target access network is beyond its limit, a new mobile call
request might be blocked due to the lack of adequate resources.
Thus, using the available network information is beneficial
for achieving a balanced load across different networks and
can also relieve congestion in some cases. To evaluate the
network conditions, evaluation attributes such as load intensity,
network delay, available bandwidth, and network congestion
are considered in this system. The normalized evaluation
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TABLE I
LIST OF THE USED SYMBOLS.

Symbol Explanation

NLi
j , NDi

j , BW i
j , NCi

j Current load intensity, network delay, available bandwidth, and network congestion of the j-

th access network when the i-th MN selects the j-th access network as the serving network,

respectively.

NLj , NDj , BWj , NCj Acceptable load intensity, network delay, available bandwidth, and network congestion of the

j-th access network, respectively.

NLmax, NDmax, NCmax, BWmax Acceptable maximum load intensity, network delay, network congestion, and available band-

width of the candidate access network, respectively.

NLmin, NDmin, NCmin, BWmin Acceptable minimum load intensity, network delay, network congestion, and available band-

width of the candidate access network, respectively.

DRj
i-actual, TLj

i-actual, PLj
i-actual Actual data rate, transmission latency, and packet loss when the i-th MN selects the j-th access

network as the serving network, respectively.

DRi-expect, TLi-accept, PLi-accept Expected data rate, acceptable transmission latency and packet loss of the i-th MN, respectively.

DRmax, TLmax, PLmax Maximum data rate, transmission latency, and packet loss of the candidate access network,

respectively.

DRmin, TLmin, PLmin Minimum data rate, transmission latency, and packet loss of the candidate access network,

respectively.

Cj
i-actual, Ej

i-actual Actual charge, battery power consumption when the i-th MN selects the j-th access network

as the serving network, respectively.

Ci-budget, Ei-accept Budget and acceptable battery power consumption of the i-th MN, respectively.

Cmax, Emax Maximum charge, and battery power consumption of the candidate access network, respectively.

Cmin, Emin Minimum charge, and battery power consumption of the candidate access network, respectively.

Condition(net)[i, j] = α1 · Load+ α2 ·Delay + α3 ·Bandwidth+ α4 · Congestion

= α1 ·
|NLi

j − NLj |
max{NLmax − NLj ,NLj − NLmin}

+ α2 ·
|NDi

j − NDj |
max{NDmax − NDj ,NDj − NDmin}

+ α3 ·
|BW i

j −BWj |
max{BWmax −BWj , BWj −BWmin}

+ α4 ·
|NCi

j − NCj |
max{NCmax − NCj ,NCj − NCmin}

s.t.
4∑

i=1

αi = 1, 0 < αi < 1

(2)

model is defined in (2), where αi is the influence weight of
each evaluation attribute.

QoS(app)[i, j]
= β1 ·Rate+ β2 · Latency + β3 · Loss

= β1 ·
|DRj

i-actual − DRi-expect|
max{DRmax − DRi-expect,DRi-expect − DRmin}

+ β2 ·
|TLj

i-actual − TLi-accept|
max{TLmax − TLi-accept, TLi-accept − TLmin}

+ β3 ·
|PLj

i-actual − PLi-accept|
max{PLmax − PLi-accept,PLi-accept − PLmin}

s.t.
3∑

i=1

βi = 1, 0 < βi < 1

(3)

Different applications running on MNs have different QoS
requirements. The system for evaluating Application QoS
considers evaluation attributes such as data rate, transmission

latency, reliability, and (packet losses). The normalized QoS
evaluation model is defined in (3), where βi is the influence
weight of each evaluation attribute.

In group mobility, different users have distinct preferences.
User preferences can be used to broker special requests
that prioritize one access network over another. The system
for evaluating user preferences considers attributes such as
charge and battery power consumption. Charge is a major
consideration for users because different network operators
use different billing strategies. Variations in billing plans may
influence user access choice. Battery power is also a significant
factor that can affect access in some cases. When the battery
level is low, users may prefer to access networks that require
lower power consumption. The normalized evaluation model
is defined in (4), where, γi is the influence weight assigned to
each evaluation attribute.
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Preference(user)[i, j]
= γ1 · Charge+ γ2 · Energy

= γ1 ·
|Cj

i-actual − Ci-budget|
max{Cmax − Ci-budget, Ci-budget − Cmin}

+ γ2 ·
|Ej

i-actual − Ei-accept|
max{Emax − Ei-accept, Ei-accept − Emin}

s.t.
2∑

j=1

γj = 1, 0 < γj < 1

(4)

C. Optimization Objective Model and Weight Assignment

In the introduced metrics evaluation system, the evaluation
attributes can be classified into benefit and cost ones. The value
direction of the former is in accordance with the overall goal,
but the latter has the opposite value direction.

In the network conditions evaluation system, when the i-th
MN selects the j-th access network as the serving network, the
overall goal is to minimize the performance impact imposed
on the target access network. Specifically, after the selection,
when the load intensity is heavy, network delays are high,
or network congestion is significant, the performance impact
will also be significant. Similarly, low available bandwidth will
also have a serious impact on performance. Hence, the first
three evaluation attributes hence are related to costs, and the
available bandwidth is the benefit attribute. In the application
QoS evaluation system, the overall goal is to enhance the
user’s QoS experience in the target access network. To that
end, when the data rate is higher, the QoS experience would
be better, but reduced transmission delay and fewer packets
lost would also result in a better QoS experience. Hence, the
data rate is the benefit attribute, while transmission delay and
fewer packets are the cost attributes. In the user preferences
evaluation system, the overall goal is to maximize the user’s
preference when selecting the target access network. The
user’s preference is greater when the resulting charge and
battery power consumption are smaller; hence, both these
evaluation attributes are cost attributes.

The membership functions are used to unify the value
directions of the evaluation attributes with the overall goal in
the respective evaluation system [22]. Because the considered
evolution attributes have been normalized In the stated for-
mulations and the value ranges have been linearly transferred
into [0, 1], the benefit attributes do not need to be processed
further, but the cost attributes must be processed by using the
simple membership function shown in (5).

y′ = 1− y, 0 ≤ y ≤ 1 (5)

Accordingly, as defined in (6), the addressed ANS can
be conducted as a multi-objective combination optimization,
where, xij is a decision variable. If the i-th MN selects the
j-th access network as the serving network then xij = 1;
otherwise, xij = 0.

For group mobility, by optimizing the whole system per-
formance as the global goal while maintaining each MN’s

performance, the multi-objective optimization can be trans-
ferred to the signal-objective model as shown in (7), where
ωk represents the introduced weights.

maxPerformance(system)

=

n∑
i

m∑
j

ω1 · Condition(net)[i, j] + ω2 ·QoS(app)[i, j]

+ ω3 · Preference(user)[i, j]

s.t.
3∑

k=1

ωk = 1, 0 < ωk < 1, k = 1, 2, 3

(7)

After formulating the optimization objection function, de-
termining the weight value for each evaluation metric is the
most important and difficult problem. Because the network
conditions and application QoS are objective evaluation met-
rics, while user preference is a subjective one, to achieve
unity between the subjective preference and the objective
authenticity of ANS decisions, the theory of information
entropy is used to evenly determine the assigned weights.

Assuming that Θjk(j = 1, 2, ..., n; k = 1, 2, 3) is the
performance of the k-th evaluation metric in the j-th access
network, then pjk = Θjk/

∑n
j=1 Θjk. According to the theory

of information entropy, the entropy of the k-th evaluation
metric is Ek = −(lnn)−1

∑n
j=1 pjk ln pjk, where the formula

for the logarithm lnn is used to facilitate the normalization.
Moreover, if pjk = 0, then pjk ln pjk = 0. Therefore, the
weight of the k-th evaluation metric can be defined in (8).

ωk = (1− Ek)/

3∑
k=1

(1− Ek) (8)

As stated above, the final result option of ANS for group
mobility can be represented as a 0–1 matrix A = {aij}m×n.
Accordingly, for each result option, there will be a correspond-
ing value of Performance(system). By sorting the value of Per-
formance(system), the option corresponding to the maximal
Performance(system) would be the one finally adopted.

IV. ALGORITHM DESIGN AND ANALYSIS

Generally, when the perceived QoE in an MN’s current
network has deteriorated drastically, the ANS decision must
be made in a timely manner, so that the roaming MN can
connect to a new access network and enjoy improved QoE.
To solve the stated ANS problem effectively (which has been
proven to be NP-hard), an Improved Genetic Algorithm (I-
GA) with newly designed evolutionary operators is developed
in Algorithm 2. A new modular arithmetic based crossover
operator is designed to expand the search scope; therefore, I-
GA can create offspring by using the modulus operator to turn
the sums of corresponding values in the two parent individuals
into the remainder. Additionally, a uniform mutation operator
is designed to enhance population diversity and prevent the
algorithm from reaching the local optimum. Assume that
X = {x1, x2, ..., xn} is a parent individual participating in the
mutation, and in turn, randomly generating a x

′

i from [1,m]
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maxCondition(net) =
n∑

i=1

m∑
j=1

xij · Condition(net)[i, j]

=

n∑
i=1

m∑
j=1

xij · [α1 · (1− Load) + α2 · (1−Delay) + α3 ·Bandwidth+ α4 · (1− Congestion)]

maxQoS(app) =
n∑
i

m∑
j

xij ·QoS(app)[i, j] =
m∑
j

n∑
i

xij · [β1 ·Rate+ β2 · (1− Latency) + β3 · (1− Loss)]

maxPreference(user) =
n∑
i

m∑
j

xij · Preference(user)[i, j] =
m∑
j

n∑
i

xij · [γ1 · (1− Cost) + γ2 · (1− Energy)]



(6)

with equal probability of replacing xi. Then, a new individual
X ′ = {x′1, x′2, ..., x′n} as a mutated offspring is obtained.

Algorithm 2 Improved Genetic Algorithm (I-GA) for ANS
Input: Information of candidate access networks; informa-

tion of mobile nodes; pcrossover: crossover probability;
pmutation: mutation probability; N : population size.

Output: The optimal result option for ANS.
1: Initiation: Using the direct integer coding method and the

random algorithm to generate the initial population X(0);
the initial evolutionary generation is g = 0;

2: while (g ≤ maxGeneration) do
3: Crossover: Using the crossover probability pcrossover,

execute the crossover operation to each of the selected
parent pair (Xi, Xj) from X(g) using the modular
arithmetic based crossover operator, and then, generate
the set of hybrid offspring Xcrossover.

4: Mutation: Using the mutation probability pmutation,
execute the mutation operation by using the uniform
mutation operator and generate the set of mutation
offspring Xmutation.

5: Selection: Randomly select N − 1 individuals from
X(g)

⋃
Xcrossover

⋃
Xmutation by using the elitism

strategy, and generate the next generation of population
X(g + 1) with the initial individual.

6: g = g + 1;
7: end while

To demonstrate the effectiveness of I-GA, the algorithm
convergence is discussed as follows. First, by using the elitism
strategy in the selection operation, the population generations
of {X(0), X(1), ..., X(g), ...} in the feasible region of I-GA
are monotonous, so the relationship of the fitness functions of
the two adjacent generations can be achieved in (9).

∀g, min{f(x)|x ∈ X(g)} ≤ min{f(x)|x ∈ X(g + 1)} (9)

Assuming that Xa and Xc are any two individuals in the
generations of X(g) and X(g′) then (g′ > g). In terms of
the stated assumptions, the probability of selecting Xa as the
crossover individual is pcrossover > 0. If Xb is either of the
hybrid offspring of Xa, the probability of selecting Xb as the

mutation individual is pmutation > 0. After the crossover and
mutation operations, the probability of generating Xc from Xa

can be represented as shown in (10).

p(Xa
crossover−−−−→
mutation

Xc) ≥ pcrossover · pmutation · p(Xb
mutation−−−−→ Xc) (10)

Assuming that Xb = {x1b , x2b , ..., xnb } and Xc = {x1c , x2c , ...,
xnc }, in terms of the designed uniform mutation operator, the
probability of mutating xib into xic is 1

m−1 , and the probability
of generating Xc from Xb can therefore be defined as shown
in (11). Next, (10) can be reformulated as (12). Finally, we
can conclude that Xc can be generated from Xa by performing
finite crossover and mutation operations. Assuming ε(ε > 0)
is a positive constant, the distance between X(g) and X(g′)
is denoted as d[X(g), X(g′)]; therefore, it is smaller than ε,
i.e. d[X(g), X(g′)] < ε, and the population generations of
{X(0), X(1), ..., X(g), ...} can be taken as a bounded Cauchy
sequence in which, when g′ > g → ∞, d[X(g), X(g′)] →
0. Accordingly, the stated theoretical analyses show that the
proposed I-GA would converge to the global optimal solution
with a probability of 1.

p(Xb
mutation−−−−→ Xc) =

1

(m− 1)n
> 0 (11)

p(Xa
crossover−−−−→
mutation

Xc) = pcrossover · pmutation ·
1

(m− 1)n
> 0 (12)

V. SIMULATION AND ANALYSIS

A. Simulation Setup

With the NS-2 platform, Fig. 2 is an illustration of the used
hierarchical network topology, in which WCDMA cellular sys-
tems fully cover the service area, but OFDMA-based WMAN
cells and randomly deployed IEEE 802.11 WLANs provide
only partial coverage. Note that, to avoid the boundary effects
perceived by the roaming MN, a wraparound model is used
as well. The significant simulation parameters are configured
in Table. II.

During system initialization, 100 MNs are evenly distributed
in this scenario and they randomly select the serving ac-
cess network. Subsequently, during each simulation interval
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WCDMA network

OFDMA-based WMAN network

IEEE 802.11 WLAN network

Base Station of WCDMA

Base Station of WMAN

Access Point of WLAN

Fig. 2. Illustration of the used network topology.

TABLE II
THE CONFIGURATIONS OF SIGNIFICANT PARAMETERS IN THE

SIMULATIONS.

Parameters (unit) WCDMA WMAN WLAN

Cell radius (km) 2 1.6 0.1

Frame/time slot duration (ms) 10 5 9× 10−3

Carrier frequency (GHz) 2 2.5 2.4

Bandwidth (Mbps) 5 22 54

Delay (ms) 200 100 50

Energy consumption in active state (W) 1.2 3.5 4.5

Charge 1 0.5 0.2

(τ = 100s), new mobile calls arrivals are regarded as a
stochastic process conforming to a Poisson distribution. Note
that each deployed MN may have distinct mobility and call
characteristics; the mobility profiles are obtained by using the
classical Random Waypoint model, and MN velocity (km/h)
is a random variable uniformly distributed in [1, 50]. The
session arrival rates of the applications running on the MNs
follow a Poisson distribution based on the parameter λ, and λ
is randomly distributed in [1, 10]. The QoS requirements for
typical applications are listed in Table. III.

TABLE III
QOS REQUIREMENTS FOR TYPICAL APPLICATIONS.

QoS DRmin DRmax TLmin TLmax PLmin PLmax

requirements (kbps) (kbps) (ms) (ms) (%) (%)

Voice 32 64 75 150 0.01 1

Web Browsing 128 1000 250 500 1 5

Video Streaming 128 1000 2000 4000 1 5

Video Conference 512 5000 75 150 1 5
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Fig. 3. Average handoff frequency.

B. Comparison and Analysis

We conducted a simulation analysis to demonstrate the aver-
age performance of handoff frequency, load balancing among
the hierarchies, average handoff latency, handoff dropping
probability, new call blocking probability and the average
throughput of NOA-GM. We selected three representative
ANS schemes, MLC [10], the bargaining game-based scheme
[11] and the FSR-Utility-TOPSIS [18] using the same simu-
lation settings for a fair comparative study.

The average handoff frequency (AHF) is defined as the
average number of ongoing calls changing from one served
access network to another during the simulation. Fig. 3 shows
the AHF performance. A handoff may be caused by the
following reasons: an MN moves to the cell edge, the capacity
of the current serving access network drops below a predefined
threshold, or the selected serving access network is not the
optimal available network. From Fig. 3, we can see that AHF
increases as the simulation continues. When the system service
capability limits are exceeded, the increased probability of
handoff dropping will reduce the AHF. Comparatively, by
passively migrating the burden among the access networks to
achieve a dynamic load balance, MLC has a higher AHF. Be-
cause the number of deployed WLANs is relatively greater and
the load of each WLAN is relatively lighter on average, an MN
using MLC would like to select a WLAN as its serving access
network. With the introduced dwelling factors, an MN using
the bargaining game-based scheme always selects the access
network with large dwelling factors, and the MNs experience
relatively fewer handoffs during the simulation. FSR-Utility-
TOPSIS resolves the inconsistencies in the conflicting decision
criteria, and NOA-GM comprehensively considers the tradeoff
between the objective and the subjective criteria. The decisions
to change the serving access network in these two schemes are
more rational, and the average handoff frequencies are more
balanced than those of the other two schemes. Accordingly,
for load balancing performance among the hierarchies shown
in Fig. 4, NOA-GM and FSR-Utility-TOPSIS outperform the
other two schemes as well. Note that the load in each hierarchy
is evaluated in total without having to evaluate the specific load
in each cell.

Due to the delay in transmitting registration information,
the relationships of handoff latencies among the heteroge-
neous networks can be discussed as follows. Generally, the
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Fig. 4. Load balance.
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Fig. 5. Average handoff latency.

handoff latency from a bottom network to a top network is
longer than that from top to bottom, L(Bottom → Top) >
L(Top → Bottom). In the simulation setup in this paper,
L(WLAN → WCDMA) > L(WMAN → WCDMA) >
L(WLAN → WMAN), and L(WCDMA → WLAN) >
L(WCDMA → WMAN) > L(WMAN → WLAN).
Accordingly, we discuss the performance on average handoff
latency (AHL) which is defined as SUM(L)/N . SUM(L) is
the sum of triggered handoff latencies and N is the number of
MNs. Similarly, by comparative analysis of the characteristics
of the four compared schemes discussed for AHF, as shown
in Fig. 5, we can clearly observe that the AHL of NOA-GM
has a distinct advantage.

The handoff dropping probability (HDP) is defined as the
probability that an existing mobile call fails to handoff to
the target access network. The performance of the schemes
on HDP is shown in Fig. 6. Generally, if the target access
network is overloaded, the handoff request would be dropped
immediately. In the bargaining game-based scheme, a can-
didate access network allocates more resources to the MN
with larger dwelling factors. If the load intensity is beyond
the predefined threshold or the remaining capacity cannot
satisfy the handoff request, the handoff would be dropped
immediately. In particular, because existing calls in the target
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Fig. 6. Handoff dropping probability.

access network are only passively migrated when the load
intensity is high, MLC will have a higher probability of
dropping the handoff due to insufficient capacity. FSR-Utility-
TOPSIS still calculates the overall rating of the networks for
a handoff request, but the highest ranking network may not
be an underloaded one. Therefore, when the candidates are
overload, the handoff may be dropped. In NOA-GM, rather
than considering only a single handoff request, the global goal
is to maximize the entire system performance. Additionally,
only underloaded access networks along the moving direction
of MN are chosen as the candidates. Therefore, the HDP of
NOA-GM is superior to the HDPs of the compared schemes.

New call block probability (CBP) is defined as the proba-
bility that a new mobile call will fail to be admitted by the
target access network. Fig. 7 shows the performance of the
schemes on CBP. Similarly, if the target access network is
overloaded, the new call request would be blocked. In general,
all new calls prefer WLANs over the other two types of access
networks. Initially, because there are relatively more deployed
WLANs and each WLAN is relatively lighter on average,
the CBP is close to zero. However, as the number of served
calls increases and MN mobility increase, the competition for
these finite resources becomes more serious. If there is not
enough capacity in the target access network, the bargaining
game-based scheme will block the new call. Only if there
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Fig. 7. Call blocking probability.
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Fig. 8. Average throughput.

is an existing call with a higher SMR in the target access
network, would MLC admit the new call by replacing the
existing one. Moreover, the highest ranking network may not
be an underloaded one in FSR-Utility-TOPSIS; therefore, the
new call might be blocked when the system is saturated.
Because NOA-GM introduces the idea of opportunistic access
to determine the candidate access network, the CBP In NOA-
GM is smaller than the CBPs of the compared schemes.

Average throughput (AT) is defined as the average ratio
of received valid packets of all MNs during a unit of time.
Fig.8 shows the performance of the schemes on AT. As
the simulation continues, the increased number of mobile
calls session first enhances the average system throughput.
However, as the served calls and MN mobility continue to
increase, the throughput begins to decline. For example, the
throughput in MLC is seriously influenced by communication
interruptions caused by higher handoff frequencies. Although
the bargaining game-based scheme and FSR-Utility-TOPSIS
have fewer or more balanced handoff frequencies, the con-
tention for resources and communication collisions also cause
the throughput to deteriorate. Specifically, the increased HDP
and CBP are the main factors that cause the throughput to
deteriorate. Comparatively, NOA-GM outperforms the other
schemes due to its advantages on AHF, HDP and CBP.

VI. CONCLUSION

Roaming across heterogeneous wireless networks consti-
tutes a challenge when providing continuity services for mo-

bile users. ANS as an important operation because handoff
decisions directly influence system performance and the end
users’ experiences. In this paper, a network opportunistic
access scheme (NOA-GM) is proposed to investigate the issue
of ANS for group mobility, in which many MNs with distinct
call characteristics are likely to have correlated mobility and
may perform mobility management at the same time. By
analyzing the mobility direction patterns and introducing the
idea of opportunistic access, only underloaded access networks
along the moving direction of MNs are selected as candidate
networks. The three dimensions of objective and subjective
evaluation metrics are then introduced for these candidates,
and normalized evaluation models are formulated. To unify
the value directions of the involved evaluation attributes in
the respective evaluation system, a membership function is
used as well. Subsequently, the ANS problem is conducted
as a multi-objective combination optimization. By adopting
optimization of the entire system performance as the global
goal while still preserving each MN’s performance, the con-
ducted multi-objective optimization is transferred to a signal-
objective model, and the theory of information entropy is
used to determine balanced weights for the evaluation metrics.
Finally, an improved genetic algorithm with newly designed
evolutionary operators and good convergence is developed to
solve this problem. The simulations conducted on the NS-2
platform show that NOA-GM is superior to compared schemes
on several critical performance metrics.

The ANS problem addressed in this paper is only the first
significant problem in handoff decisions. After determining the
target access network, further decisions concerning when (or
whether) to execute the handoff trigger and when to perform
the handoff execution must be made as well [23]. Due to
the randomness of human mobility, the handoff trigger might
be imperative or unnecessary. Failing to detect an imperative
handoff trigger or a false alarm from an unnecessary handoff
trigger will cause mobile users’ QoE to deteriorate badly.
Therefore, developing an intelligent and reliable handoff trig-
ger scheme to avoid performance degradation due to missed
trigger detections and false alarms remains an interesting
problem that we hope to further explore in future work.
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“Optimizing the mobility management task in networks of four world
capital cities,” Journal of Network and Computer Applications, vol. 51,
pp. 18–28, 2015.

[5] K. Ota, M. Dong, Z. Cheng, L. X. Wang, Junbo, and X. Shen, “Oracle:
Mobility control in wireless sensor and actor networks,” Computer
Communications, vol. 35, no. 9, pp. 1029–1037, 2012.

[6] G. Fabio, C. Luca, and B. Carlos J, “Distributed mobility management
for future 5g networks: overview and analysis of existing approaches,”
IEEE Communications Magazine, vol. 53, no. 1, pp. 142–149, 2015.



10

[7] S. Guo, M. Dong, G. Minyi, and L. Chen, “A comparative analysis of
mobility-based lifetime-aware multicast routing protocols for manets,”
in Proceedings of IPSJ International Conference on Mobile Computing
and Ubiquitous Networking, 2008, pp. 64–71.

[8] M. Tao, H. Yuan, X. Hong, and J. Zhang, “Smartho: mobility pattern
recognition assisted intelligent handoff in wireless overlay networks,”
Soft Computing, vol. online, no. DOI 10.1007/s00500-015-1747-9, pp.
1–10, 2015.

[9] M. Tao, H. Yuan, and W. Wei, “Active overload prevention based
adaptive map selection in hmipv6 networks,” Wireless networks, vol. 20,
no. 2, pp. 197–208, 2014.

[10] E. Natalizio, A. Scicchitano, and S. Marano, “Mobility anchor point
selection based on user mobility in hmipv6 integrated with fast handover
mechanism.” in Proceedings of IEEE Wireless Communications and
Networking Conference (WCNC), 2005, pp. 1434–1439.

[11] Z. Kusin and M. S. Zakaria, “Dynamic load control mechanism in
hierarchical mipv6,” in Proceedings of International Conference on
Electrical Engineering and Informatics (ICEEI). IEEE, 2011, pp. 1–5.

[12] S. Pack, T. Kwon, and Y. Choi, “A mobility-based load control scheme
in hierarchical mobile ipv6 networks,” Wireless Networks, vol. 16, no. 2,
pp. 545–558, 2010.

[13] Y.-S. Liou, R.-H. Gau, and C.-J. Chang, “A bargaining game based
access network selection scheme for hetnet,” in Proceedings of IEEE
International Conference on Communications (ICC). IEEE, 2014, pp.
4888–4893.

[14] I. Chamodrakas and D. Martakos, “A utility-based fuzzy topsis method
for energy efficient network selection in heterogeneous wireless net-
works,” Applied Soft Computing, vol. 11, no. 4, pp. 3734–3743, 2011.

[15] Z. Feng, L. Song, Z. Han, D. Niyato, and X. Zhao, “Cell selection in
two-tier femtocell networks with open/closed access using evolutionary
game,” in Proceedings of IEEE Wireless Communications and Network-
ing Conference (WCNC). IEEE, 2013, pp. 860–865.

[16] Y.-H. Yang, Y. Chen, C. Jiang, C.-Y. Wang, and K. R. Liu, “Wireless
access network selection game with negative network externality,” IEEE
Transactions on Wireless Communications, vol. 12, no. 10, pp. 5048–
5060, 2013.

[17] W. Ge, S. Chen, H. Ji, X. Li, and V. C. Leung, “Green access point
selection for wireless local area networks enhanced by cognitive radio,”
Mobile Networks and Applications, vol. 18, no. 4, pp. 553–566, 2013.

[18] M. D. Jaraiz-Simon, J. A. Gomez-Pulido, and M. A. Vega-Rodriguez,
“Embedded intelligence for fast qos-based vertical handoff in hetero-
geneous wireless access networks,” Pervasive and Mobile Computing,
vol. 19, pp. 141–155, 2015.

[19] M. H. Cheung, F. Hou, V. W. Wong, and J. Huang, “Dora: Dynamic
optimal random access for vehicle-to-roadside communications,” IEEE
Journal on Selected Areas in Communications, vol. 30, no. 4, pp. 792–
803, 2012.

[20] G. Kousalya, P. Narayanasamy, J. H. Park, and T.-h. Kim, “Predictive
handoff mechanism with real-time mobility tracking in a campus wide
wireless network considering its,” Computer Communications, vol. 31,
no. 12, pp. 2781–2789, 2008.

[21] W. Wanalertlak, B. Lee, C. Yu, M. Kim, S.-M. Park, and W.-T. Kim,
“Behavior-based mobility prediction for seamless handoffs in mobile
wireless networks,” Wireless Networks, vol. 17, no. 3, pp. 645–658,
2011.

[22] J. Kim, J.-D. Cho, J. Jeong, J.-Y. Choi, B.-h. Song, and H. Lee,
“Fuzzy logic based handoff scheme for heterogeneous vehicular mobile
networks,” in International Conference on High Performance Computing
& Simulation (HPCS). IEEE, 2014, pp. 863–870.

[23] M. Tao, H. Yuan, S. Dong, and H. Yu, “Initiative movement prediction
assisted adaptive handover trigger scheme in fast mipv6,” Computer
Communications, vol. 35, no. 10, pp. 1272–1282, 2012.

Ming Tao received his B.S. degree from Anhui
University, China in 2007, and his M.S. and Ph.D.
degrees from South China University of Technology
(SCUT), China, in 2009 and 2012, respectively. He
is currently an associate researcher at the School of
Computer of Dongguan University of Technology,
and the Director of the key laboratory of the wireless
sensor network system of Dongguan. His primary
research interests include protocol design and perfor-
mance analysis in next-generation wireless/mobile
networks, High Performance Computing and grid

technology. He has served as a reviewer for several IEEE international
conferences and International Journals.

Mianxiong Dong received B.S., M.S. and Ph.D.
in Computer Science and Engineering from The
University of Aizu, Japan. He is currently an As-
sociate Professor in the Department of Information
and Electronic Engineering at the Muroran Institute
of Technology, Japan. Prior to joining Muroran-
IT, he was a Researcher at the National Institute
of Information and Communications Technology
(NICT), Japan. He was a JSPS Research Fellow
with School of Computer Science and Engineering,
The University of Aizu, Japan and was a visiting

scholar with BBCR group at University of Waterloo, Canada supported by
JSPS Excellent Young Researcher Overseas Visit Program from April 2010
to August 2011. Dr. Dong was selected as a Foreigner Research Fellow
(a total of 3 recipients all over Japan) by NEC C&C Foundation in 2011.
His research interests include Wireless Networks, Cloud Computing, and
Cyber-physical Systems. His research results have been published in 130
research papers in international journals, conferences and books. He has
received best paper awards from IEEE HPCC 2008, IEEE ICESS 2008,
ICA3PP 2014, GPC 2015, and IEEE DASC 2015. Dr. Dong serves as an
Editor for IEEE Communications Surveys and Tutorials, IEEE Network, IEEE
Wireless Communications Letters, IEEE Cloud Computing, IEEE Access,
and Cyber-Physical Systems (Taylor & Francis), as well as a leading guest
editor for ACM Transactions on Multimedia Computing, Communications and
Applications (TOMM), IEEE Transactions on Emerging Topics in Computing
(TETC), IEEE Transactions on Computational Social Systems (TCSS). He has
been serving as Symposium Chair of IEEE GLOBECOM 2016, IEEE ICC
2017. Dr. Dong is currently a research scientist with A3 Foresight Program
(2011-2016) funded by Japan Society for the Promotion of Sciences (JSPS),
NSFC of China, and NRF of Korea.

Kaoru Ota was born in Aizu Wakamatsu, Japan.
She received M.S. degree in Computer Science from
Oklahoma State University, USA in 2008, B.S. and
Ph.D. degrees in Computer Science and Engineering
from The University of Aizu, Japan in 2006, 2012,
respectively. She is currently an Assistant Professor
with Department of Information and Electronic En-
gineering, Muroran Institute of Technology, Japan.
From March 2010 to March 2011, she was a visiting
scholar at University of Waterloo, Canada. Also she
was a Japan Society of the Promotion of Science

(JSPS) research fellow with Kato-Nishiyama Lab at Graduate School of
Information Sciences at Tohoku University, Japan from April 2012 to April
2013. Her research interests include Wireless Networks, Cloud Computing,
and Cyber-physical Systems. Dr. Otas research results have been published in
110 research papers in international journals, conferences and books. She has
received best paper awards from ICA3PP 2014, GPC 2015, and IEEE DASC
2015. She serves as an editor for Peer-to-Peer Networking and Applications
(Springer), Ad Hoc & Sensor Wireless Networks, International Journal of
Embedded Systems (Inderscience), as well as a guest editor for IEEE Wireless
Communications, IEICE Transactions on Information and Systems. She is
currently a research scientist with A3 Foresight Program (2011-2016) funded
by Japan Society for the Promotion of Sciences (JSPS), NSFC of China, and
NRF of Korea.

Zhimin He received his B.S. and Ph.D. degrees from
the South China University of Technology, China, in
2010 and 2015, respectively. He is a lecturer at South
China Agricultural University, Guangzhou, China.
His current research interests include pattern recog-
nition, adversarial learning, information security, and
the Internet of Things.


