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Abstract

The structure and magnetic properties of Tmi_,Y,Mn;_,Co,03 with 0 < 2 < 0.5 and 0 <
y < 0.3 were investigated by X-ray diffraction, specific heat and magnetization measurements.
Thulium manganite TmMnOQOs3 prepared by solid-state synthesis at ambient pressure is hexagonal
and antiferromagnetic with a Neel temperature Ty of 86 K. The substitution of Y for Tm in
TmMnOg3 does not greatly affect the fundamental hexagonal structure. The magnetization and
specific heat measurement results for Tm;_,Y,MnO3 can be qualitatively explained in terms of the
dilution effect of Tm by Y. On the other hand, the structure of TmMn;_,Co,O3 changes gradually
from hexagonal to orthorhombic with the substitution of Co for Mn; hexagonal and orthorhombic
phases coexist in samples for x < 0.3 whereas TmMng gCog 4O3 is almost a single orthorhombic
phase. The magnetization of TmMnggCoy 403 in a field of 250 Oe increases rapidly at about
60 K with decreasing temperature. The difference between zero-field-cooled (ZFC) and field-cooled
(FC) magnetizations increases remarkably at about 60 K. Moreover, the temperature dependences
of the ZFC and the FC magnetizations exhibit peaks at about 40 and 30K, respectively. Thus,

TmMn;_,Co,0O3 exhibits complex magnetic properties.
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I. INTRODUCTION

Manganese oxides RMnOj and cobalt oxides RCoO3 (R = rare earth) have been ex-
tensively investigated because of their diverse physical properties and their potential appli-
cations. TmMnOj3 synthesized at ambient pressure is a hexagonal multiferroic compound
[1, 2]. Orthorhombic TmMnOj has been prepared under high pressures [3]. Ferroelectricity
in this material has been reported to be induced by collinear magnetic order [4]. Synthesis
of orthorhombic TmCoO3 under high pressures has been reported, and a structural study by
using high-resolution neutron diffractometry has been performed at room temperature [5],
but its physical properties have not been characterized. In the present study, we investigate

the structures and the magnetic properties of Tm;_,Y,Mn;_,Co,O3 for various x and y.

II. EXPERIMENTS AND DISCUSSION

Polycrystalline samples were prepared from the corresponding powder oxides TmyOs,
Mn,0s3, and Co30,4 in an O, atmosphere by a conventional solid-state reaction. An X-ray
diffraction (XRD) analysis was performed using Cu-Ka radiation and a graphite monochro-
mator at room temperature. The XRD patterns were refined by using RIETAN-2000 [6].
Specific heat and magnetization measurements were, respectively, performed using a physical
property measurement system (PPMS; Quantum Design) and a magnetic property measure-
ment system (MPMS; Quantum Design). We measured the zero-field-cooled (ZFC) and the
field-cooled (FC) magnetizations in a field of 250 Oe for all samples and the isothermal
magnetizations at various temperatures for TmMng Cog 4O3.

Tm;_,Y,Mn;_,Co,03 compounds for y = 0 ~ 0.3 and x = 0 ~ 0.5 were prepared
in the present study. All the XRD patterns of Tm;_,Y,MnO; compounds in which Y is
substituted for Tm correspond to the same hexagonal space group of P63cm as TmMnOs.
The temperature dependences of the ZFC and the FC magnetizations of Tm;_,Y,MnOs
are similar to those of TmMnOj3, which exhibit Curie-Weiss behavior above 100 K, although
the magnetization decreases slightly with increasing y. These results can be qualitatively
explained by the dilution of Tm by Y.

Figure 1 shows XRD patterns of TmMn;_,Co,0O3 for x = 0 ~ 0.5. TmMnO3 is a well-
crystallized polycrystalline sample with a space group of P63cm. When Co is substituted for
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FIG. 1. X-ray diffraction patterns of TmMn;_,Co,Og3 for x = 0 ~ 0.5. The asterisk indicates a

diffraction peak due to residual TmsOs.

Mn, Bragg peaks indexed by an orthorhombic structure with a space group of Pnma are ob-
served in addition to those for a hexagonal structure. TmMng Coy4O3 and TmMng 5Cog 503
seem to exhibit a nearly single orthorhombic phase, except for impurities such as TmsOs.

Figures 2 shows the temperature dependence of the specific heat divided by the temper-
ature, and Fig. 3 shows the temperature dependences of the ZFC and FC magnetizations
for TmMn;_,Co,0O3. The two peaks at 9.3 K and about 80 K for TmMnOj3 in Fig. 2 corre-
spond to the Schottky anomaly of Tm3" and the antiferromagnetic ordering of Mn ions [2],
respectively. The ZFC and FC magnetization curves of TmMnOj in Fig. 3 resemble those
in Ref. [1]; the difference between them AM = Mpc — Mypc increases gradually at temper-
atures below about 90 K with decreasing temperature for the antiferromagnetic ordering of
TmMnOs.

For TmMn;_,Co,0O3, the temperature of the peak of the Schottky anomaly shifts to lower
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FIG. 2: Temperature dependence of C'//T for TmMn;_,Co,O3 with x = 0 ~ 0.5.
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FIG. 3: Temperature dependence of M/H in a field of 250 Oe for TmMn;_,Co,O3 with z = 0 ~ 0.5.



temperature with increasing x. This implies that the energy level splitting of Tm?3* increases
with increasing substitution of Co for Mn. The peak at around 80K in Fig. 2 decreases
with increasing x; it disappears for x = 0.4 and is replaced by a new peak at around 50 K.
On the other hand, the ZFC and the FC magnetizations both increase rapidly at about 60 K
with decreasing temperature and exhibit peaks at about 40 and 30 K, respectively. The
new peak of the specific heat at around 50 K and the rapid increase in the magnetization
at temperatures below about 60 K indicate the appearance of a ferromagnetic order in or-
thorhombic TmMn;_,Co,0O3. AM increases with increasing . AM of TmMnggCog 103
starts at about 170 K, increases rapidly at about 50 K with decreasing temperature and ex-
hibits a peak at around 20 K. A similar behavior can be seen for TmMng 7;Cog 303, in which
hexagonal and orthorhombic phases coexsist. AM of TmMng;Cog 503, which is a nearly
single orthorhombic phase, increases rapidly at about 60 K and exhibits a peak at around
22 K. The temperature at which AM has a maximum shifts slightly to higher temperature
with increasing x. AM indicates the existence of a competition between ferromagnetic and
antiferromagnetic interactions such as in a spin glass. Pena et al. reported the magnetic
properties of orthorhombic ErMe,Mn;_,O3 (Me=Ni, Co) [7] and observed ZFC/FC varia-
tions in ErNig 33Mng 6703 similar to our results in TmMn;_,Co, O3 between x = 0.1 and 0.5.
They explained that this magnetization behavior of ErNij 33Mng ;03 was due to a competi-
tion between the antiferromagnetic inter-plane and the ferromagnetic in-plane interactions.
A similar competing interaction is thought to exist also in the TmMn;_,Co,0Oj3 system, and
the shift in the maximum temperature of AM is thought to be related to a change in the
degree of the competition caused by a change in the composition, z, of Co.

Figure 4 shows the initial isothermal magnetizations of TmMnggCoy4O3 at several
temperatures. The M — H curves at 100 and 200K are linear and paramagnetic.
TmMng Cog 403 is ferromagnetic at 20 and 40 K, but the magnetization is not yet saturated
in a field of 70kOe. The ferromagnetic order is more stable at 20 K because spontaneous
magnetization is observed at this temperature. However, a jump in the magnetization at
10 K is observed at around 10 kOe; the M — H curve at 10 K is metamagnetic-like. These
magnetization behaviors suggest that competing exchange interactions occur in a ”ferromag-
netic” state of TmMn;_,Co,0O3. Further investigations are required to clarify such complex
magnetic behaviors. The interactions among mixed-valence cobalt and manganese ions and

thulium ion that Pena et al. pointed out [7] are thought to be related, although the origin
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FIG. 4: Isothermal magnetization curves of TmMng Cog 403 at several temperatures.

of a metamagnetic-like jump is not clear yet.

III. CONCLUSIONS

Manganese perovskites Tm;_,Y,Mn;_,Co,0O3 were prepared by a conventional solid-
state reaction with TmyOg, MnyO3 and Co3O4. A pure phase of hexagonal Tm;_,Y,MnOg
was obtained for y < 0.3, and a single orthorhombic TmMn;_,Co,O3 was synthesized for
x = 0.4 and 0.5, except for a small amount of TmyO3 impurity. TmMn;_,Co,O3, in which
Co is substituted for Mn, seems to have a ferromagnetic order at around 60 K. Competing

exchange interactions are thought to produce a ”ferromagnetic” state of this material.
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