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Abstract

Let G be a finite group, and let A be a finite abelian G-group. For each
subgroup H of G, Ω(H,A) denotes the ring of monomial representations of H
with coefficients in A, which is a generalization of the Burnside ring Ω(H) of
H. We research the multiplicative induction map Ω(H,A) → Ω(G,A) derived
from the tensor induction map Ω(H) → Ω(G), and also research the unit group
of Ω(G,A). The results are explained in terms of the first cohomology groups
H1(K,A) forK ≤ G. We see that tensor induction for 1-cocycles plays a crucial
role in a description of multiplicative induction. The unit group of Ω(G,A) is
identified as a finitely generated abelian group. We especially study the group
of torsion units of Ω(G,A), and study the unit group of Ω(G) as well.
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1 Introduction

Let G be a finite group, and let A be a finite abelian group on which G acts via a
homomorphism from G to the group of automorphisms of A. We are concerned with
the ring Ω(G,A) of monomial representations of G with coefficients in A, which was
introduced by Dress [12] and is called the monomial Burnside ring for short. This
ring contains the ordinary Burnside ring Ω(G) as a subring, and is applicable to
the representation theory of finite groups. There are some well-known facts about
Ω(G,A) (see, e.g., [2, 3, 12, 13, 22, 23]). Many properties of Burnside rings seem to
be extended to monomial Burnside rings; for instance, the prime ideal spectrum of
Ω(G,A) was studied in [12] (see also [10]). In this paper, among others, we focus
our mind on the concept of multiplicative induction for monomial Burnside rings
and the unit group of Ω(G,A). There are some specific characterizations of them
which mean the algebraic peculiarities of Ω(G,A).

Following [12], we give the concept of (G,A)-sets and define simple (G,A)-sets
(G/K)ν for K ≤ G and 1-cocycles ν : K → A in Section 2. The monomial Burnside
ring Ω(G,A), which is defined to be the Grothendieck ring of the category of (G,A)-
sets (see Definition 2.13), is the commutative unital ring consisting of all formal
Z-linear combinations of the symbols [(G/K)ν ] corresponding to the isomorphism
classes of (G,A)-sets containing simple (G,A)-sets (G/K)ν (see Proposition 2.14).

The concept of multiplicative induction for Burnside rings was introduced by
tom Dieck [9] and Dress [11], and was developed by Yoshida [32]. In an attempt
to introduce multiplicative induction for monomial Burnside rings, Barker [2] suc-
cessfully defined the tenduction map Z

Cten
G
H : B(C,H) → B(C,G) for each H ≤ G,

where C is a supercyclic group and B(C,H) is the monomial Burnside ring for H
with fibre group C, as a generalization of multiplicative induction for Burnside rings.
(If C is a finite cyclic group on which G acts trivially, then Ω(G,C) ≃ B(C,G).)

In Section 3, we introduce the multiplicative induction map

MapH(G,−) : Ω(H,A) → Ω(G,A), x 7→ MapH(G, x)
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for each H ≤ G. When A is a cyclic group on which G acts trivially, this map
is associated with tensor induction for linear characters of G (cf. [8, §13A]). We

have MapH(G, [(H/H)σ]) = [M̂apH(G, (H/H)σ)] = [(G/G)σ⊗G ] for all 1-cocycles
σ : H → A (see Example 3.13), where 1-cocycles σ⊗G : G → A are obtained from
σ : H → A by tensor induction. There is a nice formula of multiplicative (tensor)
induction for Burnside rings (cf. [8, (80.49) Corollary]). The methods used in [8,
§80C] enable us to establish that for any (H,A)-sets T0 and T ,

MapH(G, [T0]− [T ]) =

n∑
i=0

(−1)i[M̂apH(G,T0, T1, . . . , Ti)], (1.1)

where n = |G : H| and T = T1 = · · · = Tn (see Proposition 3.22).
The mark homomorphism ρG, which was introduced by Dress [12], is a ring

monomorphism from Ω(G,A) to the set ℧(G,A) := (
∏
K≤G ZH1(K,A))G of G-

invariants in the direct product of integral group rings of the first cohomology groups
H1(K,A) for K ≤ G, where the action of G on

∏
K≤G ZH1(K,A) is given by the

conjugation maps congK : ZH1(K,A) → ZH1( gK,A) forK ≤ G and g ∈ G. For each
U ≤ G, there is a ring homomorphism −⊗G : ZH1(U,A) → ZH1(G,A) derived from
tensor induction which assigns to a 1-cocycle τ : U → A the 1-cocycle τ⊗G : G→ A.
In Section 4, we describe MapH(G, x) ∈ Ω(G,A) for each x ∈ Ω(H,A) via ρG as

ρG(MapH(G, x)) =

 ∏
KgH∈K\G/H

congKg∩H(xKg∩H)
⊗K


K≤G

∈ ℧(G,A) (1.2)

under the assumption that ρH(x) = (xL)L≤H , where ρH : Ω(H,A) → ℧(H,A) is
the mark homomorphism (see Theorem 4.16). This fact is a generalization of [32,
§3(b.3)]. We make use of Eq.(1.1) to prove Eq.(1.2).

The fundamental theorem of the Burnside ring Ω(G) (cf. [32, Lemma 2.1]) is a
useful instrument for finding the idempotents of Ω(G) (cf. [33, 4.12 Theorem]), and
is also essential to the Yoshida criterion (see Theorem 6.4) for the units of Ω(G). In
Section 5, we insist on the existence of a short exact sequence

0 −→ Ω(G,A)
φ−→ Ω̃(G,A)

ψ−→ Obs (G,A) −→ 0

of additive groups (see Theorem 5.9) derived from the Cauchy-Frobenius lemma
(see, e.g., [33, 2.7 Lemma]), which generalizes the fundamental theorem of Ω(G).

Information of the primitive idempotents of the Burnside algebra Q ⊗Z Ω(G)
can help us to realize the units of Ω(G). Following [33, §4], we review the primitive
idempotents of Q⊗Z Ω(G) and those of Ω(G); the latter are precisely the primitive
idempotents of Ω(G,A) (see Theorem 5.18).

The unit group Ω(G)× of the Burnside ring Ω(G) is studied in many papers (see,
e.g., [6, 9, 11, 15, 18, 19, 20, 24, 30, 32]). Section 6 is devoted to a review of some
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well-known facts about Ω(G)×. We also study a certain specific type of units (see
Proposition 6.11), and present an additional fact about the structure of Ω(G)× for
which the Yoshida criterion plays a crucial role (see Corollary 6.18).

The unit group Ω(G,A)× of the monomial Burnside ring Ω(G,A) was studied
in [2, 22]. In Section 7, we show that Ω(G,A)× is a finitely generated abelian
group (see Proposition 7.2). Consequently, the group Ω(G,A)ω of torsion units of
Ω(G,A) is a finite abelian group. The basic structure of Ω(G,A)ω is analyzed on the
basis of a generalization of the Yoshida criterion (see Theorem 7.3). We adapt the
methods presented in [2, §8] for an analysis of Ω(G,A)ω, and successfully elucidate
the structure of Ω(G,A)ω in the sequel (see Corollary 7.4). Specifically, if G is
nilpotent, then the universal result deduces that

Ω(G,A)ω ≃ Ω(G)× ×H1(G,A)

(see Example 7.6). This fact is a generalization of [22, Proposition 5.1].

Notation Let G be a finite group. We denote by ϵ the identity of G, and denote
by S(G) the set of subgroups of G. The subgroup generated by g1, . . . , gk ∈ G is
denoted by ⟨g1, . . . , gk⟩. We write H ≤ G if H is a subgroup of G, and write H < G
if H is a proper subgroup of G. The Möbius function on the poset (S(G),≤) of all
subgroups of G is denoted by µ (see, e.g., [1]). We denote by C(G) a full set of
non-conjugate subgroups of G. Let H ≤ G. We set gH = gHg−1 and Hg = g−1Hg
for g ∈ G, and denote by (H) the set of conjugates of H in G. The normalizer of
H in G is denoted by NG(H). We denote by |G : H| the index of H in G, and
denote by G/H the set of left cosets gH, g ∈ G, of H in G. Given K, U ≤ G,
K\G/U denotes the set of (K,U)-double cosets KgU , g ∈ G, in G. The category
of finite left G-sets and G-equivariant maps is denoted by G-set. For each finite
set X, we denote by |X| the cardinality of X. The natural numbers, the rational
integers, the rational numbers, and the complex numbers are denoted by N, Z, Q,
and C, respectively. We set [n] = {1, 2, . . . , n} for each n ∈ N. The identity map
on a set Σ is denoted by idΣ. For each group V , we denote by Hom(V, ⟨−1⟩) the
group consisting of all group homomorphisms from V to the unit group ⟨−1⟩ of Z
with pointwise product.

2 Monomial Burnside rings

2A 1-cocycles

Throughout the paper, let G be a finite group, and let A be a finite G-group,
that is, A is a finite group on which G acts via a homomorphism from G to the
group of automorphisms of A (cf. [26, Chapter 1, Definition 8.1]). We start with
the definition of (G,A)-sets introduced by Dress [12] (see also [27]). Given g ∈ G
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and a ∈ A, the effect of g on a is denoted by ga. A finite free right A-set Y is called
a (G,A)-set if it is also a left G-set and if

g(ya) = (gy) ga

for all g ∈ G, a ∈ A, and y ∈ Y . A map between (G,A)-sets is called a (G,A)-
equivariant map if it is a morphism of both left G-sets and right A-sets. We now
obtain the category of (G,A)-sets such that the empty set is an initial object, which
is denoted by (G,A)-set. Under the assumption that A is abelian, the set of isomor-
phism classes of (G,A)-sets forms a commutative unital semiring, and the monomial
Burnside ring Ω(G,A) is defined to be the associated Grothendieck ring (cf. [12]).

For a (G,A)-set Y , we denote by Y/A the set of A-orbits yA := {ya | a ∈ A},
y ∈ Y , on Y , which is considered as a left G-set with the action of G given by

g(yA) = gyA

for all g ∈ G and y ∈ Y . A (G,A)-set Y is said to be simple if Y/A is a transitive
left G-set. Given a pair of (G,A)-sets Y1 and Y2, their disjoint union Y1∪̇Y2 is also
a (G,A)-set. Every (G,A)-set is a disjoint union of simple (G,A)-sets. A subset of
a (G,A)-set is said to be a (G,A)-subset if it is closed under the actions of G and
A.

Let A◦ be the opposite group of A. For each a ∈ A, let a◦ denote the element of
A◦ corresponding to a. By definition, a◦b◦ = (ba)◦ for all a, b ∈ A. We view A◦ as
a G-group with the action given by that of G on A, and denote by F the semidirect
product A◦ ⋊G of A◦ and G. Each (G,A)-set Y is viewed as a left F -set with the
action of F given by

(a◦, g)y = (gy)a (2.1)

for all (a◦, g) ∈ F and y ∈ Y . A (G,A)-set is simple if and only if it is a transitive
left F -set. A bijection between (G,A)-sets is an isomorphism of (G,A)-sets if and
only if it is an isomorphism of left F -sets.

Let H ≤ G. By restriction of operators from G to H, we view A as an H-group.
A map σ : H → A is called a 1-cocycle or a crossed homomorphism if

σ(h1h2) = σ(h1)
h1σ(h2)

for all h1, h2 ∈ H (cf. [26, I, p. 243]). We define a 1-cocycle 1H : H → A by
1H(h) = ϵA for all h ∈ H, where ϵA is the identity of A.

Definition 2.1 For each H ≤ G, we denote by Z1(H,A) the set of 1-cocycles from
H to A. Let S(G,A) be the set of pairs (H,σ) of H ≤ G and σ ∈ Z1(H,A).
Given (H,σ) ∈ S(G,A), we fix a complete set {g1, g2, . . . , gn} with g1 = ϵ of
representatives of G/H, and define a (G,A)-set (G/H)σ to be the cartesian product
A× (G/H) with the left action of G and the right action of A given by

g(a, gjH) = ( gj′σ(g−1
j′ ggj)

ga, gj′H) and (a, gjH)b = (ab, gjH),



Multiplicative induction and units/ Yugen Takegahara 6

where ggjH = gj′H, for all g ∈ G, a, b ∈ A, and j ∈ [n], respectively.

Let (H,σ) ∈ S(G,A). Then (G/H)σ is a transitive left F -set. We define

F(H,σ) := {(σ(h)◦−1, h) ∈ F | h ∈ H},

so that F(H,σ) is the stabilizer of (ϵA,H) ∈ (G/H)σ in F (see [27, §2]), and make
the set F/F(H,σ) of left cosets of F(H,σ) in F into a (G,A)-set by defining

g((a◦, r)F(H,σ)) = ( ga◦, gr)F(H,σ) and ((a◦, r)F(H,σ))b = ((ab)◦, r)F(H,σ) (2.2)

for all g ∈ G, b ∈ A, and (a◦, r) ∈ F .

Lemma 2.2 Let (H,σ) ∈ S(G,A). Then (G/H)σ ≃ F/F(H,σ) as (G,A)-sets. In
particular, the isomorphism class of (G,A)-sets containing (G/H)σ is independent
of the choice of g2, . . . , gn in Definition 2.1.

Proof. There exists an isomorphism F/F(H,σ)
∼→ (G/H)σ of F -sets given by

(a◦, g)F(H,σ) 7→ (g(ϵA,H))a

for all (a◦, g) ∈ F , because F(H,σ) is the stabilizer of (ϵA,H) ∈ (G/H)σ in F . Thus
we have (G/H)σ ≃ F/F(H,σ) as (G,A)-sets, completing the proof. 2

Remark 2.3 Given a simple (G,A)-set Y and y ∈ Y , the stabilizer Fy of y in F
coincides with F(H,σ) for some (H,σ) ∈ S(G,A) (see the proof of [27, Lemma 2.1]),
and hence Y ≃ F/F(H,σ) as (G,A)-sets. Under the notation of Definition 2.1, we
may define (G/H)σ without assuming that g1 = ϵ. In such a case, F(H,σ) is the
stabilizer of (σ(g1)

−1,H) ∈ (G/H)σ in F , which yields (G/H)σ ≃ F/F(H,σ).

2B Isomorphism classes

We give a complete set of representatives of isomorphism classes of (G,A)-sets.

Definition 2.4 Let (H,σ) ∈ S(G,A). Suppose that g ∈ G and a ∈ A. We define
two 1-cocycles gσ : gH → A and σa : H → A by

(gσ)(ghg−1) = gσ(h) and σa(h) = a−1σ(h) ha

for all h ∈ H, respectively.

Let H ≤ G, and let σ, τ ∈ Z1(H,A). We write σ =A τ if τ = σa for some a ∈ A.

Lemma 2.5 Let (H,σ) ∈ S(G,A). Then gσ =A g(σ
a) for any g ∈ G and a ∈ A.
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Proof. We have g(σa) = (gσ)
ga for any g ∈ G and a ∈ A, completing the proof. 2

The argument of the proof of Lemma 2.5 ensures that S(G,A) is a left F -set
with the action of F given by

(a◦, g)(H,σ) = ( gH, (gσ)a)

for all (a◦, g) ∈ F and (H,σ) ∈ S(G,A).
By [27, Lemma 2.3], (H,σ) and (U, τ) are contained in the same F -orbit on

S(G,A) if and only if (G/H)σ ≃ (G/U)τ as (G,A)-sets.

Lemma 2.6 Let H ≤ G, and let σ ∈ Z1(H,A). Then hσ = σσ(h) for any h ∈ H.
Moreover, given σ0 ∈ Z1(H,A), σ0 =A σ if and only if (H/H)σ0 ≃ (H/H)σ.

Proof. The first assertion is shown in the proof of [27, Lemma 3.2]. Suppose that
σ0 ∈ Z1(H,A). By [27, Lemma 2.3], (H/H)σ0 ≃ (H/H)σ if and only if there exist
some h ∈ H and a ∈ A such that σ0 = (hσ)a. Hence the second assertion follows
from the first one. This completes the proof. 2

Definition 2.7 We define a subset R(G,A) of S(G,A) to be a complete set of rep-
resentatives of F -orbits on S(G,A) such that H ∈ C(G) for any (H,σ) ∈ R(G,A).

The following proposition is [27, Proposition 2.4].

Proposition 2.8 Let Y be a simple (G,A)-set. There exists a unique element
(H,σ) of R(G,A) such that Y ≃ (G/H)σ as (G,A)-sets.

Let H ≤ G, and let X ∈ H-set. We define a left action of H on the cartesian
product G×X of G and X by

h(g, x) = (gh−1, hx)

for all h ∈ H and (g, x) ∈ G×X. Given (g, x) ∈ G×X, let g⊗x denote the H-orbit
containing (g, x). The left G-set indGH(X) induced from X is the set of H-orbits on
G×X with the action of G given by

g(r ⊗ x) = gr ⊗ x

for all g, r ∈ G and x ∈ X (cf. [11, §4]). Let g ∈ G, and set g⊗X = {g⊗x | x ∈ X},
which is a subset of indGH(X). The left gH-set congH(X) conjugate to X is the set
g ⊗X with the action of gH given by

ghg−1(g ⊗ x) = g ⊗ hx

for all h ∈ H and x ∈ X, and is denoted simply by gX.
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Definition 2.9 Let H ≤ G, and let T be an (H,A)-set. The (G,A)-set indGH(T )
induced from T is the left G-set indGH(T ) with the right action of A given by

(r ⊗ t)a = r ⊗ t r
−1
a

for all r ∈ G, t ∈ T , and a ∈ A (cf. [27, Remark 6.2]). Let g ∈ G. The ( gH,A)-set
congH(T ) conjugate to T is the left gH-set gT with the right action of A given by

(g ⊗ t)a = g ⊗ t g
−1
a

for all t ∈ T and a ∈ A (cf. [27, Remark 6.4]), and is denoted simply by gT .

Lemma 2.10 If U ≤ H ≤ G and τ ∈ Z1(U,A), then indGH((H/U)τ ) ≃ (G/U)τ ,
g((H/U)τ ) ≃ ( gH/ gU)gτ for each g ∈ G, and h((H/U)τ ) ≃ (H/U)τ for all h ∈ H.

Proof. The proof is straightforward. Note that the last assertion follows from the
second one and [27, Lemma 2.3]. 2

Let (H,σ) ∈ S(G,A), and let T be an (H,A)-set. For each K ≤ H, we define a
1-cocycle σ|K : K → A, the restriction of σ, to be the map obtained by restriction
of σ : H → A from H to K, and define a (K,A)-set resHK(T ), the restriction of T ,
to be the (K,A)-set T obtained by restriction of operators from H to K.

We show a Mackey decomposition formula for (G,A)-sets (cf. [27, Lemma 6.5]).

Lemma 2.11 Let H ≤ G, and let (U, τ) ∈ S(G,A). Then

resGH((G/U)τ ) ≃
∪̇

HgU∈H\G/U

(H/(H ∩ gU))(gτ)|H∩ gU
,

where the disjoint union is taken over all (H,U)-double cosets HgU , g ∈ G, in G.

Proof. Let {g1, g2, . . . , gm} be a complete set of representatives ofH\G/U . For each
i ∈ [m], let {hi1, hi2, . . . , hiℓi} be a complete set of representatives of H/(H ∩ giU).
Then {hijgi | i ∈ [m] and j ∈ [ℓi]} is a complete set of representatives of G/U . We
define a map Γ : resGH((G/U)τ ) → ∪̇i∈[m](H/(H ∩ giU))(giτ)|H∩ giU

by

(a, hijgiU) 7→ (a, hij(H ∩ giU))

for all i ∈ [m], j ∈ [ℓi], and a ∈ A. Obviously, this map is bijective and A-
equivariant. Given h ∈ H, i ∈ [m], and j ∈ [ℓi], if hhij = hij′h

′ ∈ hij′(H ∩ giU)
with h′ ∈ H ∩ giU , then we have h(hijgi) = hij′gi(g

−1
i h′gi) ∈ hij′giU and

hij′giτ((hij′gi)
−1h(hijgi)) =

hij′giτ(g−1
i h′gi) =

hij′ (giτ)(h
−1
i′j′hhij).

Thus Γ is H-equivariant. (See also Lemma 2.2.) This completes the proof. 2
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2C Tensor product

From now on, we assume that A is abelian. Hence A = A◦. Following [12], we
define the tensor product Y1 ⊗ Y2 of (G,A)-sets Y1 and Y2. The cartesian product
Y1 × Y2 is viewed as a free right A-set with the action of A given by

(y1, y2)a = (y1a
−1, y2a)

for all a ∈ A and (y1, y2) ∈ Y1 × Y2. For each (y1, y2) ∈ Y1 × Y2, let y1 ⊗ y2 be the
A-orbit containing (y1, y2). We set

Y1 ⊗ Y2 = {y1 ⊗ y2 | (y1, y2) ∈ Y1 × Y2},

and make it into a (G,A)-set by defining

g(y1 ⊗ y2) = gy1 ⊗ gy2 and (y1 ⊗ y2)a = y1 ⊗ y2a

for all g ∈ G, a ∈ A, and (y1, y2) ∈ Y1 × Y2. These actions are well-defined, because

g((y1b
−1 ⊗ y2b)a) = g(y1b

−1)⊗ g(y2ba) = (gy1)
gb−1 ⊗ g(y2a)

gb = g((y1 ⊗ y2)a)

for all g ∈ G, a, b ∈ A, and (y1, y2) ∈ Y1 × Y2. Obviously, Y1 ⊗ Y2 ≃ Y2 ⊗ Y1.

Lemma 2.12 Let K ≤ H ≤ G, and let g ∈ G. For any (H,A)-sets T1 and T2,

resHK(T1 ⊗ T2) ≃ resHK(T1)⊗ resHK(T2) and g(T1 ⊗ T2) ≃ gT1 ⊗ gT2.

Proof. The proof is straightforward. 2

Let F(G,A) be the free abelian group on the set of isomorphism classes of (G,A)-
sets. For each (G,A)-set Y , we denote by Y the isomorphism class of (G,A)-sets
containing Y . Let F(G,A)0 be the subgroup of F(G,A) generated by the elements

Y1∪̇Y2 − Y1 − Y2

for (G,A)-sets Y1 and Y2. We define multiplication on the generators of F(G,A) by

Y1 · Y2 = Y1 ⊗ Y2

for all (G,A)-sets Y1 and Y2, and extend it to F(G,A) by linearity. Then F(G,A)
is a commutative unital ring; moreover, F(G,A)0 is an ideal of F(G,A).

Definition 2.13 We define a commutative unital ring Ω(G,A) to be the quotient
F(G,A)/F(G,A)0, which is the ring of monomial representations of G with coeffi-
cients in A introduced by Dress [12] (see also [2]).
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When A = {ϵA}, which is the group consisting of only the identity, Ω(G,A) is
isomorphic to the Burnside ring Ω(G) (see §5C).

For each (G,A)-set Y , we denote by [Y ] the coset Y + F(G,A)0 of F(G,A)0 in
F(G,A). By [12, Proposition 1(b)] (or [27, Lemma 2.6]), [Y1] = [Y2] if and only if
Y1 = Y2. Multiplication on the generators of Ω(G,A) is given by

[Y1] · [Y2] = [Y1 ⊗ Y2]

for all (G,A)-sets Y1 and Y2. The identity of Ω(G,A) is [(G/G)1G ].
A Z-lattice is a finitely generated Z-free Z-module. Obviously, Ω(G,A) is a Z-

lattice. The statement of the following proposition is given in [12, Proposition 1(a)]
(see also [2, Remark 2.2] and [27, Proposition 2.7]).

Proposition 2.14 The elements [(G/H)σ] for (H,σ) ∈ R(G,A) form a free Z-basis
of the Z-lattice Ω(G,A).

Proof. The assertion follows from Proposition 2.8. 2

We obtain a product formula of simple (G,A)-sets (see also [2, Remark 2.3]).

Lemma 2.15 Let (H,σ), (U, τ) ∈ S(G,A). Then

(G/H)σ ⊗ (G/U)τ ≃
∪̇

HgU∈H\G/U

(G/(H ∩ gU))σ·(gτ),

where σ · (gτ) : H ∩ gU → A is the pointwise product of σ|H∩ gU and (gτ)|H∩ gU .

Proof. We view the tensor product (F/F(H,σ))⊗ (F/F(U,τ)) of (G,A)-sets F/F(H,σ)

and F/F(U,τ) as a left F -set. The left F -set (F/F(H,σ))⊗ (F/F(U,τ)) is expressed as
a disjoint union of F -orbits. We identify each g ∈ G with (ϵA, g) ∈ F for shortness’
sake. For any (a, g), (b, r) ∈ F ,

(a, g)−1((a, g)F(H,σ) ⊗ (b, r)F(U,τ)) = ( g
−1
b, ϵ)(F(H,σ) ⊗ g−1rF(U,τ))

(see Eqs. (2.1) and (2.2)), which means that there exists an F -orbit containing both
(a, g)F(H,σ) ⊗ (b, r)F(U,τ) and F(H,σ) ⊗ g−1rF(U,τ). Let g, r ∈ G. Suppose that

F(H,σ) ⊗ rF(U,τ) = (a, h)(F(H,σ) ⊗ gF(U,τ)) = hF(H,σ) ⊗ (a, hg)F(U,τ)

with (a, h) ∈ F . Then h ∈ H and r−1hg ∈ U , which yields g ∈ HrU . Conversely, if
g ∈ HrU and r−1hg ∈ U with h ∈ H, then we have

F(H,σ) ⊗ rF(U,τ) = ( hgτ(g−1h−1r)σ(h)−1, h)(F(H,σ) ⊗ gF(U,τ)).

Consequently, both F(H,σ) ⊗ rF(U,τ) and F(H,σ) ⊗ gF(U,τ) are contained in the same
F -orbit if and only if g ∈ HrU . Suppose that

F(H,σ) ⊗ gF(U,τ) = (a, h)(F(H,σ) ⊗ gF(U,τ)) = (a, h)F(H,σ) ⊗ hgF(U,τ)
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with (a, h) ∈ F . Then there exists some b ∈ A such that

(F(H,σ), gF(U,τ)) = (((a, h)F(H,σ))b
−1, (hgF(U,τ))b) = ((b−1a, h)F(H,σ), (b, hg)F(U,τ)),

which yields h ∈ H ∩ gU and

(σ · (gτ))(h) = σ(h) gτ(g−1hg) = (a−1b) g( g
−1
b−1) = a−1.

Hence (a, h) ∈ F(H∩ gU,σ·(gτ)). Moreover, it is easily verified that F(H∩ gU,σ·(gτ)) is
the stabilizer of F(H,σ) ⊗ gF(U,τ). Thus it turns out that

(F/F(H,σ))⊗ (F/F(U,τ)) ≃
∪̇

HgU∈H\G/U

F/F(H∩ gU,σ·(gτ))

as left F -sets. The lemma now follows from Lemma 2.2. This completes the proof.
2

For each K ≤ H ≤ G and g ∈ G, there are additive maps

congH : Ω(H,A) → Ω( gH,A),
∑

T ℓT [T ] 7→
∑

T ℓT [con
g
H(T )],

resHK : Ω(H,A) → Ω(K,A),
∑

T ℓT [T ] 7→
∑

T ℓT [res
H
K(T )], and

indHK : Ω(K,A) → Ω(H,A),
∑

S kS [S] 7→
∑

S kS [ind
H
K(S)],

where S ∈ (K,A)-set, T ∈ (H,A)-set, and kS , ℓT ∈ Z; these maps are called the
conjugation map, the restriction map, and the induction map, respectively. By
Lemma 2.12, conjugation maps and restriction maps are ring homomorphisms.

Proposition 2.16 The family of Z-algebras Ω(H,A) for H ≤ G, together with
conjugation, restriction, and induction maps, defines a Green functor on G.

Proof. The axioms of Green functor follow from Lemmas 2.10, 2.11, and 2.15 (cf.
[4, 1.1. Definition]). As for the Frobenius axiom, we have

resGK((G/H)σ)⊗ (K/U)τ ≃
∪̇

KgH∈K\G/H

∪̇
LgeU∈Lg\K/U

(K/( gH ∩ eU))(gσ)|Lg ·(eτ),

where Lg = K ∩ gH, and

indGK(resGK((G/H)σ)⊗ (K/U)τ ) ≃ (G/H)σ ⊗ indGK((K/U)τ )

for all K ≤ G, (H,σ) ∈ S(G,A), and (U, τ) ∈ S(K,A), completing the proof. 2
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3 Multiplicative induction

3A Tensor induction

To begin with, we review the multiplicative induction JndGH : X 7→ MapH(G,X),
where H ≤ G and X ∈ H-set, given in [32, §3(a.3)] (see also [11, §4]).

Definition 3.1 Let H ≤ G, and let T be an (H,A)-set. We define a left G-set
MapH(G,T ) to be the set of maps f : G→ T such that f(hg) = hf(g) for all h ∈ H
and g ∈ G with the action of G given by

(gf)(r) = f(rg)

for all g, r ∈ G and f ∈ MapH(G,T ).

Remark 3.2 Under the notation of Definition 3.1, the left G-set MapH(G,T ) is
viewed as a (G,A)-set with the right action of A given by

(fa)(r) = f(r) ra

for all r ∈ G, a ∈ A, and f ∈ MapH(G,T ). However, we need hardly recall
such a right action of A on MapH(G,T ) (see Definitions 3.3 and 3.5) in relation to
multiplicative induction for monomial Burnside rings (see Proposition 3.20).

Let H ≤ G, and let T be an (H,A)-set. The tensor induced G-set T⊗G obtained
from T (see [8, §80C]) is isomorphic to MapH(G,T ) and is related to tensor induction
of modules. By modifying MapH(G,T ), we define tensor induction for (H,A)-sets,
and then define multiplicative induction for monomial Burnside rings in §3C.

Let Hg, g ∈ G, be the right coset of H in G containing g. Given g, r ∈ G with
Hg ̸= Hr and a ∈ A, we define a relation ∼(g,r,a) on MapH(G,T ) by

f ∼(g,r,a) f
′ : ⇐⇒ f(hg) hga = f ′(hg) and f(hr) = f ′(hr) hra for all h ∈ H,

and f(g′) = f ′(g′) for all g′ ∈ G−Hg∪̇Hr.

Let ∼A be the equivalence relation on MapH(G,T ) generated by the relations ∼(g,r,a)

for g, r ∈ G and a ∈ A. For each f ∈ MapH(G,T ), we denote by f̂ the equivalence
class containing f with respect to the equivalence relation ∼A.

Definition 3.3 Let H ≤ G, and let T be an (H,A)-set. We define

M̂apH(G,T ) := {f̂ | f ∈ MapH(G,T )},

and make it into a free right A-set by defining

f̂a = f̂a with fa : G→ T, r 7→ fa(r) =

{
f(r) ra if r ∈ H,

f(r) if r ∈ G−H
(3.1)

for all a ∈ A and f ∈ MapH(G,T ).
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The following lemma tells us of a suitable left action of G on the free right
A-set M̂apH(G,T ) defined above for an extension of the multiplicative induction
JndGH : X 7→ MapH(G,X) where X ∈ H-set.

Lemma 3.4 Let H ≤ G, and let T be an (H,A)-set. Then ĝfa = ĝf ga, where fa
is given in Eq.(3.1), for all g ∈ G, a ∈ A, and f ∈ MapH(G,T ).

Proof. Suppose that g ∈ G, a ∈ A, and f ∈ MapH(G,T ). By definition,

(gfa)(r) =

{
f(rg) rga if rg ∈ H,

f(rg) if rg ∈ G−H,

and

(gf) ga(r) =

{
f(rg) rga if r ∈ H,

f(rg) if r ∈ G−H.

Hence we may assume that g ̸∈ H. Observe that for any h ∈ H,

(gfa)(h)
h( ga) = (gf) ga(h) and (gfa)(hg

−1) = (gf) ga(hg
−1) hg

−1
( ga).

Moreover, (gfa)(r) = (gf) ga(r) for all r ∈ G−H∪̇Hg−1. Thus gfa ∼(ϵ,g−1, ga) (gf) ga.

We now obtain ĝfa = ĝf ga, completing the proof. 2

Definition 3.5 (Tensor induction) Let H ≤ G, and let T be an (H,A)-set. We

make the free right A-set M̂apH(G,T ) into a left G-set by defining

gf̂ = ĝf

for all g ∈ G and f ∈ MapH(G,T ), so that M̂apH(G,T ) is a (G,A)-set. The

operation which assigns to T the (G,A)-set M̂apH(G,T ) is called tensor induction
(cf. [8, §80C]), and is related to tensor induction for 1-cocycles (see §3B).

Remark 3.6 Keep the notation of Definition 3.5, and assume further that G acts
trivially on A. Then the (G,A)-sets are considered as the A-fibred G-sets defined by

Barker [2, §2], and the (G,A)-set M̂apH(G,T ) obtained from T by tensor induction
is identified with the A-fibred G-set TenGH(T ) defined by Barker [2, §9].

We present a fundamental lemma which is essential to the investigation of mul-
tiplicative induction for monomial Burnside rings.

Lemma 3.7 Let H ≤ G, and let T be an (H,A)-set. Suppose that {g1, g2, . . . , gn}
with g1 = ϵ is a complete set of representatives of G/H. Let f ∈ MapH(G,T ), and
define f (0) ∈ MapH(G,T ) by f (0)(hg−1

j ) = f(hg−1
j ) haj with aj ∈ A for all h ∈ H

and j ∈ [n]. Then f (0) ∼A fa, where a = g1a1
g2a2 · · · gnan, and hence f̂ (0) = f̂a.
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Proof. For each integer k with 1 ≤ k ≤ n, we define f (k) ∈ MapH(G,T ) by

f (k)(hg−1
j ) =

{
f(hg−1

j ) if j ∈ [k],

f (0)(hg−1
j ) if j = k + 1, k + 2, . . . , n

for all h ∈ H. In particular, f (n) = f . Obviously, f (1) = f
(0)
g1a−1

1

. Let k be an integer

with 2 ≤ k ≤ n. Then

f (k)(hg−1
k ) = f (k−1)(hg−1

k ) ha−1
k and f (k)(hg−1

j ) = f (k−1)(hg−1
j )

for all h ∈ H and j ∈ [n] with j ̸= k, and

f
(k−1)
gka−1

k

(hg−1
1 ) = f (k−1)(hg−1

1 ) hgka−1
k and f

(k−1)
gka−1

k

(hg−1
j ) = f (k−1)(hg−1

j )

for all h ∈ H and j = 2, 3, . . . , n. This shows that f
(k−1)
gka−1

k

∼(g−1
k ,g−1

1 , gka−1
k ) f

(k).

Hence we have f (0) ∼A fa, completing the proof. 2

Remark 3.8 Let H ≤ G, and let T be an (H,A)-set. By Lemma 3.7, we have

|M̂apH(G,T )/A| = |MapH(G,T/A)|,

whence
|M̂apH(G,T )| = |T/A||G/H| · |A|.

The following proposition, which is a generalization of [32, §3(a.13)], describes
a Mackey decomposition formula (see also [2, Lemma 9.1]).

Proposition 3.9 Let H, K ≤ G. For each (H,A)-set T ,

resGK(M̂apH(G,T )) ≃
⊗

KgH∈K\G/H

M̂apK∩ gH(K, res
gH
K∩ gH(

gT )).

Proof. Let {g1, g2, . . . , gm} with g1 = ϵ be a complete set of representatives of
K\G/H. For each i ∈ [m], let {ri1, ri2, . . . , riℓi} be a complete set of represen-
tatives of K/(K ∩ giH). Then {rijgi | i ∈ [m] and j ∈ [ℓi]} is a complete set of
representatives of G/H. Let i ∈ [m]. There is a map

Φi : res
G
K(MapH(G,T )) → MapK∩ giH(K, res

giH
K∩ giH(

giT ))

given by

Φi(f)(
gihr−1

ij ) = gi ⊗ f(h(rijgi)
−1)(= gih(gi ⊗ f((rijgi)

−1))) ∈ giT

for all h ∈ g−1
i K ∩H, j ∈ [ℓi], and f ∈ MapH(G,T ). Given j ∈ [ℓi], we have

Φi(rf)(r
−1
ij ) = gi ⊗ f((rijgi)

−1r) = gi ⊗ f(g−1
i (r−1

ij rrij′)gi(rij′gi)
−1)
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and
(rΦi(f))(r

−1
ij ) = Φi(f)(r

−1
ij r) = Φi(f)((r

−1
ij rrij′)r

−1
ij′ ),

where rij(K ∩ giH) = rrij′(K ∩ giH), for all r ∈ K and f ∈ MapH(G,T ). Thus Φi
is a K-equivariant map. We now define a K-equivariant map

Φ̂ : resGK(M̂apH(G,T )) →
m⊗
i=1

M̂apK∩ giH(K, res
giH
K∩ giH(

giT ))

by

f̂ 7→ Φ̂1(f)⊗ Φ̂2(f)⊗ · · · ⊗ Φ̂m(f)

for all f ∈ MapH(G,T ). (Of course this map is well-defined; see Remark 3.10.) The
map Φ̂ is also a (K,A)-equivariant map, because

(Φ̂1(f)⊗ Φ̂2(f)⊗ · · · ⊗ Φ̂m(f))a = Φ̂1(f)a ⊗ Φ̂2(f)⊗ · · · ⊗ Φ̂m(f)

and

Φi(fa)(r
−1
ij ) =


ϵ⊗ f(r−1

1j )
r−1
1j a = Φ1(f)a(r

−1
1j ) if i = 1 and r1j ∈ H,

ϵ⊗ f(r−1
1j ) = Φ1(f)a(r

−1
1j ) if i = 1 and r1j ̸∈ H,

gi ⊗ f((rijgi)
−1) = Φi(f)(r

−1
ij ) if i ̸= 1

for all i ∈ [m], j ∈ [ℓi], a ∈ A, and f ∈ MapH(G,T ). Thus it only remains for us to
show that Φ̂ is bijective. For each i ∈ [m], choose fi ∈ MapK∩ giH(K, res

giH
K∩ giH(

giT )).
Given i ∈ [m] and j ∈ [ℓi], we suppose that fi(r

−1
ij ) = gi ⊗ tij ∈ giT with tij ∈ T .

Now define f ∈ MapH(G,T ) by

f(h(rijgi)
−1) = htij ∈ T

for all h ∈ H, i ∈ [m], and j ∈ [ℓi]. Then Φ̂(f̂) = f̂1 ⊗ f̂2 ⊗ · · · ⊗ f̂m. Thus Φ̂ is
surjective, which means that it is also injective, because

|M̂apH(G,T )| = |T/A|
∑m

i=1 ℓi · |A| =

∣∣∣∣∣
m⊗
i=1

M̂apK∩ giH(K, res
giH
K∩ giH(

giT ))

∣∣∣∣∣
by Remark 3.8. We now conclude that Φ̂ is bijective, completing the proof. 2

Remark 3.10 In the proof of Proposition 3.9, assume that f ∼((rijgi)−1,(ri′j′gi′ )
−1,a) f

′

with f, f ′ ∈ MapH(G,T ) and a ∈ A. Let u ∈ [m] and v ∈ [ℓu]. Then we have

Φu(f)(
guhr−1

uv ) =


Φi(f

′)( gihr−1
ij )

gihr−1
ij a−1 if (u, v) = (i, j),

Φu(f
′)( gi′hr−1

i′j′)
gi′hr−1

i′j′a if (u, v) = (i′, j′),

Φu(f
′)( guhr−1

uv ) otherwise
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for all h ∈ g−1
u K ∩H. This, combined with Lemma 3.7, shows that

Φ̂u(f) = Φ̂u(f ′) if u ̸= i, i′, Φ̂i(f) = Φ̂i(f ′)a
−1, and Φ̂i′(f) = Φ̂i′(f ′)a.

Hence we have Φ̂(f̂) = Φ̂(f̂ ′). Consequently, the map Φ̂ is well-defined.

3B Tensor induction for 1-cocycles

We introduce tensor induction for 1-cocycles, and see that it is closely allied to
tensor induction for (H,A)-sets with H ≤ G.

Definition 3.11 Let (H,σ) ∈ S(G,A). We fix a complete set {g1, g2, . . . , gn} with
g1 = ϵ of representatives of G/H, and define a 1-cocycle σ⊗G : G→ A by

σ⊗G(g) =

n∏
j=1

gj′σ(g−1
j′ ggj),

where ggjH = gj′H, for all g ∈ G. The operation which assigns to σ the 1-cocycle
σ⊗G : G→ A is called tensor induction (cf. [8, §13A]).

Remark 3.12 Keep the notation of Definition 3.11, and let h1, h2, . . . , hn ∈ H. Then

(σ⊗G)a(g) =

n∏
j=1

gj′hj′σ(h−1
j′ g

−1
j′ ggjhj) with a =

n∏
j=1

gjσ(hj)

for all g ∈ G (see Definition 2.4), because

gj′hj′σ(h−1
j′ g

−1
j′ ggjhj) = gj′hj′σ(h−1

j′ )
gj′σ(g−1

j′ ggjhj)

= gj′σ(hj′)
−1 gj′σ(g−1

j′ ggj)
ggjσ(hj)

for all j ∈ [n]. Hence the subset {(σ⊗G)a | a ∈ A} of Z1(G,A) is independent of the
choice of a complete set of representatives of G/H. Likewise, if b ∈ A, then

(σ⊗G)c = (σb)⊗G with c =

n∏
j=1

gjb.

Example 3.13 Let (H,σ) ∈ S(G,A). Obviously, A is a free right A-set with the
action given by the product operation on A. We make it into an (H,A)-set A(σ)

isomorphic to (H/H)σ by defining

ha = σ(h) ha
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for all h ∈ H and a ∈ A(σ). For any K ≤ H, resHK(A(σ)) = A(σ|K) (see Lemma 2.11).
Keep the notation of Definition 3.11, and identify (H/H)σ with A(σ). We define an
element σ̃ of MapH(G,A

(σ)) by

σ̃(hg−1
i ) = σ(h)

for all h ∈ H and i ∈ [n]. Let f ∈ MapH(G,A
(σ)). For each j ∈ [n], we set

aj = f(g−1
j ) ∈ A(σ). Since f(hg−1

j ) = σ̃(hg−1
j ) haj for all h ∈ H and j ∈ [n], it

follows from Lemma 3.7 with f (0) = f that f̂ = ̂̃σa where a = g1a1
g2a2 · · · gnan.

Hence M̂apH(G,A
(σ)) = {̂̃σa | a ∈ A}. Let g ∈ G. We have

(gσ̃)(hg−1
j ) = σ̃(hg−1

j g) = σ(hg−1
j ggj′) = σ(h) hσ(g−1

j ggj′) = σ̃(hg−1
j ) hσ(g−1

j ggj′),

where gjH = ggj′H, for all h ∈ H and j ∈ [n]. Thus it follows from Lemma 3.7 that

ĝ̃σ = ̂̃σσ⊗G(g). Moreover, there exists an isomorphism M̂apH(G,A
(σ))

∼→ A(σ⊗G) of
(G,A)-sets given by ̂̃σa 7→ a

for all a ∈ A. Thus M̂apH(G, (H/H)σ) ≃ (G/G)σ⊗G .

The following proposition describes a Mackey decomposition formula.

Proposition 3.14 Let H, K ≤ G. For each σ ∈ Z1(H,A),

σ⊗G|K =A

∏
KgH∈K\G/H

(gσ)|K∩ gH
⊗K .

Proof. By Lemma 2.10, Proposition 3.9, and Example 3.13, we have

(K/K)σ⊗G|K ≃
⊗

KgH∈K\G/H

(K/K)(gσ)|K∩ gH
⊗K ,

which, combined with Lemma 2.15, implies that

(K/K)σ⊗G|K ≃ (K/K) ∏
KgH∈K\G/H

(gσ)|K∩ gH
⊗K .

The assertion follows from this fact and Lemma 2.6. This completes the proof. 2

The following lemma states basic properties of tensor induction for 1-cocycles.

Lemma 3.15 Let U ≤ K ≤ H, and let g ∈ G. Then

gν⊗H =A (gν)⊗
gH and (τ⊗K)⊗H =A τ

⊗H

for all ν ∈ Z1(K,A) and τ ∈ Z1(U,A).
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Proof. Fix a complete set {h1, h2, . . . , hm} with h1 = ϵ of representatives of H/K
and a complete set {r1, r2, . . . , rk} with r1 = ϵ of representatives of K/U . Given
ν ∈ Z1(K,A) and τ ∈ Z1(U,A), we have

(gν⊗H)( gh) =
m∏
j=1

ghj′ν(h−1
j′ hhj)

=

m∏
j=1

ghj′gν((h−1
j′ g

−1) gh(ghj))

=
m∏
j=1

ghj′gν(g−1( gh−1
j′

gh ghj)g)

=

m∏
j=1

ghj′(gν)( gh−1
j′

gh ghj),

where hhjK = hj′K, and

(τ⊗K)⊗H(h) =
m∏
j=1

hj′τ⊗K(h−1
j′ hhj)

=
m∏
j=1

k∏
i=1

hj′ri′τ((hj′ri′)
−1h(hjri)),

where (h−1
j′ hhj)riU = ri′U , for all h ∈ H. Consequently, the assertions follow from

Remark 3.12. This completes the proof. 2

3C Algebraic maps

We define a subset Ω(G,A)+ of Ω(G,A) to be the set consisting of all elements∑
(U,τ)∈R(G,A) ℓ(U,τ)[(G/U)τ ] with ℓ(U,τ) ≥ 0, which is an additive semigroup. By

Lemma 2.15, Ω(G,A)+ is closed under multiplication. For each H ≤ G, there is a

map (tensor induction) M̂apH(G,−) : Ω(H,A)+ → Ω(G,A) given by

[T ] 7→ [M̂apH(G,T )]

for all (H,A)-sets T (cf. [8, (80.42)]). This map is multiplicative (see Lemma 3.19).
We review the concept of algebraic maps which is due to Dress [11]. Let B be

an additive semigroup with zero element, and let E be an additive group. Given
c ∈ B and a map f : B → E, we define a map Dcf : B → E by

d 7→ f(c+ d)− f(d)

for all d ∈ B. A map f : B → E is said to be algebraic of degree n if n is the least
integer such that

Dc1Dc2 · · ·Dcn+1f = 0
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for all c1, c2, . . . , cn+1 ∈ B (cf. [8, §80C]). Let f : B → E be an algebraic map of
degree n, and let B be the additive group generated by the elements of B. According
to Dress [11, Proposition 1.1], there is a unique map f : B → E extending f , and
f is also algebraic of degree n (see also [8, (80.44) Theorem (Dress)]). Assume
further that B and E are commutative rings and B is closed under multiplication.
If f : B → E is multiplicative, then the unique extension f : B → E of f to B is
also multiplicative (cf. [8, (80.47) Theorem]).

Definition 3.16 Let H ≤ G, and let T0, T1, . . . , Ti be (H,A)-sets, where i is an

integer with 0 ≤ i ≤ |G : H| + 1. We define a (G,A)-set M̂apH(G,T0, T1, . . . , Ti)

to be the set consisting of all elements f̂ of M̂apH(G,T0∪̇T1∪̇ · · · ∪̇Ti) containing
f ∈ MapH(G,T0∪̇T1∪̇ · · · ∪̇Ti) such that |Imf ∩Tℓ| ̸= 0 whenever ℓ ̸= 0 with the left
action of G and the right action of A given by

gf̂ = ĝf and f̂a = f̂a

for all g ∈ G, a ∈ A, and f̂ ∈ M̂apH(G,T0, T1, . . . , Ti).

Under the notation of Definition 3.16, we have

M̂apH(G,T0, T1, . . . , Ti) =


M̂apH(G,T0) if i = 0,

M̂apH(G,T1) if T0 = ∅ and i = 1,

∅ if i = |G : H|+ 1.

Proposition 3.17 For each H ≤ G, the map M̂apH(G,−) : Ω(H,A)+ → Ω(G,A)
is algebraic of degree |G : H|.

This proposition is analogous to [8, (80.43) Proposition (Dress)], and is an im-
mediate consequence of the following lemma.

Lemma 3.18 Keep the notation of Definition 3.16, and assume further that i ≥ 1.
Set Θi = D[Ti] · · ·D[T1]M̂apH(G,−). Then

Θi([T0]) = [M̂apH(G,T0, T1, . . . , Ti)].

Proof. The assertion is proved by an argument analogous to that in the proof of [8,
(80.43) Proposition (Dress)]. 2

Tensor induction is multiplicative.

Lemma 3.19 For each H ≤ G,

M̂apH(G,T1 ⊗ T2) ≃ M̂apH(G,T1)⊗ M̂apH(G,T2)

for all (H,A)-sets T1 and T2.
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Proof. If f ∈ MapH(G,T1 ⊗ T2), then by Lemma 3.7, there exists a unique element

Ψ̂1(f) ⊗ Ψ̂2(f) of M̂apH(G,T1) ⊗ M̂apH(G,T2), where Ψi(f) ∈ MapH(G,Ti) with
i = 1, 2, such that

f(g) = Ψ1(f)(g)⊗Ψ2(f)(g)

for all g ∈ G. Obviously, Ψ̂1(f)⊗ Ψ̂2(f) = Ψ̂1(f ′)⊗ Ψ̂2(f ′) whenever f ∼A f
′. We

now define a map Ψ̂ : M̂apH(G,T1 ⊗ T2) → M̂apH(G,T1)⊗ M̂apH(G,T2) by

f̂ 7→ Ψ̂1(f)⊗ Ψ̂2(f)

for all f ∈ MapH(G,T1 ⊗ T2). Observe that this map is (G,A)-equivariant and
surjective. Moreover, by Remark 3.8,

|M̂apH(G,T1 ⊗ T2)| = (|T1/A| · |T2/A|)|G/H| · |A| = |M̂apH(G,T1)⊗ M̂apH(G,T2)|.

Hence Ψ̂ is an isomorphism of (G,A)-sets. This completes the proof. 2

Combining Proposition 3.17 and Lemma 3.19 with [8, (80.47) Theorem], we
obtain a result analogous to [8, (80.48) Theorem (Dress)].

Proposition 3.20 For any H ≤ G, there is a unique multiplicative map

MapH(G,−) : Ω(H,A) → Ω(G,A), x 7→ MapH(G, x)

extending M̂apH(G,−), called multiplicative induction or tensor induction, and this
map is algebraic of degree |G : H|.

Remark 3.21 The multiplicative induction map MapH(G,−) : Ω(H,A) → Ω(G,A)
with A = {ϵA} is introduced by Dress [11, §4].

Our concern is an explicit description of each element of ImMapH(G,−) with
H ≤ G, and is to prove Eq.(1.1) (see also [8, (80.49) Corollary]).

Proposition 3.22 Let H ≤ G. For any (H,A)-sets T0 and T ,

MapH(G, [T0]− [T ]) =
n∑
i=0

(−1)i[M̂apH(G,T0, T1, . . . , Ti)],

where n = |G : H| and T = T1 = · · · = Tn.

Proof. We set D0
[T ]Θ = Θ = MapH(G,−) : Ω(H,A) → Ω(G,A), and define induc-

tively Di
[T ]Θ : Ω(H,A) → Ω(G,A), i = 1, 2, · · · , by Di

[T ]Θ = D[T ](D
i−1
[T ] Θ). From [8,

(80.45)], we know that Θ([T0]− [T ]) =
∑∞

i=0(−1)iDi
[T ]Θ([T0]). Hence the assertion

follows from Proposition 3.17 and Lemma 3.18. This completes the proof. 2
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Remark 3.23 Let (H,σ) ∈ S(G,A). By Lemma 3.7 and Proposition 3.22, we can
describe the structure of MapH(G,−[(H/H)σ]). For each X ∈ G-set, let Λ̃P (X)

be the reduced Lefschetz invariant of the poset P (X) consisting of non-empty and
proper subsets of X, which is an element of the Burnside ring Ω(G) (cf. [5, 29]).
When A = {ϵA}, MapH(G,−[(H/H)1H ]) is identified with Λ̃P (G/H).

There is a Mackey decomposition formula which generalizes [32, §3(G.5)] (see
also [2, Proposition 9.5]).

Proposition 3.24 Let H, K ≤ G. For each x ∈ Ω(H,A),

resGK(MapH(G, x)) =
∏

KgH∈K\G/H

MapK∩ gH(K, res
gH
K∩ gH ◦ congH(x)).

Proof. By [8, (80.44) Theorem (Dress)], resGK ◦MapH(G,−) : Ω(H,A) → Ω(K,A)
is the unique map extending the algebraic map

resGK ◦ M̂apH(G,−) =
∏

KgH∈K\G/H

M̂apK∩ gH(K,−) ◦ res gH
K∩ gH ◦ congH

: Ω(H,A)+ → Ω(K,A),

and so is
∏
KgH∈K\G/H MapK∩ gH(K,−)◦ res gH

K∩ gH ◦congH : Ω(H,A) → Ω(K,A) (see
[11, Proposition 1.2] and Propositions 3.9, 3.17, and 3.20). Thus the assertion holds.
2

4 The mark homomorphism

4A The first cohomology group

Following [12, §2], we provide preliminaries of the mark homomorphism for
Ω(G,A) which is given in §4B.

Let H ≤ G. The set Z1(H,A) is a right A-set with the action of A given in
Definition 2.4, and is an abelian group with the product operation given by

σ · τ(h) = σ(h)τ(h)

for all σ, τ ∈ Z1(H,A) and h ∈ H. Obviously, the identity of Z1(H,A) is 1H .
For each σ ∈ Z1(H,A), we denote by σ the A-orbit {σa | a ∈ A} containing σ.

Given σ, τ ∈ Z1(H,A) and a, b ∈ A, it is easily seen that σa · τ b = (σ · τ)ab = σ · τ .

Definition 4.1 For each H ≤ G, we define

H1(H,A) := {σ | σ ∈ Z1(H,A)},
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the set of A-orbits on Z1(H,A), and make it into an abelian group by defining

σ · τ = σ · τ

for all σ, τ ∈ Z1(H,A). (This product operation is well-defined.)

Let H ≤ G. We denote by ZH1(H,A) the group ring of H1(H,A) over Z. Given
K ≤ H and g ∈ G, there are ring homomorphisms

congH : ZH1(H,A) → ZH1( gH,A),
∑

σ∈H1(H,A)

ℓσ σ 7→
∑

σ∈H1(H,A)

ℓσ gσ and

resHK : ZH1(H,A) → ZH1(K,A),
∑

σ∈H1(H,A)

ℓσ σ 7→
∑

σ∈H1(H,A)

ℓσ σ|K ,

where ℓσ ∈ Z with σ ∈ Z1(H,A) (see §2B), which are called the conjugation map
and the restriction map, respectively (cf. [12, §2.2]). Obviously, the restriction map
is well-defined. Let σ ∈ Z1(H,A). By Lemma 2.5, we have g(σa) = gσ for any
a ∈ A. Thus the conjugation map is well-defined.

Let Y be a (G,A)-set. The set of A-orbits yA, y ∈ Y , on Y is a left G-set. For
each y ∈ Y , we denote by GyA the stabilizer of the A-orbit yA in G, that is,

GyA = {g ∈ G | gy = ya for some a ∈ A},

and define a 1-cocycle σy : GyA → A by

gy = yσy(g)

for all g ∈ GyA. Obviously, G(ya)A = GyA and σya = σy
a for any y ∈ Y and a ∈ A.

Definition 4.2 Let Y be a (G,A)-set, and let H ≤ G. We define

invAH(Y ) := {y ∈ Y | H ≤ GyA},

which is viewed as an (H,A)-subset of resGH(Y ), and define

[Y ]H :=
1

|A|
∑

y∈invAH(Y )

res
GyA

H (σy) =
∑

yA∈invAH(Y )/A

res
GyA

H (σy) ∈ ZH1(H,A).

Let Y1 and Y2 be (G,A)-sets, and let H ≤ G. Obviously,

[Y1∪̇Y2]H = [Y1]H + [Y2]H .

Let (y1, y2) ∈ Y1 × Y2. Given g ∈ G and a ∈ A, g(y1 ⊗ y2) = (y1 ⊗ y2)a if and only
if (gy1b

−1, gy2b) = (y1, y2a) for some b ∈ A. Hence we have

G(y1⊗y2)A = Gy1A ∩Gy2A and σy1⊗y2 = σy1 |G(y1⊗y2)A
· σy2 |G(y1⊗y2)A
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(cf. [12, §2.3]). Moreover, y1 ⊗ y2 ∈ invAH(Y1 ⊗ Y2) if and only if y1 ∈ invAH(Y1) and
y2 ∈ invAH(Y2). This means that

[Y1]H · [Y2]H =
1

|A|

 ∑
y∈invAH(Y1)

res
GyA

H (σy)

 ∑
yA∈invAH(Y2)/A

res
GyA

H (σy)


=

1

|A|
∑

y1⊗y2∈invAH(Y1⊗Y2)

res
G(y1⊗y2)A

H (σy1⊗y2)

= [Y1 ⊗ Y2]H .

Given H ≤ G, we define a ring homomorphism ρHG : Ω(G,A) → ZH1(H,A) by

[Y ] 7→ [Y ]H

for all (G,A)-sets Y (cf. [12, §2.4]).
The ring homomorphisms ρHG : Ω(G,A) → ZH1(H,A) for H ≤ G form the map∏

H≤G
ρHG : Ω(G,A) →

∏
H≤G

ZH1(H,A), x 7→ (ρHG (x))H≤G

(cf. [12, §2.5]), which is injective (cf. [12, Theorem 1]).

4B The ghost ring

We continue reviewing part of [12, §2.4, §2.5], and define a ring monomorphism
ρG : Ω(G,A) → ℧(G,A), x 7→

∏
H≤G ρ

H
G (x) (see Eq.(4.2)).

Definition 4.3 Let Y be a (G,A)-set, and let (H,σ) ∈ S(G,A). We define a subset
inv(H,σ)(Y ) of Y to be the set of F(H,σ)-invariants in Y , so that

inv(H,σ)(Y ) = {y ∈ Y | hy = yσ(h) for all h ∈ H} = {y ∈ invAH(Y ) | σy|H = σ},

and denote by Aσ the stabilizer {a ∈ A | σ = σa} of σ ∈ Z1(H,A) in A.

Under the notation of Definition 4.3, the set inv(H,σ)(Y ) is a free right Aσ-set
with the action inherited from that of A on Y . For each (H,σ) ∈ S(G,A), we denote
by inv(H,σ)(Y )/Aσ the set of Aσ-orbits on inv(H,σ)(Y ).

Lemma 4.4 Let Y be a (G,A)-set, and let H ≤ G. Then

[Y ]H =
∑

σ∈H1(H,A)

|inv(H,σ)(Y )/Aσ| · σ.

Moreover, |inv( gH,gσ)(Y )/Agσ| = |inv(H,σ)(Y )/Aσ| for any σ ∈ Z1(H,A) and g ∈ G.
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Proof. The second statement is clear. To prove the first statement, we set

(Y/A)(H,σ) = {yA ∈ invAH(Y )/A | resGyA

H (σy) = σ}

for each σ ∈ Z1(H,A), so that

[Y ]H =
∑

σ∈H1(H,A)

|(Y/A)(H,σ)| · σ.

Hence it suffices to verify that |(Y/A)(H,σ)| = |inv(H,σ)(Y )/Aσ| for any σ ∈ Z1(H,A).

Let σ ∈ Z1(H,A). We make the set invAH(Y ) into a free right Aσ-set by restriction
of operators from A to Aσ. By definition,

inv(H,σ)(Y )/Aσ = {yAσ ∈ invAH(Y )/Aσ | σy|H = σ},

where invAH(Y )/Aσ is the set of Aσ-orbits yAσ := {ya | a ∈ Aσ}, y ∈ invAH(Y ), on
invAH(Y ). Let y ∈ invAH(Y ), and suppose that σy|H = σa = σb for some a, b ∈ A.
Then ab−1 ∈ Aσ and ya−1Aσ = yb−1Aσ ∈ inv(H,σ)(Y )/Aσ. (Note that σ(yc)|H = σac

for any c ∈ A.) Hence there is a bijection (Y/A)(H,σ) → inv(H,σ)(Y )/Aσ given by

yA 7→ ya−1Aσ,

where σy|H = σa with a ∈ A, for all yA ∈ (Y/A)(H,σ). This completes the proof. 2

The following lemma is [27, Lemma 3.3].

Lemma 4.5 Let (H,σ), (U, τ) ∈ S(G,A). Then

|inv(H,σ)((G/U)τ )/Aσ| = |{gU ∈ G/U | H ≤ gU and (gτ)|H =A σ}|.

Let H, U ≤ G, and consider G/U to be a left G-set with the action of G given
by the product operation on G. Following [8, (80.5) Proposition], we define

invH(G/U) := {gU ∈ G/U | H ≤ gU}. (4.1)

Lemma 4.6 (a) Let H ≤ G, and let (U, τ) ∈ S(G,A). Then

[(G/U)τ ]H =
∑

gU∈invH(G/U)

res
gU
H ◦ congU (τ).

(b) Let K ≤ H ≤ G, and let (U, τ) ∈ S(H,A). Then for any r ∈ G,

[ r((H/U)τ )] rK = conrK([(H/U)τ ]K).

If H = G, then for any r ∈ G,

[(G/U)τ ] rK = conrK([(G/U)τ ]K).
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Proof. (a) Although the assertion follows from Lemmas 4.4 and 4.5, we directly
prove it. In the proof of Lemma 4.4, if Y = (G/U)τ , then by Lemmas 2.5 and 2.6,

(Y/A)(H,σ) = {(ϵA, gU)A ∈ invAH(Y )/A | res gU
H ◦ congU (τ) = σ},

whence

[(G/U)τ ]H =
∑

σ∈H1(H,A)

|(Y/A)(H,σ)| · σ =
∑

gU∈invH(G/U)

res
gU
H ◦ congU (τ).

(b) By Lemma 2.10, it suffices to prove the first assertion. We have

[( rH/ rU)rτ ] rK =
∑

h′ rU∈inv rK( rH/ rU)

res
h′rU
rK ◦ conh′rU (rτ)

=
∑

h′ rU∈inv rK( rH/ rU)

conrK ◦ res r−1h′rU
K ◦ conr−1h′r

U (τ)

= conrK([(H/U)τ ]K).

Hence the first assertion follows from Lemma 2.10. This completes the proof. 2

Definition 4.7 We define

℧(G,A) :=

(xH)H≤G ∈
∏
H≤G

ZH1(H,A)

∣∣∣∣∣∣ congH(xH) = x gH for all g ∈ G

 ,

the ghost ring of Ω(G,A), which is a subring of
∏
H≤G ZH1(H,A).

Remark 4.8 The family of Z-algebras ZH1(H,A) for H ≤ G, together with conjuga-
tion maps and restriction maps, defines a Z-algebra restriction functor ZH1(−, A)
defined in [4, 1.1. Definition]. The rings Ω(G,A) and ℧(G,A) are identified with
ZH1(G,A)+ and ZH1(G,A)+, respectively, which are obtained by the plus con-
structions ZH1(−, A) 7→ ZH1(−, A)+ and ZH1(−, A) 7→ ZH1(−, A)+; moreover,
the Green functor given in Proposition 2.16 is identified with ZH1(−, A)+ (see [4]).

From Proposition 2.14 and Lemma 4.6, we know that there is an additive map
ρG : Ω(G,A) → ℧(G,A) given by

[(G/U)τ ] 7→

 ∑
gU∈invH(G/U)

res
gU
H ◦ congU (τ)


H≤G

for all (U, τ) ∈ R(G,A) (cf. [4, 2.3.]), which is called the mark homomorphism.
Since

ρG([Y ]) = ([Y ]H)H≤G



Multiplicative induction and units/ Yugen Takegahara 26

for all (G,A)-sets Y , the mark homomorphism is a ring homomorphism defined by

ρG(x) = (ρHG (x))H≤G (4.2)

for all x ∈ Ω(G,A) (cf. [12, §2.5]). We write ρ = ρG for shortness’ sake.
According to [4, (2.3a)], there is a map η : ℧(G,A) → Ω(G,A) given by ∑
σ∈H1(H,A)

ℓ(H,σ)σ


H≤G

7→
∑
H≤G

∑
U≤H

|U |µ(U,H)
∑

σ∈H1(H,A)

ℓ(H,σ)[(G/U)σ|U ]

for all ℓ(H,σ) ∈ Z with H ≤ G and σ ∈ Z1(H,A).
We quote concise versions of [4, 2.4. Proposition] and [12, Theorem 1].

Proposition 4.9 (a) η ◦ ρ = |G|idΩ(G,A). (b) ρ ◦ η = |G|id℧(G,A).

Corollary 4.10 The mark homomorphism ρ is injective.

4C Invariant of tensor induction

Let H ≤ G. By Example 3.13 and Proposition 3.14, we have

ρ([M̂apH(G, (H/H)σ)]) = (σ⊗G|K)K≤G =

 ∏
KgH∈K\G/H

(gσ)|K∩ gH
⊗K


K≤G

(4.3)
for all σ ∈ Z1(H,A). Let T be an (H,A)-set. We are interested in the description of

ρ([M̂apH(G,T )]), which naturally extends Eq.(4.3) (see Proposition 4.14). For each

K ≤ G, the K-component [M̂apH(G,T )]K of ρ([M̂apH(G,T )]) is also associated
with a Mackey decomposition formula (see Proposition 3.9).

Let Y be a (G,A)-set, and let K ≤ G. By Definition 4.2,

[Y ]K =
1

|A|
∑

y∈invAK(Y )

res
GyA

K (σy) =
∑

yA∈invAK(Y )/A

res
GyA

K (σy).

Concerning this formula, we have

[Y ]K =
1

|A|
∑

y∈invAK(Y )

res
GyA

K (σy) =
1

|A|
∑

y∈invAK(resGK(Y ))

σy = [resGK(Y )]K . (4.4)

Obviously, this fact implies that ρKG (x) = ρKK(resGK(x)) for any x ∈ Ω(G,A) which is
applied to the following lemma.
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Lemma 4.11 Let H, K ≤ G. For any x ∈ Ω(H,A),

ρKG (MapH(G, x)) =
∏

KgH∈K\G/H

ρKK(MapK∩ gH(K, res
gH
K∩ gH ◦ congH(x))).

Proof. Since ρKG (MapH(G, x)) = ρKK(resGK(MapH(G, x))) for any x ∈ Ω(H,A), the
assertion follows from Proposition 3.24. This completes the proof. 2

Definition 4.12 Let H ≤ G. We define a map −⊗G : ZH1(H,A) → ZH1(G,A) by

∑
σ∈H1(H,A)

ℓσσ 7→

 ∑
σ∈H1(H,A)

ℓσσ

⊗G

:=
∑

σ∈H1(H,A)

ℓσσ⊗G

for all ℓσ ∈ Z with σ ∈ Z1(H,A). (This map is well-defined; see Remark 3.12.)

Lemma 4.13 Let H ≤ G, and let T be an (H,A)-set. Then

[M̂apH(G,T )]G =
1

|A|
∑

f̂∈invAG(M̂apH(G,T ))

σ
f̂
=

1

|A|
∑

t∈invAH(T )

σt⊗G = [T ]H
⊗G.

Proof. Fix a complete set {g1, g2, . . . , gn} with g1 = ϵ of representatives of G/H.
Let t ∈ invAH(T ). We define an element f(t) of MapH(G,T ) by

f(t)(g
−1
j ) = t

for all j ∈ [n]. For any g ∈ G and j ∈ [n], if gjH = ggj′H, then

(gf(t))(g
−1
j ) = (g−1

j ggj′)f(t)(g
−1
j′ ) = (g−1

j ggj′)t = f(t)(g
−1
j )σt(g

−1
j ggj′).

This, combined with Lemma 3.7, shows that gf̂(t) = f̂(t)(σt
⊗G)(g) for all g ∈ G (see

Definition 3.11). Hence G = G
f̂(t)A

, f̂(t) ∈ invAG(M̂apH(G,T )), and σf̂(t)
= σt

⊗G.

We now define a map Γ̂ : invAH(T )/A→ invAG(M̂apH(G,T ))/A by

Γ̂(tA) = f̂(t)A

for all t ∈ invAH(T ). This map is well-defined, because, by Lemma 3.7, f̂(ta) = f̂(t)b

with b = g1a g2a · · · gna for any a ∈ A. If Γ̂(t1A) = Γ̂(t2A) with t1, t2 ∈ invAH(T ),

then f̂(t1) = f̂(t2)a for some a ∈ A, and hence t1 = t2b for some b ∈ A. Thus Γ̂ is

injective. Let f̂ ∈ invAG(M̂apH(G,T )) with f ∈ MapH(G,T ), and let g ∈ G. Given
j ∈ [n], we have (gf)(g−1

j ) = f(g−1
j )aj(g) for some aj(g) ∈ A. Set t = f(ϵ). Then

ht = hf(ϵ) = f(h) = (hf)(ϵ) = ta1(h)
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for all h ∈ H, which yields t ∈ invAH(T ). Observe now that for any j ∈ [n],

f(g−1
j )aj(gj) = (gjf)(g

−1
j ) = f(ϵ) = t = f(t)(g

−1
j ).

By Lemma 3.7, we have f̂ = f̂(t)a, where a = ( g1a1(g1)
g2a2(g2) · · · gnan(gn))−1, so

that Γ̂(tA) = f̂A. Thus Γ̂ is bijective. The assertion now follows from the fact that
σ
f̂(t)

= σt
⊗G for all t ∈ invAH(T ). This completes the proof. 2

The following proposition generalizes the equation in [32, p. 39] (see also [2,
Lemma 9.2], [9, p. 149], and [30, p. 111, Eq.(2)]).

Proposition 4.14 Let H, K ≤ G. For each (H,A)-set T ,

[M̂apH(G,T )]K =
∏

KgH∈K\G/H

[ gT ]K∩ gH
⊗K .

Proof. Combining Lemma 4.13 with Lemma 4.11, we have

[M̂apH(G,T )]K =
∏

KgH∈K\G/H

[M̂apK∩ gH(K, res
gH
K∩ gH(

gT ))]K

=
∏

KgH∈K\G/H

[res
gH
K∩ gH(

gT )]K∩ gH
⊗K

.

Hence the assertion follows from Eq.(4.4). This completes the proof. 2

How about the description of ρ(MapH(G, x)) for any H ≤ G and x ∈ Ω(H,A)?
By using Eq.(1.1), we are successful in proving Eq.(1.2) (see Theorem 4.16).

Lemma 4.15 Let H ≤ G. For any (H,A)-sets T0 and T ,

ρGG(MapH(G, [T0]− [T ])) = [M̂apH(G,T0)]G − [M̂apH(G,T )]G.

Proof. We may assume that H < G. By Proposition 3.22,

MapH(G, [T0]− [T ]) = [M̂apH(G,T0)] +
n∑
i=1

(−1)i[M̂apH(G,T0, T1, . . . , Ti)],

where n = |G : H| and T = T1 = · · · = Tn. If i ∈ [n] and i ≥ 2, then obviously,

[M̂apH(G,T0, T1, . . . , Ti)]G = 0. Moreover, we have

invAG(M̂apH(G,T0, T1)) = invAG(M̂apH(G, ∅, T1)) = invAG(M̂apH(G,T1)),

completing the proof. 2

The following theorem, which is equivalent to Eq.(1.2), is an extension of Propo-
sition 4.14 and is a generalization of [32, §3(b.3)].
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Theorem 4.16 Let H ≤ G, and define a map jndGH : ℧(H,A) → ℧(G,A) by

(xL)L≤H 7→

 ∏
KgH∈K\G/H

congKg∩H(xKg∩H)
⊗K


K≤G

for all (xL)L≤H ∈ ℧(H,A). Then the diagram

Ω(G,A)
ρ−−−−→ ℧(G,A)

MapH(G,−)

x xjndGH

Ω(H,A) −−−−→
ρH

℧(H,A)

is commutative, where ρH : Ω(H,A) → ℧(H,A) is the mark homomorphism.

Proof. We prove Eq.(1.2). Let x ∈ Ω(H,A). We may assume that x = [T0]− [T ] for
some (H,A)-sets T0 and T . Let K ≤ G. Then by Lemmas 4.11 and 4.15, we have

ρKG (MapH(G, [T0]− [T ]))

=
∏

KgH∈K\G/H

ρKK(MapK∩ gH(K, [res
gH
K∩ gH(

gT0)]− [res
gH
K∩ gH(

gT )]))

=
∏

KgH∈K\G/H

{
[M̂apK∩ gH(K, res

gH
K∩ gH(

gT0))]K

−[M̂apK∩ gH(K, res
gH
K∩ gH(

gT ))]K

}
.

Moreover, it follows from Eq.(4.4) and Lemma 4.13 that

ρKG (MapH(G, [T0]− [T ])) =
∏

KgH∈K\G/H

{
[ gT0]K∩ gH

⊗K − [ gT ]K∩ gH
⊗K

}
. (4.5)

By Lemma 4.6(b), [ gT1]K∩ gH = congKg∩H([T1]Kg∩H), where T1 = T0 or T1 = T , for
all g ∈ G. Hence Eq.(1.2) follows from Eq.(4.2). This completes the proof. 2

Remark 4.17 Given (H,σ) ∈ S(G,A), it follows from Lemma 4.6 and Eq.(4.5) that

ρ(MapH(G,−[(H/H)σ])) =

(−1)|K\G/H|
∏

KgH∈K\G/H

(gσ)|K∩ gH
⊗K


K≤G

(see also Eq.(4.3)). Here we return to Remark 3.23. Deducing this fact directly
from Lemma 3.7 and Proposition 3.22 requires the use of [25, (24d)] which provides
a combinatorial explanation. Let H, K ≤ G. When A = {ϵA}, the K-component of
ρ(Λ̃P (G/H)) is (−1)|K\G/H| (see [29, Proposition 5.1] and [32, Lemma 3.6]).
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For each H ≤ G, we denote by Ω(H,A)× the unit group of Ω(H,A), and consider
this abelian group as a Z-module. Note that the Z-module structure of Ω(H,A)×

is different from that of Ω(H,A).
There is a fact relative to [2, Theorem 9.6] and [32, Lemma 3.1].

Theorem 4.18 The family of Z-modules Ω(H,A)× for H ≤ G, together with con-
jugation, restriction, and multiplicative induction maps inherited from those on the
family of Z-algebras Ω(H,A) for H ≤ G defines a Mackey functor on G.

Proof. Let jndHK : Ω(K,A)× → Ω(H,A)× with K ≤ H ≤ G be the map inherited
from MapK(H,−) : Ω(K,A) → Ω(H,A). By [4, 1.1. Definition], Lemma 2.10, and
Proposition 3.24, it suffices to verify that for any U ≤ V ≤ H ≤ G and g ∈ G,

congH ◦ jndHU = jnd
gH
gU ◦ congU and jndHV ◦ jndVU = jndHU . (4.6)

Given H ≤ G and g ∈ G, we define a map congH : ℧(H,A) → ℧( gH,A) by

(xK)K≤H 7→ (congK(xK)) gK≤ gH

for all (xK)K≤H ∈ ℧(H,A). Let U ≤ V ≤ H ≤ G, and let g ∈ G. Given K ≤ H
and (xL)L≤U ∈ ℧(U,A), we have

congK(conhKh∩U (xKh∩U )
⊗K) = (con

gh
( gK)

gh∩ gU ◦ cong
Kh∩U (xKh∩U ))

⊗ gK

for all h ∈ H and

∏
KhV ∈K\H/V

conhKh

 ∏
KhrU∈Kh\V/U

conrKh
r∩U (xKh

r∩U )
⊗Kh

⊗K

=
∏

KhU∈K\H/U

conhKh∩U (xKh∩U )
⊗K ,

where Kh = Kh ∩ V (see Lemma 3.15). Relative to ‘jnd’ defined in Theorem 4.16,
these equations enable us to obtain the equations

congH ◦ jndHU = jnd
gH
gU ◦ congU and jndHV ◦ jndVU = jndHU .

By Lemma 4.6(b), congH ◦ ρH = ρ gH ◦ congH and congU ◦ ρU = ρ gU ◦ congU . Hence
Eq.(4.6) follows from Corollary 4.10 and Theorem 4.16. This completes the proof.
2

5 Fundamentals of monomial Burnside rings

5A The Burnside homomorphism

The discussion in this section is a special case of [28, §9] (see also [27, §3, §4]).



Multiplicative induction and units/ Yugen Takegahara 31

For each (U, τ) ∈ S(G,A), we set

NG(U, τ) = {g ∈ G | gU = U and congU (τ) = τ}.

By definition, the elements (x
(U,τ)
H )H≤G for (U, τ) ∈ R(G,A), where

x
(U,τ)
H =


∑

gNG(U,τ)∈NG(U)/NG(U,τ)

conrgU (τ) if H = rU with r ∈ G,

0 otherwise,

form a free Z-basis of the ghost ring ℧(G,A). We define

Ω̃(G,A) :=
⨿

(K,ν)∈R(G,A)

Z,

so that there exists an isomorphism κ : Ω̃(G,A)
∼→ ℧(G,A) of Z-lattices given by

(δ(U,τ) (K,ν))(K,ν)∈R(G,A) 7→ (x
(U,τ)
H )H≤G

for all (U, τ) ∈ R(G,A), where δ is the Kronecker delta.

Definition 5.1 We define an additive map φ : Ω(G,A) → Ω̃(G,A) by

φ([(G/U)τ ]) = (|inv(K,ν)((G/U)τ )/Aν |)(K,ν)∈R(G,A)

for all (U, τ) ∈ R(G,A) (see Lemma 4.5), and call it the Burnside homomorphism.

Proposition 5.2 The diagram

Ω(G,A) Ω̃(G,A)
φ
-

@
@
@

@R ?

ρ κ

℧(G,A)
is commutative. In particular, the Burnside homomorphism φ is injective.

Proof. The assertion follows from Lemma 4.4 and Corollary 4.10. 2

Let (U, τ) ∈ R(G,A). By Lemma 2.6, NG(U, τ) contains U . Observe that for any
(K, ν) ∈ R(G,A), the (K, ν)-component of φ([(G/U)τ ]) is divisible by |NG(U, τ)/U |
(see Lemma 4.5). We define

y(U,τ) :=
1

|NG(U, τ)/U |
φ([(G/U)τ ]) =

( |inv(K,ν)((G/U)τ )/Aν |
|NG(U, τ)/U |

)
(K,ν)∈R(G,A)

.

Proposition 5.3 The elements y(U,τ) for (U, τ) ∈ R(G,A) form a free Z-basis of
the Z-lattice Ω̃(G,A).

Proof. The proof is completely analogous to that of [8, (80.15) Proposition]. 2
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5B The Cauchy-Frobenius homomorphism

We aim to state a fundamental theorem for the monomial Burnside ring Ω(G,A)
(see Theorem 5.9).

Definition 5.4 For each (U, τ) ∈ S(G,A), let WG(U, τ) denote the factor group
NG(U, τ)/U . We define

Obs (G,A) :=
⨿

(U,τ)∈R(G,A)

Z/|WG(U, τ)|Z,

the obstruction group of Ω(G,A).

The following fact is a corollary to Proposition 5.3.

Corollary 5.5 Ω̃(G,A)/Imφ ≃ Obs (G,A).

Proof. The proof is completely analogous to that of [27, Corollary 3.8]. 2

Let p be a prime, and let Z(p) be the localization of Z at p. For each Z-module
M , we set M(p) = Z(p) ⊗Z M and M(∞) = M . Let (U, τ) ∈ S(G,A). We denote by
WG(U, τ)p a Sylow p-subgroup of WG(U, τ), and set WG(U, τ)∞ =WG(U, τ).

Let p be a prime or the symbol ∞ hereafter. By Proposition 2.14, the elements
[(G/H)σ] for (H,σ) ∈ R(G,A) form a free Z(p)-basis of the Z(p)-lattice Ω(G,A)(p).

We identify Ω̃(G,A)(p) and Obs (G,A)(p) with⨿
(K,ν)∈R(G,A)

Z(p) and
⨿

(U,τ)∈R(G,A)

Z(p)/|WG(U, τ)p|Z(p),

respectively. Let φ(p) denote the monomorphism from Ω(G,A)(p) to Ω̃(G,A)(p)
determined by φ. (So φ(∞) = φ.) Then by Corollary 5.5, we have

Ω̃(G,A)(p)/Imφ
(p) ≃ Obs (G,A)(p). (5.1)

The expression ‘x mod ℓ’ with x, ℓ ∈ Z(p) denotes the coset x+ ℓZ(p) of ℓZ(p) in

Z(p) containing x. Let (U, τ) ∈ S(G,A). Given (y(H,σ))(H,σ)∈R(G,A) ∈ Ω̃(G,A)(p),
y(U,τ) denotes y(H,σ) for a representative (H,σ) ∈ R(G,A) of the F -orbit on S(G,A)
containing (U, τ). For each g ∈ NG(U, τ), we set

H1
τ (⟨g⟩U,A) = {ν ∈ H1(⟨g⟩U,A) | res⟨g⟩UU (ν) = τ}.

Definition 5.6 We define an additive map ψ(p) : Ω̃(G,A)(p) → Obs (G,A)(p) by

(y(K,ν))(K,ν)∈R(G,A) 7→

 ∑
gU∈WG(U,τ)p,

ν∈H1
τ (⟨g⟩U,A)

y(⟨g⟩U,ν) mod |WG(U, τ)p|


(U,τ)∈R(G,A)
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for all (y(K,ν))(K,ν)∈R(G,A) ∈ Ω̃(G,A)(p), and call it the Cauchy-Frobenius homomor-
phism.

Remark 5.7 (1) When p is a prime, ψ(p) is independent of the choice of a Sylow p-
subgroupWG(U, τ)p ofWG(U, τ) (cf. [28, §9]). (2) When p = ∞, we write ψ = ψ(∞).

For each (H,σ) ∈ R(G,A), it follows from Lemma 4.5 that

ψ(p) ◦φ(p)([(G/H)σ]) =

 ∑
gU∈WG(U,τ)p

|I(H,σ)gU,τ | mod |WG(U, τ)p|


(U,τ)∈R(G,A)

, (5.2)

where
I
(H,σ)
gU,τ = {rH ∈ G/H | ⟨g⟩U ≤ rH and (rσ)|U =A τ}.

The following lemma, which is a special case of [28, Lemma 9.2], is a consequence
of the Cauchy-Frobenius lemma (see, e.g., [33, 2.7 Lemma]).

Lemma 5.8 Let (H,σ), (U, τ) ∈ R(G,A). For any V ≤ NG(U, τ) with U ≤ V ,∑
gU∈V/U

|I(H,σ)gU,τ | ≡ 0 (mod |V/U |).

Proof. The proof is analogous to that of [28, Lemma 9.2], and is also analogous to
part of the proof of [27, Lemma 4.1]. 2

We are now in a position to show a special case of [28, Theorem 9.4], which is a
generalization of [9, Proposition 1.3.5] and [32, Lemma 2.1].

Theorem 5.9 (Fundamental theorem) The sequence

0 −→ Ω(G,A)(p)
φ(p)

−→ Ω̃(G,A)(p)
ψ(p)

−→ Obs (G,A)(p) −→ 0

of additive groups is exact.

Proof. By Proposition 5.2, φ(p) is injective. Moreover, it is easily verified that ψ(p)

is surjective (see, e.g., the proof of [27, Lemma 4.3]). Using Eqs.(5.1) and (5.2) and
Lemma 5.8, we have Imφ(p) = Kerψ(p), completing the proof. 2

5C Idempotents of Burnside rings

The Burnside ring Ω(G) of G, which is defined to be the Grothendieck ring of
G-set, is the commutative unital ring consisting of all formal Z-linear combinations
of the symbols [G/H] for H ∈ C(G) with multiplication given by

[G/H] · [G/U ] =
∑

HgU∈H\G/U

[G/(H ∩ gU)] (5.3)
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for all H, U ∈ C(G), where [G/(H ∩ gU)] = [G/K] for a conjugate K ∈ C(G) of
H ∩ gU in G (see, e.g., [33, 2.1]). The identity of Ω(G) is [G/G].

We regard Ω(G) as Ω(G,A) with A = {ϵA}. For each X ∈ G-set, the symbol
[X] denotes an element

∑n
i=1[G/Hi] of Ω(G) if X ≃ ∪̇i∈[n]G/Hi with Hi ∈ C(G).

Remark 5.10 The product X1 × X2 of X1, X2 ∈ G-set is their cartesian product
with the componentwise action of G (cf. [8, §80A]). Let H, U ≤ G, and let H\G/U
be a complete set of representatives of H\G/U . Then there exists an isomorphism

(G/H)× (G/U)
∼→

∪̇
g∈H\G/U

G/(H ∩ gU), (g1H, g2U) 7→ g1h(H ∩ gU)

of G-sets, where g2U = g1hgU with h ∈ H and g ∈ H\G/U (see Lemma 2.15).
Hence Eq.(5.3) means that [X1] · [X2] = [X1 ×X2] for all X1, X2 ∈ G-set.

Definition 5.11 We define a ring homomorphism α : Ω(G,A) → Ω(G) by

[(G/U)τ ] 7→ [G/U ]

for all (U, τ) ∈ R(G,A) and define a ring homomorphism ι : Ω(G) → Ω(G,A) by

[G/U ] 7→ [(G/U)1U ]

for all U ∈ C(G).

Since α ◦ ι = idΩ(G), the Burnside ring Ω(G) is identified with Imι. We define

℧(G) :=
∏

H∈C(G)

Z.

There exists a ring monomorphism ϕ : Ω(G) → ℧(G) given by

[G/U ] 7→ (|invH(G/U)|)H∈C(G)

for all U ∈ C(G) (cf. [8, (80.12) Proposition]), where invH(G/U) is given by Eq.(4.1).
The ring homomorphism ε : ZH1(H,A) → Z with H ≤ G given by∑

σ∈H1(H,A)

ℓσσ 7→
∑

σ∈H1(H,A)

ℓσ

for all ℓσ ∈ Z with σ ∈ Z1(H,A) is called the augmentation map of ZH1(H,A) (cf.
[21, Definition 3.2.9]).



Multiplicative induction and units/ Yugen Takegahara 35

Definition 5.12 We define a ring homomorphism α̃ : ℧(G,A) → ℧(G) by

(xH)H≤G 7→ (ε(xH))H∈C(G)

for all (xH)H≤G ∈ ℧(G,A) and define a ring homomorphism ι̃ : ℧(G) → ℧(G,A) by

(yH)H∈C(G) 7→ (ỹH)H≤G,

where ỹH = yK for a conjugate K ∈ C(G) of H in G, for all (yH)H∈C(G) ∈ ℧(G).

Obviously, α̃ ◦ ι̃ = id℧(G). We provide the following two lemmas.

Lemma 5.13 (a) The diagrams

Ω(G,A)
ρ−−−−→ ℧(G,A)

α

y yα̃
Ω(G) −−−−→

ϕ
℧(G)

and

Ω(G,A)
ρ−−−−→ ℧(G,A)

ι

x xι̃
Ω(G) −−−−→

ϕ
℧(G)

are commutative.

(b) Let x ∈ Ω(G,A). If ρ(x) = ι̃(y) for some y ∈ ℧(G), then ι ◦ α(x) = x.

Proof. The statement (a) is clear. We prove the statement (b). Since α̃ ◦ ι̃ = id℧(G),
it follows from the statement (a) that

ρ ◦ ι ◦ α(x) = ι̃ ◦ ϕ ◦ α(x) = ι̃ ◦ α̃ ◦ ρ(x) = ι̃ ◦ α̃ ◦ ι̃(y) = ι̃(y) = ρ(x).

This, combined with Corollary 4.10, shows that ι ◦ α(x) = x, completing the proof.
2

Lemma 5.14 (a) α ◦ η ◦ ι̃ ◦ ϕ = |G|idΩ(G). (b) ϕ ◦ α ◦ η ◦ ι̃ = |G|id℧(G).

Proof. The lemma follows from Proposition 4.9 and Lemma 5.13(a). 2

The rest of this section is devoted to the idempotents of Q⊗Z Ω(G).

Definition 5.15 Given U ≤ G, we define WG(U) to be the factor group NG(U)/U .

Let p be a prime or the symbol ∞. For each U ≤ G, we denote by WG(U)p a
Sylow p-subgroup of WG(U) provided p is a prime, and set WG(U)∞ =WG(U).

The elements [G/H] for H ∈ C(G) form a free Z(p)-basis of the Z(p)-lattice

Ω(G)(p). We identify ℧(G)(p) with
⨿
H∈C(G) Z(p). Let ϕ

(p) denote the ring monomor-
phism from Ω(G)(p) to ℧(G)(p) determined by ϕ.

We quote [9, Proposition 1.3.5] (see also [32, Lemma 2.1]).
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Proposition 5.16 Let x̃ = (xH)H∈C(G) ∈ ℧(G)(p). Then x̃ ∈ Imϕ(p) if and only if∑
gU∈WG(U)p

x⟨g⟩U ≡ 0 (mod |WG(U)p|),

where x⟨g⟩U = xK for a conjugate K ∈ C(G) of ⟨g⟩U in G, for all U ∈ C(G).

Proof. The assertion follows from Theorem 5.9 and Lemma 5.13(a). 2

By Lemma 5.14, the primitive idempotents of Q⊗Z Ω(G) are the elements

eH :=
1

|G|
α ◦ η ◦ ι̃((δHK)K∈C(G)) =

1

|NG(H)|
∑
U≤H

|U |µ(U,H)[G/U ] (5.4)

for H ∈ C(G). This fact was shown by Gluck [14] and independently by Yoshida
[31]. Obviously, eHeK = δHKeH for all H, K ∈ C(G), and [G/G] =

∑
H∈C(G) eH .

Following [33], we present the primitive idempotents of Ω(G). Let ∼p be the
equivalence relation on the set {(H) | H ≤ G}, where (H) is the set of conjugates
of H in G, generated by

(⟨g⟩U) ∼p (U)

for U ≤ G and gU ∈ WG(U)p with g ∈ NG(U). We define an equivalence relation
∼p on the set S(G) of subgroups of G by

H ∼p K : ⇐⇒ (H) ∼p (K).

Let H ≤ G. When p is a prime, we denote by Op(H) the smallest normal subgroup
of H such that H/Op(H) is a p-group (cf. [31]). Suppose that

H = H(0) ≥ H(1) ≥ H(2) ≥ · · · ≥ H(i) ≥ · · ·

is the derived series of H (cf. [26, Chapter 2, Definition 3.11]). Then we define
O∞(H) := ∩∞

i=0H
(i) . The following lemma is well-known (cf. [33, p. 535]).

Lemma 5.17 Let H, U ≤ G. Then H ∼p U if and only if (Op(H)) = (Op(U)).

Proof. The ‘if’ part follows from [26, Chapter 2, Theorem 1.6]. To prove the ‘only
if’ part, we may assume that H = ⟨g⟩U for some gU ∈WG(U)p with g ∈ NG(U). If
p is a prime, then U ≥ Op(U) ≥ Op(H), and hence Op(U) = Op(H). Suppose that
p = ∞. We have U (i−1) ≥ H(i) ≥ U (i) for any i ≥ 1. If U (i−1) = U (i) for some i,
then U (i−1) = H(i) = U (i). Thus we have O∞(H) = O∞(U), completing the proof.
2

A subgroup H of G is said to be p-perfect if H = Op(H). For each K ≤ G,
K ∼p O

p(K) by Lemma 5.17, and Op(K) is p-perfect. Let C(p)(G) be a full set of
non-conjugate p-perfect subgroups of G. For each H ∈ C(p)(G), we define

e
(p)
H :=

∑
H∼pK∈C(G)

eK ,
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where the sum is taken over all K ∈ C(G) such that H ∼p K.
The following theorem concerns [2, Theorem 7.3] and [33, 4.12 Theorem] (see

also [14, Lemma 2] and [31, Theorem 3.1]).

Theorem 5.18 The elements e
(p)
H for H ∈ C(p)(G) are the primitive idempotents

of Ω(G)(p), and the elements e
(∞)
H for H ∈ C(∞)(G) are also those of Ω(G,A).

Proof. For any idempotent (xH)H∈C(G) of ℧(G)(p), it follows from Proposition 5.16

that (xH)H∈C(G) ∈ Imϕ(p) if and only if xK = xU ∈ {0, 1} for all pairs (K,U)

of K, U ∈ C(G) with K ∼p U . Hence the elements e
(p)
H for H ∈ C(p)(G) are the

primitive idempotents of Ω(G)(p). Let x be an idempotent of Ω(G,A). According
to [21, Corollary 7.2.4], ZH1(H,A) with H ≤ G contains only trivial idempotents,
whence ρ(x) = ι̃(y) for some y ∈ ℧(G). This, combined with Lemma 5.13(b),
shows that ι ◦ α(x) = x. By this fact, we may identify x with α(x) ∈ Ω(G). Since
the map α : Ω(G,A) → Ω(G) is a ring homomorphism, it follows that α(x) is an
idempotent of Ω(G). Consequently, the idempotents of Ω(G,A) are those of Ω(G).
This completes the proof. 2

There is an immediate consequence of Theorem 4.18 (see [4, 1.5. Proposition]).

Proposition 5.19 The Z-module Ω(G,A)× has a structure of an Ω(G)-module,
namely,

Ω(G)⊗Z Ω(G,A)× → Ω(G,A)×, [G/H]⊗Z x 7→ MapH(G, res
G
H(x)).

Moreover,

Ω(G,A)× =
∏

H∈C(∞)(G)

{e(∞)
H x | x ∈ Ω(G,A)×},

where e
(∞)
H x denotes the effect of e

(∞)
H on x.

6 Units of Burnside rings

6A The Yoshida criterion for the units of Burnside rings

We turn to the unit group Ω(G)× of Ω(G). Let ℧(G)× be the unit group of
℧(G), and let ϕ× : Ω(G)× → ℧(G)× be the map obtained by restriction of ϕ :
Ω(G) → ℧(G) from Ω(G) to Ω(G)×. Obviously, ℧(G)× =

∏
H∈C(G)⟨−1⟩, where

⟨−1⟩ = {±1}, and hence Ω(G)× is embedded in
∏
H∈C(G)⟨−1⟩. In particular, Ω(G)×

is an elementary abelian 2-group with identity [G/G] (cf. [11, Proposition 3.1]).
Thus Ω(G)× consists of all x ∈ Ω(G) such that ([G/G] ± x)/2 are idempotents of
Q⊗Z Ω(G).



Multiplicative induction and units/ Yugen Takegahara 38

Example 6.1 Suppose that K ≤ G and |G : K| = 2. Then [G/K] · [G/K] =
2[G/K], and hence [G/G] − [G/K] ∈ Ω(G)×. We have ϕ×([G/G] − [G/K]) =
((−1)ζ(H,K))H∈C(G), where ζ(H,K) = 1 if H ≤ K, and ζ(H,K) = 0 otherwise.

Remark 6.2 According to Dress [10], G is solvable if and only if 0 and [G/G] are
the only idempotents of Ω(G) (see also Lemma 5.17 and Theorem 5.18). Suppose
that G is of odd order. Then by Eq.(5.4), Ω(G)× consists of all x ∈ Ω(G) such
that ([G/G] ± x)/2 are idempotents of Ω(G), whence |Ω(G)×| is the number of
idempotents of Ω(G). Consequently, we have Ω(G)× = ⟨−[G/G]⟩ because, by Feit-
Thompson’s theorem, G is solvable (cf. [9, Proposition 1.5.1]).

Definition 6.3 Given x̃ = (xH)H∈C(G) ∈ ℧(G)× and U ≤ G, we define a class

function γx̃U :WG(U) → ⟨−1⟩ by

gU 7→ xUx⟨g⟩U

for all g ∈ NG(U), where x⟨g⟩U = xK for a conjugate K ∈ C(G) of ⟨g⟩U in G.

We quote [32, Proposition 6.5] which is due to Yoshida.

Theorem 6.4 (The Yoshida criterion) The subgroup Imϕ× of ℧(G)× consists
of all x̃ = (xH)H∈C(G) ∈ ℧(G)× such that γx̃U ∈ Hom(WG(U), ⟨−1⟩) for each U ≤ G.

Example 6.5 Let p be an odd prime, and suppose that G is a finite p-group. Let
x̃ = (xH)H∈C(G) ∈ Imϕ×. If Gr < · · · < G1 < G0 = G is a sequence of subgroups of
G with |Gi−1 : Gi| = p for all i ∈ [r], then by Theorem 6.4, xG0 = xG1 = · · · = xGr .
Thus it follows from [26, Chapter 2, Theorem 1.9] that x̃ is determined by xG, and
hence x̃ ∈ ⟨(−1, −1, . . . , −1)⟩. Consequently, Ω(G)× = ⟨−[G/G]⟩ (see Remark 6.2).

Definition 6.6 For each x̃ ∈ Imϕ, ϕ−1(x̃) denotes the unique element x of Ω(G)
such that x̃ = ϕ(x). We define a subgroup Ω(G)×0 of Ω(G)× to be the product
of the subgroups ⟨[G/K] − [G/G]⟩ for K ≤ G with |G : K| = 2, and define a
subgroup Ω(G)×1 of Ω(G)× to be the group consisting of all x = ϕ−1((xH)H∈C(G))
with (xH)H∈C(G) ∈ Imϕ× such that xH = 1 whenever H is cyclic.

The group Hom(G, ⟨−1⟩) with pointwise product is isomorphic to the factor
group G/G2 where G2 is the intersection of all subgroups of index 2 in G

Proposition 6.7 (a) |⟨−[G/G]⟩ × Ω(G)×0 | = 2|Hom(G,⟨−1⟩)|.

(b) Ω(G)× = ⟨−[G/G]⟩ × Ω(G)×0 Ω(G)
×
1 ≃ ⟨−[G/G]⟩ ×Hom(G, ⟨−1⟩)× Ω(G)×1 .

Proof. Obviously, Ω(G)×0 is the direct product of the subgroups ⟨[G/K]− [G/G]⟩ for
K ≤ G with |G : K| = 2. Thus the assertion (a) holds. We prove the assertion (b).
For each K ≤ G with |G : K| = 2, if ϕ([G/K] − [G/G]) = x̃ = (xH)H∈C(G), then
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by Example 6.1 and Theorem 6.4, γ(K) := γx̃{ϵ} ∈ Hom(G, ⟨−1⟩), Kerγ(K) = K, and

γ(K)(g) = x⟨g⟩ for all g ∈ G. Let y ∈ Ω(G)×, and suppose that the {ϵ}-component

of ϕ(y) is 1. If ϕ×(y) = ỹ = (yH)H∈C(G) with y{ϵ} = 1, then γỹ{ϵ} ∈ Hom(G, ⟨−1⟩) by
Theorem 6.4, and γỹ{ϵ}(g) = y⟨g⟩ for all g ∈ G. This, combined with the preceding

argument, shows that ([G/K]− [G/G]) · y ∈ Ω(G)×1 with K = Kerγỹ{ϵ}, which yields

y ∈ Ω(G)×0 Ω(G)
×
1 . Hence Ω(G)×0 Ω(G)

×
1 consists of all x ∈ Ω(G)× such that the

{ϵ}-component of ϕ(x) is 1. We now obtain

Ω(G)× = ⟨−[G/G]⟩ × Ω(G)×0 Ω(G)
×
1 .

Let K1, K2, . . . , Kn be the subgroups of index 2 in G. Then Ω(G)×0 is the direct
product of the subgroups ⟨[G/Ki] − [G/G]⟩ for i ∈ [n] and Hom(G, ⟨−1⟩) is the
group consisting of 1G and the linear C-characters γ(Ki) for i ∈ [n]. Define a group

epimorphism γ : Ω(G)×0 → Hom(G, ⟨−1⟩) by

m∏
j=1

([G/Kij ]− [G/G]) 7→
m∏
j=1

γ(Kij
)

for all sequences (i1, i2, . . . , im) with 1 ≤ i1 < i2 < · · · < im ≤ n of natural numbers.
Then it is obvious that Kerγ = Ω(G)×0 ∩ Ω(G)×1 . Consequently, we have

Ω(G)×0 Ω(G)
×
1 ≃ Hom(G, ⟨−1⟩)× Ω(G)×1 ,

completing the proof. 2

Proposition 6.8 Let Ĉ(G) be the set of all U ∈ C(G) such that |NG(U) : U | ≤ 2.
For any x̃ = (xH)H∈C(G) ∈ Imϕ×, the values xH for H ∈ C(G) are determined by

the values xU for U ∈ Ĉ(G). In particular, |Ω(G)×| ≤ 2|Ĉ(G)|.

Proof. Let x̃ = (xH)H∈C(G) ∈ Imϕ×, and let H ≤ G. By Theorem 6.4, we have

x⟨g1⟩Hx⟨g2⟩HxH = x⟨g1g2⟩H

for all g1, g2 ∈ NG(H). Hence, if |NG(H) : H| > 2, then the value xH is determined
by the values xK with H < K ≤ NG(H) (cf. [7, p. 904]). This completes the proof.
2

Example 6.9 Assume that G is abelian. Then by Propositions 6.7 and 6.8, we have
|Ω(G)×| = 2|Hom(G,⟨−1⟩)|, because Ĉ(G) is the set of all K ≤ G such that |G : K| ≤ 2
(cf. [32, Lemma 7.1]). This fact is due to Matsuda (cf. [18, Example 4.5]).
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6B Structure of the unit groups of Burnside rings

We continue to discuss the structure of Ω(G)×.

Definition 6.10 We define a subset C(G) of C(G) to be the set consisting of all
subgroups U which satisfy the following conditions.

(i) |NG(U) : U | ≤ 2.

(ii) If L is a normal subgroup of U and if U/L is a non-trivial cyclic group, then
U/L is a cyclic 2-group and there exists a subgroup K of index 2 in NG(L)
containing L such that

{⟨g⟩L | g ∈ NG(L)−K} = {⟨g⟩L | g ∈ NG(L) and (⟨g⟩L) = (U)}.

Proposition 6.11 Let U ∈ C(G), and set x̃ = ((−1)δU H )H∈C(G) ∈ ℧(G)×. Then

x̃ ∈ Imϕ× if and only if U ∈ C(G). In particular, if U ∈ C(G), then 2eU ∈ Ω(G),
or equivalently, [G/G]− 2eU = ϕ−1(x̃) ∈ Ω(G)×.

Proof. Assume that x̃ ∈ Imϕ×. For any L ≤ G, it follows from Theorem 6.4
that the map γx̃L : WG(L) → ⟨−1⟩ is a linear C-character of WG(L). Moreover, by
assumption, γx̃U (gU) = −1 for any g ∈ NG(U)−U . This means that Kerγx̃U = U/U .
Consequently, |NG(U) : U | ≤ 2. Let L be a normal subgroup of U , and suppose
that U/L is non-trivial cyclic. Set U = ⟨r⟩L with r ∈ NG(L) − L. Then for any
g ∈ NG(L), γ

x̃
L(gL) = −1 if and only if ⟨g⟩L is a conjugate of ⟨r⟩L inG. In particular,

rL must be a 2-element of WG(L), whence U/L is a cyclic 2-group. Moreover, there
exists a subgroup K of index 2 in NG(L) containing L such that K/L = Kerγx̃L and

{⟨g⟩L | g ∈ NG(L)−K} = {⟨g⟩L | g ∈ NG(L) and (⟨g⟩L) = (U)}.

Thus U ∈ C(G), as required. Conversely, if U ∈ C(G), then by Theorem 6.4, we
have x̃ ∈ Imϕ×, completing the proof. 2

Remark 6.12 Under the hypotheses of Proposition 6.11, it follows from Eq.(5.4) that
x̃ ∈ Imϕ× if and only if [G/G]− 2eU ∈ Ω(G)×.

Corollary 6.13 Let U ∈ C(G), and suppose that U is non-trivial cyclic. Then U
is a Sylow 2-subgroup of G, and NG(U) = U .

Proof. Set x̃ = ((−1)δU H )H∈C(G) ∈ ℧(G)×. By Theorem 6.4 and Proposition 6.11,

the map γx̃{ϵ} : G→ ⟨−1⟩ is a linear C-character of G. Since U is non-trivial cyclic,

it follows that γx̃{ϵ} is not the trivial character of G. If K = Kerγx̃{ϵ}, then any cyclic

subgroup ⟨g⟩ with g ∈ G−K is a conjugate of U in G and

|G|
2

= |K| = |G−K| = |G : NG(U)| · |U |
2

=
|G|

2|NG(U) : U |
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because U is a 2-group. Thus we have |NG(U) : U | = 1. The corollary is now a
consequence of [26, Chapter 2, Theorem 1.6]. This completes the proof. 2

Let λ = (λ1, . . . , λj , . . . , λm, λm+1, . . . ), where λ1 > · · · > λj > · · · > λm > 0
and λℓ = 0 for ℓ = m + 1, m + 2, · · · , be a partition of n ∈ N. Such a partition is
said to be strict. We set Sλ = S(λ1)×· · ·×S(λj)×· · ·×S(λm), where each S(λj) is the
symmetric group on {

∑
i≥j+1 λi + 1, . . . ,

∑
i≥j λi}. Let Sn be the symmetric group

on [n]. Then Sλ is a Young subgroup of Sn associated with the strict partition λ.

Proposition 6.14 For any strict partition λ of n, the set C(Sn) contains a conju-
gate of the Young subgroup Sλ of Sn associated with λ.

Proof. We may assume that Sλ ∈ C(Sn). Obviously, NSn(Sλ) = Sλ. We show that
Sλ ∈ C(Sn). Under the preceding notation, let A(λj) with j ∈ [m] be the subgroup
of S(λj) consisting of all even permutations. Then the commutator subgroup of Sλ
is A(λ1) × · · · × A(λj) × · · · × A(λm). Hence every normal subgroup L of Sλ such
that Sλ/L is non-trivial cyclic is a subgroup of index 2 in Sλ. If NSn(L) = Sλ for
a subgroup L of index 2 in Sλ, then ⟨g⟩L = Sλ for any g ∈ NSn(L) − L. Thus it
suffices to verify that, if NSn(L) ̸= Sλ for a subgroup L of index 2 in Sλ, then

{⟨g⟩L | g ∈ NSn(L)−K} = {⟨g⟩L | g ∈ NSn(L) and (⟨g⟩L) = (Sλ)}

for a subgroup K of index 2 in NSn(L) containing L. Let L ≤ Sλ with |Sλ : L| = 2
and NSn(L) ̸= Sλ. Then λm−1 = 2, λm = 1, and every permutation in L fixes both
2 ∈ [n] and 3 ∈ [n]. (In this case, S(λm−1) is the symmetric group on {2, 3}). Hence
it turns out that L = S(λ1) × · · · × S(λj) × · · · × S(λm−2), Sλ = L× S(λm−1) × S(λm),
and NSn(L) = L×S3. Consequently, L ≤ L×A3 ≤ NSn(L), |NSn(L) : L×A3| = 2,
(⟨g⟩L) ̸= (Sλ) for any g ∈ L×A3, where A3 is the alternating group on [3], and the
set of conjugates of Sλ in Sn includes the set {⟨g⟩L | g ∈ NSn(L) − (L × A3)}, as
required. We now conclude that Sλ ∈ C(Sn), completing the proof. 2

Definition 6.15 For each L ≤ G, we define a subset S(G;L) of S(G) to be the set
consisting of all subgroups U of NG(L) which satisfy the following conditions.

(i) U/L is a non-trivial cyclic 2-group.

(ii) There exists a subgroup K of index 2 in NG(L) containing L such that

{⟨g⟩L | g ∈ NG(L)−K} = {⟨g⟩L | g ∈ NG(L) and (⟨g⟩L) = (U)}.

Let ≈ be the equivalence relation on the set {(H) | G ≥ H ̸= {ϵ}} generated by

(⟨g⟩L) ≈ (L)

for L ∈ C(G) and g ∈ NG(L) such that ⟨g⟩L ̸∈ S(G;L). We set C(G)◦ = C(G)−{ϵ},
and define an equivalence relation ≈ on C(G)◦ by

H ≈ K : ⇐⇒ (H) ≈ (K).



Multiplicative induction and units/ Yugen Takegahara 42

Proposition 6.16 If |G| > 2, then each U ∈ C(G) forms an equivalence class
consisting of a single element with respect to the equivalence relation ≈ on C(G)◦.

Proof. Suppose that |G| > 2, and let U ∈ C(G). Then U ̸= {ϵ} and |NG(U) : U | ≤ 2.
If NG(U) ̸= U , then |NG(U) : U | = 2 and NG(U) ∈ S(G;U). Moreover, if L is a
normal subgroup of U and if U/L is a non-trivial cyclic group, then U ∈ S(G;L).
Thus (U) is isolated with respect to ≈. This completes the proof. 2

Proposition 6.17 Suppose that ỹ = (yH)H∈C(G) ∈ Imϕ× and ϕ−1(ỹ) ∈ Ω(G)×1 .
Let U ∈ C(G)◦, and define x̃ = (xH)H∈C(G) ∈ ℧(G)× by

xH =

{
yH if H ≈ U,
1 if H ̸≈ U or H = {ϵ}.

Then x̃ ∈ Imϕ× and ϕ−1(x̃) ∈ Ω(G)×1 .

Proof. By the definition of x̃, the map γx̃{ϵ} : G → ⟨−1⟩ is the trivial character

of G. Hence it suffices to verify that x̃ ∈ Imϕ×. Let L ∈ C(G)◦. We show that
the map γx̃L : WG(L) → ⟨−1⟩ is a linear C-character of WG(L). By Theorem 6.4,

the map γỹL : WG(L) → ⟨−1⟩ is a linear C-character of WG(L). We may assume

that γx̃L ̸∈ {γỹL, 1WG(L)}. (If ⟨g⟩L ̸∈ S(G;L) for all g ∈ NG(L) − L, then either

γx̃L = γỹL or γx̃L = 1WG(L).) Obviously, γx̃L(L) = 1. We analysis the values γx̃L(⟨g⟩L)
for g ∈ NG(L) − L in each of the cases where L ≈ U and L ̸≈ U . Let r be any
element of NG(L)− L such that ⟨r⟩L ∈ S(G;L). Then there exist a subgroup K of
index 2 in NG(L) containing L such that for each g ∈ NG(L), g ∈ NG(L)−K if and
only if ⟨g⟩L is a conjugate of ⟨r⟩L in G. We define a map βr :WG(L) → ⟨−1⟩ to be
the linear C-character of WG(L) whose kernel is K/L.

Case 1. Assume that L ≈ U . Let X = {⟨ri⟩L | i ∈ [ℓ]} be a full set of non-
conjugate subgroups of G chosen from among the subgroups ⟨g⟩L for g ∈ NG(L)−L
with γx̃L(gL) ̸= γỹL(gL). Then we have (⟨ri⟩L) ̸≈ (L) and ⟨ri⟩L ∈ S(G;L) for all
i ∈ [ℓ]. For any g ∈ NG(L)− L,

γx̃L(gL) = −γỹL(gL) = γỹL(gL)

ℓ∏
i=1

βri(gL)

if ⟨g⟩L is a conjugate of some ⟨rj⟩L with j ∈ [ℓ] in G, and

γx̃L(gL) = γỹL(gL) = γỹL(gL)

ℓ∏
i=1

βri(gL)

otherwise. Thus we have

γx̃L = γỹL

ℓ∏
i=1

βri .
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Case 2. Assume that L ̸≈ U . Then xL = 1. Let Y = {⟨ri⟩L | i ∈ [ℓ]} be a
full set of non-conjugate subgroups of G chosen from among the subgroups ⟨g⟩L for
g ∈ NG(L) − L with γx̃L(gL) ̸= 1. Then (⟨ri⟩L) ≈ (U), whence (⟨ri⟩L) ̸≈ (L) and
⟨ri⟩L ∈ S(G;L) for all i ∈ [ℓ]. By an argument analogous to that in Case 1, we have

γx̃L =
ℓ∏
i=1

βri .

We now conclude that the map γx̃L : WG(L) → ⟨−1⟩ is a linear C-character of
WG(L) in either case. Consequently, γx̃L ∈ Hom(WG(L), ⟨−1⟩) for any L ≤ G. This,
combined with Theorem 6.4, shows that x̃ ∈ Imϕ×, completing the proof. 2

Corollary 6.18 Let C(G)◦/ ≈ be a complete set of representatives of equivalence
classes with respect to the equivalence relation ≈ on C(G)◦. Set

Ω(G)×U = {ϕ−1(x̃) | x̃ = (xH)H∈C(G) ∈ Imϕ× and xH = 1 if H ̸≈ U or H = {ϵ}}

for each U ∈ C(G)◦/ ≈. Then

Ω(G)×1 =
∏

U∈C(G)◦/≈

(Ω(G)×U ∩ Ω(G)×1 ).

Moreover, if U ∈ C(G) ∩ C(G)◦, then U ∈ C(G)◦/ ≈ and Ω(G)×U = ⟨[G/G]− 2eU ⟩.

Proof. The assertion follows from Propositions 6.11, 6.16, and 6.17. 2

7 Units of monomial Burnside rings

7A The unit groups of monomial Burnside rings

We continue assuming that A is abelian. Given a commutative unital ring R,
we denote by R× the unit group of R, and denote by Rω the group of torsion units
of R. For each H ≤ G, since H1(H,A) is a finite abelian group, it follows from [21,
Theorem 8.3.1] that (ZH1(H,A))× is a finitely generated abelian group.

Lemma 7.1 The group ℧(G,A)× is a finitely generated abelian group.

Proof. Observe that ℧(G,A) ≃
∏
H∈C(G)(ZH1(H,A))NG(H), where

(ZH1(H,A))NG(H) = {xH ∈ ZH1(H,A) | congH(xH) = xH for all g ∈ NG(H)}.

Then we have ℧(G,A)× ≃
∏
H∈C(G) JH , where

JH = (ZH1(H,A))× ∩ (ZH1(H,A))NG(H).
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Hence it suffices to verify that the groups JH for H ≤ G are finitely generated.
Let H ≤ G, and assume that (ZH1(H,A))× is generated by x1, . . . , xk. We set
yi =

∏
g∈NG(H) con

g
H(xi) for all i, and set ĴH = ⟨y1, . . . , yk⟩. Obviously, ĴH is a

subgroup of JH . We have

x|NG(H)| =
∏

g∈NG(H)

congH(x) ∈ ĴH

for any x ∈ JH , so that JH/ĴH is a torsion subgroup of (ZH1(H,A))×/ĴH . Since
(ZH1(H,A))×/ĴH is finitely generated, it follows from the fundamental theorem of
abelian groups (see, e.g., [16, I, §10, Theorem 8]) that JH/ĴH is a finite group. Thus
JH is finitely generated, as desired. This completes the proof. 2

Proposition 7.2 The group Ω(G,A)× is a finitely generated abelian group. In
particular, Ω(G,A)× is the direct product of Ω(G,A)ω and a free abelian group of
finite rank, and Ω(G,A)ω is a finite abelian group.

Proof. By the fundamental theorem of abelian groups, it suffices to prove the first
statement. Using Proposition 5.2 and Corollary 5.5, we have

Q⊗Z Imρ = Q⊗Z ℧(G,A).

This, combined with [21, Lemma 2.9.5], shows that |℧(G,A)× : (Imρ)×| is finite.
Moreover, by Lemma 7.1, ℧(G,A)× is finitely generated. Hence it follows from
[17, Corollary 2.7.1] that (Imρ)× is finitely generated. By Corollary 4.10, we have
Ω(G,A)× ≃ (Imρ)×, completing the proof. 2

7B Torsion units of monomial Burnside rings

From Higman’s theorem (cf. [21, Theorem 7.1.4]), we know that for any H ≤ G,

(ZH1(H,A))ω = ⟨−1⟩ ×H1(H,A) = {±σ | σ ∈ Z1(H,A)}. (7.1)

Theorem 7.3 The necessary and sufficient condition for an element x̃ = (xH)H≤G

of ℧(G,A)ω to be contained in Imρ is that γ
α̃(x̃)
U ∈ Hom(WG(U), ⟨−1⟩) for all U ≤ G

and (ε(xH)xH)H≤G ∈ Υ(G,A) (see Definitions 5.12 and 6.3), where

Υ(G,A) =

{
(σH)H≤G ∈ ℧(G,A)ω

∣∣∣∣∣ σU ∈ Z1(U,A) and σU = res
⟨g⟩U
U (σ⟨g⟩U )

for all U ≤ G and g ∈ NG(U)

}
.

Proof. Let x̃ = (xH)H≤G ∈ ℧(G,A)ω. Suppose that for each H ≤ G, σH = ε(xH)xH
with σH ∈ Z1(H,A) (see Eq.(7.1)). We first prove ‘sufficient’ part. By assumption,

congU (σU ) = σU and σU = res
⟨g⟩U
U (σ⟨g⟩U ) for all U ≤ G and g ∈ NG(U), so that

ψ ◦ κ−1(x̃) = (z(U,τ) mod |WG(U, τ)|)(U,τ)∈R(G,A),
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where

z(U,τ) =


∑

gU∈WG(U)

ε(x⟨g⟩U ) if τ = σU ,

0 otherwise.

For any U ≤ G, since γ
α̃(x̃)
U ∈ Hom(WG(U), ⟨−1⟩), we have

1

|WG(U)|
∑

gU∈WG(U)

ε(xU )ε(x⟨g⟩U ) ∈ {0, 1}

by [8, (9.21) Proposition]. Hence either z(U,τ) = ε(xU )|WG(U)| or z(U,τ) = 0 for all
(U, τ) ∈ R(G,A), which yields ψ ◦ κ−1(x̃) = 0 ∈ Obs (G,A). This, combined with
Proposition 5.2 and Theorem 5.9, shows that x̃ ∈ Imρ, as desired. We next prove
‘necessary’ part. Assume that ρ(x) = x̃ with x ∈ Ω(G,A)ω. Then α(x) ∈ Ω(G)×,
because the map α : Ω(G,A) → Ω(G) is a ring homomorphism. By Lemma 5.13(a)

and Theorem 6.4, γ
α̃(x̃)
U ∈ Hom(WG(U), ⟨−1⟩) for all U ≤ G, and

ρ(ι ◦ α(x) · x) = (σH)H≤G ∈ ℧(G,A)ω.

In particular, we have congU (σU ) = σU for all U ≤ G and g ∈ NG(U). For each
(U, τ) ∈ R(G,A) with τ = σU , the (U, τ)-component of ψ ◦ κ−1((σH)H≤G) is∑

gU∈WG(U), σU=res
⟨g⟩U
U (σ⟨g⟩U )

1 mod |WG(U)|,

where the sum is taken over all left cosets gU , g ∈ NG(U), of U in NG(U) such that

σU = res
⟨g⟩U
U (σ⟨g⟩U ). Since (σH)H≤G ∈ Imρ, it follows from Proposition 5.2 and

Theorem 5.9 that σU = res
⟨g⟩U
U (σ⟨g⟩U ) for all U ≤ G and g ∈ NG(U), as desired.

This completes the proof. 2

In §4A, the ring epimorphism ρGG : Ω(G,A) → ZH1(G,A) is given by

[(G/U)τ ] 7→

{
τ if G = U,

0 otherwise

for all (U, τ) ∈ R(G,A) (see Lemma 4.6(a)). Following [2, §7], we define a ring
monomorphism υ : ZH1(G,A) → Ω(G,A) by

χ 7→ [(G/G)χ]

for all χ ∈ Z1(G,A) (see Lemmas 2.6 and 2.15). There are group homomorphisms

υω : (ZH1(G,A))ω → Ω(G,A)ω and θω : Ω(G,A)ω → (ZH1(G,A))ω

inherited from υ and ρGG, respectively (see Eq.(7.1)). Hence it turns out that

Ω(G,A)ω = Imυω ×Kerθω ≃ ⟨−1⟩ ×H1(G,A)×Kerθω

(cf. [2, §8]), because θω ◦ υω = id(ZH1(G,A))ω . We continue to describe Ω(G,A)ω.
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Corollary 7.4 Identify the finite groups Ω(G)× and H1(G,A) with the subgroups
{ι(u) | u ∈ Ω(G)×} and {[(G/G)χ] | χ ∈ Z1(G,A)} of Ω(G,A)ω, respectively. Set

∇(G,A) =

 1

|G|
∑
H≤G

∑
U≤H

|U |µ(U,H)[(G/U)σH |U ]

∣∣∣∣∣∣ (σH)H≤G ∈ Υ(G,A)

with σG = 1G

 .

Then
Ω(G,A)ω = Ω(G)× ×H1(G,A)×∇(G,A).

Proof. Let x ∈ Ω(G,A)ω, and suppose that ρ(x) = (xH)H≤G. By Theorem 7.3,
ρ(ι ◦ α(x) · x) = (ε(xH)xH)H≤G ∈ Υ(G,A). Since the map α : Ω(G,A) → Ω(G) is a
ring epimorphism, it follows from Proposition 4.9 and Theorem 7.3 that

Ω(G,A)ω = Ω(G)× ×
{

1

|G|
η((σH)H≤G)

∣∣∣∣ (σH)H≤G ∈ Υ(G,A)

}
.

Moreover, ρ([(G/G)χ]) = (resGH(χ))H≤G ∈ Υ(G,A) for all χ ∈ Z1(G,A), and hence

Υ(G,A) = {ρ([(G/G)χ]) | χ ∈ Z1(G,A)} × {(σH)H≤G ∈ Υ(G,A) | σG = 1G}.

The assertion now follows from Proposition 4.9. This completes the proof. 2

Remark 7.5 Suppose that G is of odd order and that G acts trivially on A. Then
by Remark 6.2 and Corollary 7.4, we have

Ω(G,A)ω = ⟨−[(G/G)1G ]⟩ × Ω(G,A)odd,

where Ω(G,A)odd is the Hall 2′-subgroup of Ω(G,A)ω (cf. [2, Proposition 8.2]).

Example 7.6 Suppose that G is nilpotent. Then by [26, Chapter 4, Theorem 2.9],
∇(G,A) = ⟨[(G/G)1G ]⟩ in Corollary 7.4, and hence

Ω(G,A)ω ≃ Ω(G)× ×H1(G,A).
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