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Abstract

Objective measures of intelligibility are preferable to subjective ones in the eval-

uation of speech systems used in real environments. In this study, subjective

evaluations of eight types of indoor noise environments were used to compare

four intelligibility indices to objectively evaluate Japanese speech intelligibility.

These indices were as follows: short-time objective intelligibility (STOI), which

has been widely used in recent years; speech intelligibility prediction based on

mutual information (SIMI), which is derived from STOI; extended STOI (ES-

TOI), which is an improved version of STOI; and frequency weighted segmental

signal to noise ratio (fwSNRseg), which incorporates both time and frequency

components. These indices were subjectively evaluated in the eight noisy envi-

ronments included in the corpus and environments for noisy speech recognition 4

(CENSREC-4) dataset using the familiarity-controlled word lists 2007 (FW07)

as the speech data for the intelligibility evaluations. The results of the subjective

evaluation of the four indices were then used to train predictive intelligibility

estimation models. We evaluated the model performance using cross validation,

which involved repeated training of seven of the eight environments and pre-

dicting the speech intelligibility under the remaining one environment. In the
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simulation results, the prediction accuracy of the SIMI index was significantly

higher than that of the other indices, with a root mean squared error of 0.160

and a correlation coefficient of 0.934.

Keywords: Speech intelligibility, Intelligibility index, STOI, SIMI, ESTOI,

fwSNRseg

1. Introduction1

The intelligibility of the output from a speech system used in a real en-2

vironment is influenced by factors such as the transfer characteristics of the3

environment in which it is used and the background noise. Accordingly, speech4

systems are developed in environments without people, as it is impossible to5

predict the background noise and reverberations that will occur during actual6

use. Moreover, it is difficult to predict the intelligibility, especially when the7

system is operated in environments with high levels of background noise and8

reverberations such as train stations, airports, and schools. Thus, speech intelli-9

gibility prediction that simulates the use of speech systems in real environments10

is indispensable. This study focused on estimating the intelligibility of a public11

address (PA) system in indoor environments. As PA systems do not usually12

employ noise reduction techniques such as those used in hearing aids, noise and13

reverberation directly affect intelligibility.14

Conventionally, researchers have used the articulation index (AI) [1] pro-15

posed by French and Steinberg to indicate the intelligibility of speech. The AI16

was further modified by Kryter [2] and standardized by ANSI. Currently, the17

AI is known as the speech intelligibility index (SII) [3, 4]. The SII is based18

on the AI with the difference that critical bands are used for analysis in the19

SII. The AI/SII assumes that the signal to noise ratio (SNR) at each band20

of auditory perception contributes independently to articulation. Thus, the21

calculation of AI/SII uses the average value of the SNR of each band, where22

perceptual weighting is used, and the SNR is normalized to a value between 023

and 1. The speech transmission index (STI) [5] was proposed by Steeneken and24
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Houtgast and standardized by ISO/IEC [6]. The STI models the transduction25

pathway of the speech using a modulation transfer function (MTF) and mea-26

sures the intelligibility based on changes to the MTF. In particular, the STI is27

based on the principle that reverberation and added noise tend to reduce the28

time amplitude/intensity modulation depth compared with a clean probe signal.29

The STI is used to evaluate the speech transmission quality according to the30

acoustic characteristics of the channel.31

These indices represent standardized measures that have been used over a32

long period of time with continuous minor improvements. However, they are33

not necessarily suitable for evaluating the intelligibility of all types of degraded34

speech. Recently, frequency weighted segmental SNR (fwSNRseg) [7] was pro-35

posed by Jianfen Ma et al. This intelligibility index is based on the SNRs of36

segmented speech signals, and it incorporates both time and frequency weights.37

Therefore, it can be thought of as an extension of the AI into the time domains.38

The short-time objective intelligibility (STOI) measure was proposed by39

Taal et al. [8]. STOI is based on correlation coefficients between the clean40

speech and degraded speech power spectral envelopes using one-third octave41

bands. Therefore, STOI is not based on the SNR; it can be used to estimate42

the speech intelligibility as well as musical noise by a noise reduction algorithm.43

Extensions of the STOI are the speech intelligibility prediction based on mutual44

information (SIMI) [9] and the extended STOI (ESTOI) [10]. SIMI is based on45

information theory concepts such as entropy and mutual information [11]. ES-46

TOI calculates the speech intelligibility without assuming mutual independence47

between frequency bands, unlike the correlation in STOI.48

Rather than relying on the global SNR in transitional segments of speech49

signals, STOI-type indices use processing over short time periods to account50

for subtle changes in the frequency characteristics. Although speech systems51

used in PA systems, which is the main target of our study, do not perform noise52

reduction, they are used in environments with non-stationary background noise.53

Thus, STOI-type indices that assume non-stationary noise are likely to provide54

more realistic evaluations than AI/SII and STI, which are based on the SNR55
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and assume only stationary noise sources. By comparing the effect of the band-56

importance function based on the auditory model used in fwSNRseg [7] with57

that of the STOI-type indices we aim to identify the most effective intelligibility58

indicator with outdoor noise and reverberation environment.59

In contrast, the subjective evaluation result of intelligibility is not language60

dependent on a global level; however, its stability depends extensively on the61

mother tongue (native language) of the listener. J. Li et al. compared multiple62

objective intelligibility estimation results of noise suppressed speech in Mandarin63

and Japanese [12]. The evaluation showed that it is more difficult to estimate64

Japanese intelligibility than Mandarin intelligibility using fwSNRseg and STOI.65

Accordingly, owing to the influence of the native language of the listener; we66

focused on Japanese intelligibility, as it is easy to collect subjects of the same67

native language. We expect that the trend of the results of this study can be68

broadly applied to other languages.69

We have studied two approaches to speech intelligibility estimation. One70

was intelligibility estimation such as the STOI-type indicator for cases where a71

reference speech signal is available. We believe that highly accurate estimation72

is possible with this method because it can clearly calculate the degradation of73

the signal as a difference based on the reference speech signal. For example,74

Kondo used the traditional fwSNRseg measure to estimate Japanese speech in-75

telligibility under noisy environments and obtained superior performance over76

traditional indices [13]. We expect the more recent STOI-type indices to outper-77

form traditional ones in estimating the speech intelligibility of a speech system78

(including a PA system) or similar application in a noisy environment.79

Another intelligibility estimation approach is the non-reference type of esti-80

mation, which does not use a reference signal [14, 15] . We believe that such81

approaches have high practicality because the intelligibility can be determined82

using only the broadcast speech. However, there are some limitations. To83

overcome these, various factors must be optimized. In particular, in previous84

research [15], we performed the evaluation considering the intelligibility of re-85

verberant speech; however, we did not comprehensively evaluate a wide range86
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of reverberation and noise combinations. The present study provides the basic87

analysis results necessary to improve the method for the estimation of non-88

reference type intelligibility.89

This paper describes the use of four indices including STOI-type indica-90

tors to train the estimation models of Japanese speech intelligibility in noisy91

environments. To use the STOI-type indicators targeting additive noise, we92

assumed reverberation to be included as one form of noise. Eight noisy environ-93

ments included in the Corpus and Environments for Noisy Speech Recognition 494

(CENSREC-4) [16] were used to reproduce noisy speech environments including95

reverberation. In addition, The NTT-Tohoku university familiarity-controlled96

word lists 2007 (FW07) [17] was used as the speech data for the subjective eval-97

uation of Japanese speech intelligibility. Moreover, the intelligibility prediction98

models were trained for the four intelligibility indices and their performance was99

evaluated based on the subjective evaluation results. We evaluated the model100

performance by using cross validation (CV), which is the repeated training of101

the models in seven of the eight environments, and prediction of speech intel-102

ligibility under the remaining one environment, to compare the performance103

of these indices. CV evaluation was selected because the model must predict104

conditions that were unknown when it was created. The practicality and ro-105

bustness of the trained model is evaluated. The CV results show that the speech106

intelligibility is predictable with a relatively high accuracy, which indicates that107

the intelligibility estimation model can be used to evaluate the intelligibility of108

speech systems in a real sound field. If such a high performance model is widely109

used, the speech quality of announcements using speech systems will improve110

at train stations, airports, and other public places.111

The remainder of this paper is structured as follows. Intelligibility indices112

used in the study are described in section 2, and the subjective evaluation is113

described in section 3. These topics are integrated in section 4, where the results114

of the intelligibility prediction experiment are described. Finally, a summary is115

presented in section 5.116
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Figure 1: Flowchart of STOI calculation

2. Intelligibility indices117

2.1. Objective intelligibility model118

This research presents a subjective intelligibility evaluation followed by an119

objective prediction of the measured intelligibility. In this section, we explain the120

indices used in this research. Speech intelligibility evaluation signals generated121

using impulse response (IR) convolution and noise addition were applied to122

reproduce eight different noisy environments. In this paper, the term “clean123

speech” is used to refer to a signal that is not convoluted with any IR (i.e., dry124

source), and to which no noise has been added. The term “degraded speech” is125

used to refer to a signal that is convoluted with an IR and to which noise has126

been added.127

The evaluated value of the difference between the degraded speech and the128

clean speech of each intelligibility indicator is denoted by d. The intelligibility129

index is a value that is monotonically correlated with the subjective evaluation130

value of the degraded speech, and represents the reason for varying intelligibility.131

Here, it is represented by the estimated intelligibility value f(d) as follows:132

f(d) =
1

1 + exp (b− ad)
, (1)

where a and b are determined by maximum-likelihood estimation.133

2.2. STOI134

STOI [8] is an intelligibility index proposed by Taal et al., which models the135

perceptual distortion based on a time-frequency (T-F) model. Figure 1 shows136

the process flow of STOI calculation.137
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A T-F model is applied to both clean and degraded speech signals at a138

sampling rate of 10 kHz. First, the signals are segmented and Hann-windowed139

at 50% overlap steps.140

The signals are processed to remove the silent frames 40 dB below the max-141

imum energy of clean speech. Next, the signals are divided into 15 bands142

with central frequencies at one-third octaves from 150 Hz up to approximately143

4.3 kHz. The power envelopes of these signals are calculated and used as a T-F144

unit. The power envelope Xj(m) from the clean speech x is as follows:145

Xj(m) =

√√√√√k2(j)−1∑
k=k1(j)

|x̂(k,m)|2, (2)

where x̂(k,m) is the m-th frame of the k-th DFT bin, j is the number of the146

one-third octave band; k1 and k2 are the ends of the bandwidth range. A T-147

F unit Yj(m) of the degraded signal y is computed in the same manner, and148

therefore we omit its description here.149

Next, the extraction of the frequency envelopes xj,m from both clean and150

degraded speech signals at an interval N longer than the segmented frames is151

performed as follows:152

xj,m = [Xj(m−N + 1), Xj(m−N + 2), ..., Xj(m)], (3)

where an interval of N = 30 (384 ms) is used when calculating the STOI. The153

degraded signal vector yj,m is computed in the same manner, and therefore we154

omit its description here. The frequency envelope of the degraded signal yj(m)155

is then normalized to correct for the global level difference, which does not have156

a strong influence upon the intelligibility. The normalized signal ȳj,m(n) is as157

follows:158

ȳj,m(n) = min

(
||xj,m||
||yj,m||

yj,m(n), (1 + 10−β/20)xj,m(n)

)
, (4)

where n ∈ {1, ..., N} and || · || is the l2 norm. In STOI, β is set as −15 dB.159
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Next, equation (5) is used to obtain the correlation coefficients between xj,m160

and ȳj,m in the same band and same frame.161

dj,m =
(xj,m − µxj,m)T (yj,m − µyj,m)

||xj,m − µxj,m|| ||yj,m − µyj,m||
, (5)

where µ is the mean value.162

Finally, the intelligibility index d is calculated as shown below:163

d =
1

JM

∑
j,m

dj,m, (6)

whereM is averaged over the number of frames, and J is the number of analyzed164

bands.165

Generally, when compared with conventional intelligibility indices, STOI is166

considered more robust to speech enhancement because it is based not on the167

SNR but on the correlation coefficients between the power envelopes of the168

clean and degraded signals. Furthermore, the STOI value correlates well with169

the subjective evaluation score when normalization processing in equation (4)170

is applied and N = 30 is set as the intermediate frame length in equation (3).171

STOI has been widely used in a variety of practical research applications (e.g.,172

[18, 19]), and extended to a binaural version [20].173

2.3. SIMI174

STOI is highly correlated with speech intelligibility, and various improve-175

ments to it have been proposed. SIMI [9] is an extension of the STOI developed176

by Jensen and Taal; it is based on information theory concepts such as entropy177

and mutual information [11]. SIMI assumes that all of the information related178

to speech intelligibility is contained in the power envelopes of the clean speech179

signal. The SIMI index is the average number of bits of mutual information I180

between the clean and degraded power envelopes with a T-F model such as the181

STOI. Figure 2 shows the processing flow of SIMI.182
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Figure 2: Flowchart of SIMI calculation

The power envelopes xj,m and yj,m used in SIMI are obtained as shown in183

equation (7) in a manner similar to the STOI.184

X̃i(m) =

√√√√√k2(i)−1∑
k=k1(i)

∣∣∣∣∣
N−1∑
n=0

X(mD + n)ω(n)e−j2πkn/N

∣∣∣∣∣
2

, (7)

where the segment length of N = 256 is not the same as that for STOI. The185

sampling frequency and one-third octave band filters are the same as those for186

STOI.187

The random super-vector χ of the clean speech signal, which is the accumu-188

lated critical band power envelope of consecutive frames, is as follows:189

χ = [X1(1)X2(1)...XL(1)X2(1)...XL(M)]T , (8)

where M is the number of the final frame. The random super-vector ψ of the190

degraded speech is obtained in the same way.191

Next, voice activity detection (VAD) processing is performed to remove low192

energy frames from the clean speech signal x and the degraded speech signal193

y; the segments 30 dB or lower than the maximum power of the segment of x194

are computed and the lower frames are removed, yielding the active voice index195

sequences Zx and Zy. The quantity of mutual information I in the sections χ196
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Figure 3: Flowchart of ESTOI calculation

and ψ is as follows:197

1

L|Zx|
I(χ;ψ) =

1

L|Zx|
∑

m∈Zx∩Zy

L∑
i=1

I(Xj,m;Yj,m), (9)

where L is the maximum of the one-third octave bands. The intelligibility index198

of SIMI is Ĩ(χ;ψ), which is defined in equation (10) as the average over the signal199

sections as200

Ĩ(χ;ψ) =
1

L|Zx|
∑

m∈Zx∩Zy

L∑
i=1

min(Î(Xj,m;Yj,m), Imax), (10)

where representing the sum of the minimum estimated mutual information201

Î(Xj,m;Yj,m) per 250 ms in evaluation speech signals and the upper limit202

Imax = 0.2. An upper limit on the amount of mutual information Imax is203

established for the purpose of enhancing the correlation with speech intelligibil-204

ity.205

As described above, SIMI is similar to STOI in the way it compares short-206

time power envelopes of the clean and degraded speech signals. However, it207

differs from STOI in that instead of the Pearson correlation coefficient, it uses208

the amount of mutual information based on the information theory.209

2.4. ESTOI210

ESTOI is an index proposed by Taal and Jensen, which compares 384-ms-211

long spectrograms of the degraded speech and the clean speech signals [10].212

Figure 3 shows the process flow of ESTOI. The power envelopes Xj(m) and213

10



Yj(m) are computed through analysis of the signal segmented into one-third oc-214

tave bands, as with STOI and SIMI. However, a short-time spectrogram matrix215

is then generated, as shown below.216

Xm =


S1(m−N + 1) ... S1(m)

...
...

Sj(m−N + 1) ... Sj(m)

 (11)

In the same way, Sm is calculated for the degraded speech signal and normalized217

using the mean matrix value in each direction to obtain X̌m, Y̌m. This process218

is performed every 384 ms as in STOI. Finally, the intelligibility index d is219

obtained by averaging the above values, as shown in equation (12).220

d =
1

MN

M∑
m=1

N∑
n=1

X̌T
n,mY̌n,m (12)

ESTOI is shown to be superior to STOI in terms of intelligibility estimation221

performance with degraded speech, and shows good performance for modulated222

noise sources [10].223

2.5. fwSNRseg224

The fwSNRseg [7] intelligibility index proposed by Ma et al. is based on both225

time and frequency weights. It splits the SNR of the clean and degraded speech226

signals into 30-ms segments and calculates the weighted SNRs for each auditory227

critical band. The fwSNRseg is calculated as shown in equation (13).228

fwSNRseg =
10

N

M−1∑
m=0

∑K
j=1W (j,m) log10

|x(j,m)|2
(|y(j,m)|−|x(j,m)|)2∑K

j=1W (j,m)
, (13)

where m is the segment number, M is the maximum segment number, W (j,m)229

is the weight of the critical band of the j-th band, and K is the maximum band230

number. The dynamic range of fwSNRseg is limited to [−10, 35] dB for better231

correlation with the subjective intelligibility score. The number of critical bands232

K is set to 25.233
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3. Subjective intelligibility evaluation234

3.1. Outline of evaluation235

In this research, speech intelligibility was subjectively evaluated using the236

FW07 dataset [17] in the eight noisy environments included in the CENSREC-4237

corpus [16].238

3.2. Word familiarity-controlled word intelligibility test239

We used the FW07 dataset [17], which has four levels of word familiarity [21].240

The FW07 dataset consists of 80 lists of 20 words spoken by two male and two241

female speakers under each noise condition. In this research, we selected one242

female speaker from the high-familiarity evaluation speech source lists in the243

FW07 dataset. The speech intelligibility (SI) using the FW07 dataset was244

defined as follows:245

SI =
C

N
, (14)

where C is the number of correct answers, and N is the total number of words.246

An important parameter of speech intelligibility is the relationship between247

the speech recognition threshold (SRT), which is the speech that can be under-248

stood 50% of the time, and the physical quantities used for subjective evalu-249

ation. In this study, subjective evaluation was controlled by the global (long250

time) SNR under all evaluation conditions. Thus, the global SNR is defined as251

the intelligibility index d shown in equation (1), and the SRT is calculated as252

shown in equation (15) using values a and b in equation (1).253

SRT = − b

a
(15)

3.3. Reverberation and background noise environments reproduced by CENSREC-254

4255

CENSREC-4 is an evaluation environment simulation set focused on rever-256

beration, which is used in an automatic speech recognition system under hands257
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Table 1: IRs and STI values included in CENSREC-4

Condition No. Condition name STI values T60 (s)

1 Elevator hall 0.657 0.75

2 In-car (idling) 0.923 0.05

3 Japanese style bath 0.763 0.60

4 Japanese style room 0.779 0.40

5 Living room 0.758 0.65

6 Lounge 0.867 0.50

7 Meeting room 0.836 0.60

8 Office 0.896 0.35

free conditions [16]. The CENSREC-4 extra dataset includes background noise258

recorded in the same environment as the one used during the measurement of259

IR using the time stretched pulse (TSP) method [22] to reproduce the rever-260

beration characteristics of the eight environments. The recording environments261

are shown in Table 2 together with the other experimental conditions.262

All IRs in the CENSREC-4 speech signals were presented using a mouth263

simulator. For this subjective evaluation, we used the automatic speech recog-264

nition system model training subset in the CENSREC-4 extra set. Both the265

IRs and background noises recorded a sampling frequency of 16 kHz and 16-bit266

quantization.267

Table 1 lists the IR conditions contained in CENSREC-4. The STI values268

of CENSREC-4 were calculated from the IR and reverberation time index of269

T60 [16]. The eight CENSREC-4 environments listed in this table are the same as270

those used in the evaluation and include reverberant conditions. The difference271

in reverberant environments is apparent from the difference the STI and T60272

values.273
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3.4. Speech signal generation274

The speech signal sources used in the subjective evaluation were selected275

from the female high-familiarity lists in the FW07 dataset [17]. In this research,276

we evaluated nine SNR conditions per environmental condition. Therefore, it is277

necessary to have nine lists (180 words) for each of the eight real environmental278

conditions, i.e., 72 lists are required by the proposed and reference methods.279

However, FW07 has only 20 high-familiarity lists; therefore, these 20 lists were280

used repeatedly. This evaluation flow carries the risk of biasing the results owing281

to the effect of participants learning words during the evaluation. However,282

high-familiarity words are likely to have been familiar to the participants from283

their daily lives; therefore, it was decided to ignore this potential bias. The284

word lists for each IR and noise condition were assigned randomly. Note that285

intelligibility indices use the average value of the same signal for analysis, and286

the same signals were presented to all participants.287

Furthermore, the FW07 and CENSREC-4 datasets use different sampling288

rates; we resampled the evaluation signals of the FW07 dataset at 16 kHz to289

match the sampling frequency of the CENSREC-4 dataset. To compare the290

environments, it is necessary to ensure that the audio presentation levels are291

uniform. Therefore, the calibration signal in the FW07 dataset was resampled,292

IR convolution was performed, and the signal was then adjusted such that the293

ratio of power to the pre-convoluted calibration sound was constant.294

3.5. Subjective evaluation settings295

Table 2 shows the subjective evaluation settings. The eight CENSREC-4296

environments in this table are the same as those used in the evaluation results.297

Global SNRs between the FW07 speech signals and the CENSREC-4 noise sig-298

nals were set such that SNR = 0 dB when noise was added to the speech signal299

at an A-weighted power level identical to the FW07 calibration signal. All sub-300

jective evaluations took place in a soundproof booth. The ten participants in301

this evaluation were students (approximately 22 years old) who reported having302

no hearing abnormalities. All speech signals for evaluation were presented from303

14



Table 2: Subjective evaluation settings

Speaker female (fto)

Familiarity high familiarity lists

IR in Table 1

SNR −20 to 20 dB (5 dB steps)

Test words 1440 words (72 lists)

Participants 10

headphones (Sennheiser; HDA-300) connected to an audio interface (Roland;304

UA-25EX) and a laptop computer (Windows 7 OS). In each evaluation, speech305

signals were randomly played back to the participants at a stretch. The par-306

ticipants repeated the word that they heard to the GUI on a laptop. We made307

it possible for the participants to set the playback timing of these speech sig-308

nals in the evaluation as desired in order to allow them to leave the soundproof309

booth and take breaks during the evaluation. However, only approximately half310

of each day could be dedicated to experiments, and participants were asked to311

participate in this evaluation for multiple days. The A-weighted sound pressure312

level of the speech was adjusted such that the calibration signal of the FW07313

dataset was presented at 60 dB; the level at which all speech signals were pre-314

sented remained less than 85 dB when the SNR was set to −20 dB. The sound315

level was measured as detected by an IEC60318-4 compliant ear simulator (ACO316

Co., Ltd., Type 2128E) attached to a dummy head (SOUTHERN ACOUSTICS317

Co., Ltd., SAMURA type 3700). The experiment was conducted with the ap-318

proval of the Human Research Ethics Review Committee at Muroran Institute319

of Technology.320

3.6. Subjective evaluation results321

Figure 4 shows the results of the subjective evaluation. This figure also322

shows the results obtained from intelligibility models in equation (1) using the323
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Figure 4: Subjective evaluation results

global SNR. These results show that the intelligibility values vary significantly324

for the same global SNR depending on the conditions.325

Table 3 lists the SRTs for each condition. The maximum difference in SRT326

is 20.52 dB between cond. 2 and cond 3. Actual speech systems such as PA327

systems typically allow only global SNR to be controlled, but it appears that328

this by itself is insufficient to control speech intelligibility. In the next section,329

we will train a model that uses intelligibility indices to predict the subjective330

intelligibility established by these results.331

The highest STI value of 0.923 for condition 2 in Table 1 exhibited an overall332

tendency of general intelligibility. However, the Pearson correlation coefficient333

between intelligibility and STI or T60 are 0.27 and −0.34 when averaged over334

all SNRs. Therefore, STI and T60 are not good indicator of the intelligibility in335

environments with lower SNR.336
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Table 3: SRT by conditions

cond. SRT (dB) cond. SRT (dB)

1 −7.17 2 −18.72

3 1.80 4 −1.04

5 −13.31 6 −5.32

7 −7.13 8 −3.41

4. Intelligibility estimation & prediction337

4.1. Intelligibility estimation settings338

This section describes the intelligibility estimation models, which were trained339

using four intelligibility indices described in section 2, and explains how we340

evaluated the prediction accuracy of each model. In this paper, the term “esti-341

mation” refers to the training of a model of speech intelligibility, and the term342

“prediction” refers to the use of this model to obtain the predicted values. For343

each intelligibility index, we computed the scores for all the evaluated words in a344

list (20 words), and then calculated the arithmetic mean of each of the 20 words345

under the same condition. We mapped this score to the measured intelligibility346

obtained by the subjective evaluation in section 3, and the intelligibility estima-347

tion model in equation (1) was obtained using maximum-likelihood estimation.348

In this research, following the original proposals for each intelligibility in-349

dex [7, 8, 9, 10] and other studies, the accuracy of the intelligibility estimation350

model trained using a degraded speech signal was subjectively evaluated. It351

was also decided to further evaluate the predictive performance of the objective352

models in a manner reflective of their actual use. Therefore, the cross-validation353

(CV) test was performed by training the objective evaluation models under354

seven of the eight conditions to predict the speech intelligibility under the re-355

maining unknown condition. This procedure was repeated eight times to cover356

all noise conditions. We selected the CV test for our prediction performance357
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evaluation because of its ability to evaluate the robustness of the model against358

unknown conditions.359

4.2. Model evaluation methods360

The Pearson’s correlation coefficient in equation (16) and the RMSE value361

in equation (17) were selected to evaluate the prediction performance of the362

intelligibility estimation models as follows:363

r =

∑
k(f(d)− µf(d))(SIk − µSIk)√∑

k(f(d)− µf(d))2
∑

k(SIk − µSIk)2
, (16)

RMSE =

√
1

K

∑
k

(f(d)− SIk)2, (17)

where both methods compute the predicted intelligibility value of f(d) in equa-364

tion (1) and the subjective values evaluated in section 3. In this paper, rall and365

RMSEall were computed for models trained under all conditions, whereas rCV366

and RMSECV were computed for the CV tests. The rCV and RMSECV were367

computed as the arithmetic mean over the eight conditions.368

4.3. Results and discussion369

Figure 5 shows the mapping of each index to the measured intelligibility and370

its modeling function using equation (1). In these figures, the label “cond.”371

refers to the corresponding condition in Table 2. These figures show that for372

every index, when the measured intelligibility is 0.3 or more, the measured in-373

telligibility is higher than the predicted intelligibility value. However, when374

the measured intelligibility is less than 0.3, the predicted intelligibility is higher375

than the measured value. One reason for these results is that we used only376

highly familiar words in order to avoid the effects of learning by the partici-377

pants. Consequently, familiarity values cannot be identified by the signals; all378

intelligibility indices can only predict an average intelligibility over all familiar-379

ity levels. STOI-type indices are computed by comparing the power spectrum380

envelope of the clean and degraded speech signals; they cannot account for the381
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effects of familiarity, and should be thought of as approximating the average382

word familiarity value.383

We note that PA speech systems used for evacuation broadcasting during384

a disaster are not designed for use in environments where the intelligibility is385

extremely low (i.e., where the range of measured intelligibility is below 0.3). In386

other words, the fact that the predicted intelligibility is somewhat lower than387

the measured intelligibility should not pose a major problem because it is better388

to err on the safe side (the actual speech is more intelligible than predicted),389

considering the practical application of the estimation models to the evaluation390

of disaster prevention equipment.391

Table 4 shows the RMSE and correlation coefficient values from each index.392

This table shows that SIMI had the highest accuracy of all models trained under393

all conditions. In the CV test results, SIMI had the lowest (best) RMSECV394

value, and fwSNRseg had the best correlation coefficient value of rCV. It should395

be noted that our RMSECV value for the fwSNRseg index is smaller than that396

obtained for different speech and noise signals in previous research [13], where397

the obtained RMSE value significantly exceeded the noise mismatch condition398

of 0.2. This difference is likely due to the fact that there was less masking399

of the main speech in this evaluation because none of our eight environments400

used “babble noise,” which contains speech-like frequency components as the401

ambient background noise.402

Here, we discuss the results based on the intelligibility index in reference to403

SIMI, which showed the best result. In Fig. 5, fwSNRseg roughly shows two404

noise tendencies unlike that observed with STOI-type measure, which can be405

considered to result in an increase in the RMSE over SIMI. It is believed that the406

noise difference becomes conspicuous because it only performs processing over407

short time segments. On the other hand, STOI and ESTOI in Fig. 5 showed408

increased RMSE over SIMI because of saturation of the objective intelligibility409

index value when the measured intelligibility was 0.8 or more. This result sug-410

gests that the range of mutual information used by SIMI is more robust against411

minute changes in the saturated range of the measured intelligibility.412
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Figure 5: Measured intelligibility and its modeling functions.

Figure 6 shows the relationship between the measured intelligibility and413

predicted intelligibility in the CV experiment. These results show that the414

fwSNRseg model generates many samples that deviate significantly from the415

diagonal line. The other indices (STOI-type) are closer to the diagonal line,416

with the measured intelligibility tending to be higher than the predicted value.417

The fwSNRseg index also differs from the other indices in that its predictions418

are not clustered near 0.2 when the measured intelligibility value is 0. This419

behavior explains why the SIMI index had the best RMSECV value of 0.160 in420
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Table 4: Intelligibility prediction results; the best results are shown in bold.

Index rall rCV RMSEall RMSECV

STOI 0.878 0.908 0.175 0.181

SIMI 0.901 0.934 0.158 0.160

ESTOI 0.873 0.910 0.178 0.183

fwSNRseg 0.875 0.941 0.176 0.184

spite of fwSNRseg having the best rCV value of 0.941. From the perspective of421

practical use, the fwSNRseg index would appear to be more difficult to apply422

owing to its large overall variability, given that the measured intelligibility in423

the outdoor sound field will typically fall near the center of the intelligibility424

values.425

Considering the above factors comprehensively, the best index for prediction426

of speech intelligibility in a noisy environment would appear to be SIMI. This427

conclusion is consistent with the performance evaluation reported by Jensen and428

Taal in their paper introducing SIMI [9], which found it to be superior to STOI429

at estimating the intelligibility of speech in a noisy environment.430

However, our research is not concerned with noise reduction. We conclude431

that among the existing measurement standards, SIMI is the best speech intel-432

ligibility index to choose for speech systems that broadcast unmodified speech433

such as a PA system. The reason for the superiority of SIMI may be explained434

by the fact that it has been optimized to assess the intelligibility of noise added435

speech rather than noise-suppressed speech through parameters such as the VAD436

(30 dB), analysis interval (250 ms), and upper limit on the amount of mutual437

information Imax, which differ from the corresponding settings in STOI and ES-438

TOI. In the future, the optimal parameter settings specific to Japanese speech439

intelligibility prediction in noisy environments should be investigated.440
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Figure 6: Relationship between measured intelligibility and predicted intelligibility in the CV

experiment

5. Conclusions441

In this study, we modeled Japanese speech intelligibility based on four in-442

telligibility indices. The models were trained and their accuracies in predicting443

the measured speech intelligibility using the FW07 speech dataset under the444

eight noisy environments included in the CENSREC-4 dataset were evaluated.445

We compared the STOI, SIMI, ESTOI, and fwSNRseg indices. The results of446

our CV experiment showed that SIMI, which is based on the amount of mutual447

information in the clean and degraded speech signals, gave the most accurate in-448
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telligibility index, as evaluated by RMSECV and its correlation coefficient. Our449

plans for future works are to optimize the internal parameters of SIMI and to450

develop a system to feed SIMI’s predicted intelligibility directly into the speech451

system for feedback.452
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