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Abstract. Rough-set-based interrelationship mining
enables to extract characteristics by comparing the
values of the same object between different attributes.
To apply this interrelationship mining to incomplete
decision tables with null values, in this study, we dis-
cuss the treatment of null values in interrelationships
between attributes. We introduce three types of null
values for interrelated condition attributes and formu-
late a similarity relation by such attributes with these
null values.

Keywords: Interrelationship mining, Incomplete deci-
sion tables, Rough set, Similarity relation

1. Introduction

Rough set theory, originally proposed by Pawlak [12,
13], provides a mathematical basis for logical data anal-
ysis, and attribute reduction and decision rule extraction
are currently useful tools for data mining [14]. Appli-
cation of rough set theory to incomplete decision tables
was first reported by Kryszkiewicz [11], who used null
values to represent a lack of values of objects in some
condition attributes and introduced similarity relations be-
tween objects rather than equivalence relations, i.e., null
values weaken the discernibility of objects by comparing
attribute values.

Rough-set-based interrelationship mining, proposed by
previous studies [3–7, 10], enables to extract character-
istics by interrelationships between attributes. We intro-
duced the concept of interrelationships between attributes
by comparing values of the same object between differ-
ent attributes and formulated indiscernibility between ob-
jects by the interrelationship between attributes as the in-
discernibility based on whether both objects support (or
do not support) the interrelationship. We also introduced
new attributes, called interrelated condition attributes, to
explicitly represent the interrelationship between two con-
dition attributes.

To apply rough-set-based interrelationship mining to

decision tables with null values, i.e., incomplete decision
tables, we need to discuss how to treat null values in in-
terrelationships between attributes. We introduced three
types of null values for interrelated condition attributes
and formulated the similarity relation by such attributes
with these null values.

The reminder of this paper is organized as follows. Sec-
tion 2 reviews rough set theory applied to incomplete de-
cision tables, and Section 3 reviews rough-set-based inter-
relationship mining for complete decision tables. In Sec-
tion 4, we introduce similarity relations by interrelation-
ship between attributes in incomplete decision tables, and
in Section 5, we describe interrelated condition attributes
in such tables. Section 6 presents the conclusions of this
study. Note that this paper is a revised and extended ver-
sion of a previous paper [8].

2. Rough Sets for Imcomplete Decision Tables

In this section, we review rough sets for incomplete de-
cision tables proposed by Kryszkiewicz [11].

2.1. Decision tables and similarity relations
The subjects of rough set data analysis are described

by decision tables. According to the authors’ previous
study [5–7, 10], we use a general expression of decision
tables used by Yao et al. [15], which can be expressed as

DT = (U,AT,{Va | a ∈ AT},RAT ,ρ), . . . . (1)

where U is a finite and nonempty set of objects; AT =
C∪{d} is a finite and nonempty set of attributes (where
C is a set of condition attributes and d ̸∈ C is a deci-
sion attribute); Va is a nonempty set of values for a ∈ AT ;
RAT = {{Ra} | a∈AT} is a set of sets {Ra} of binary rela-
tions defined on each Va; and ρ is an information function
ρ : U ×AT →V that presents a value ρ(x,a) ∈Va of each
object x ∈U at the attribute a ∈ AT (where V =

∪
a∈AT Va

is the set of values of all attributes in AT ).
The set {Ra} of binary relations for each attribute a ∈

AT can contain various binary relations: similarity, dis-
similarity, the ordering relation on Va and typical infor-
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mation tables are implicitly assumeed that the set {Ra}
consists of only the equality relation = on Va [15]. We
also assume that the equality relation = is included in the
set {Ra} for each attribute a ∈ AT .

A decision table DT is considered an incomplete deci-
sion table if there is at least one condition attribute a ∈C
for which Va contains a null value [11]. We denote a null
value by the ∗ symbol and assume that the decision at-
tribute d does not have null value, i.e., ∗ ̸∈ Vd. We also
assume that, for any attribute a ∈ AT and any binary rela-
tion R ∈ {Ra} except for the equality relation =, if ∗ ∈Va

holds, then the null value ∗ does not relate to other values
v ∈ Va by the binary relation R, i.e., neither ∗Rv nor vR∗
holds.

A similarity relation SIM(A) between objects that are
possibly indiscernible in terms of values of attributes A ⊆
AT is expressed as

SIM(A)

=

{
(x,y) ∀a ∈ A, ρ(x,a) = ρ(y,a) or

ρ(x,a) = ∗ or ρ(y,a) = ∗

}
.

(2)

If a pair (x,y) is in SIM(A), then we say that object x
is similar to object y in terms of the attribute values in
A. It can be clearly observed that such similarity relation
is a tolerance relation, i.e., it is reflexive and symmetric;
however, it may not be transitive in general. Note that if
all attributes a ∈ A do not have null value, the similarity
relation SIM(A) is identical to the indiscernibility relation
IND(A) [11]. Moreover, the following property holds for
any similarity relation:

SIM(A) =
∩
a∈A

SIM({a}). . . . . . . . . . (3)

Let SA(x) = {y∈U | (x,y)∈ SIM(A)} be the set of sim-
ilar objects with the object x by A ⊆ AT . The collection
of sets SA(x) for all x ∈U comprises a covering of U , de-
noted U/SIM(A). Each element in U/SIM(A) is called a
tolerance class. In particular, the covering U/SIM({d})
generated by the decision attribute d becomes a partition
of U , and each element in it is called a decision class.

For any set of objects X ⊆U , the lower approximation
A(X) and upper approximation A(X) of X by A ⊆ AT are
defined in a manner similar to Pawlak’s rough sets:

A(X) = {x ∈U | SA(x)⊆ X}, . . . . . . . (4)
A(X) = {x ∈U | SA(x)∩X ̸= /0}. . . . . . . (5)

2.2. Relative reducts and decision rules
To describe relative reducts for incomplete decision ta-

bles, we introduce the generalized decision proposed by
Kryszkiewicz [11].

Let ∂A, A ⊆ C, be a function ∂A : U → P(Vd), where
P(Vd) is the power set of Vd, defined as follows:

∂A(x) = {v ∈Vd | y ∈ SA(x) and ρ(y,d) = v}. . (6)

The function ∂A is called a generalized decision by A.
Relative reducts for incomplete decision tables are min-

imal sets of condition attributes that preserve the general-

ized decision ∂C by the set of all condition attributes. For-
mally, a set A ⊆C is called a relative reduct of DT if and
only if A satisfies the following condition:

∂A = ∂C and ∀B ⊂ A, ∂B ̸= ∂C. . . . . . . (7)

We also introduce the relative reducts of DT for each
object in U . A set A ⊆C is called a relative reduct of DT
for object x ∈ U if and only if A satisfies the following
condition:

∂A(x) = ∂C(x) and ∀B ⊂ A, ∂B(x) ̸= ∂C(x). . . (8)

We denote a decision rule generated from a set A ⊆ C
of condition attributes in the following form:∧

a∈A

(a,v)→
∨
(d,w), . . . . . . . . . . (9)

where v ∈ Va and w ∈ Vd. The form (a,v) is called a de-
scriptor, and the forms ∧a∈A(a,v) and ∨(d,w) are called
the condition and decision of the decision rule, respec-
tively.

Let r be a decision rule defined by (9) with a set of con-
dition attributes A ⊆ C, X be a set of objects of property
∧a∈A(a,v), and Y be a set of objects of property ∨(d,w).
The decision rule r is true in DT if and only if A(X) ⊆ Y
holds. Moreover, r is optimal in DT if and only if r
is true in DT and no other rule r′ constructed from the
proper subset B ⊂ A is untrue [11]. Note that, similar
to Pawlak’s rough sets for complete decision tables, dis-
cernibility functions can also be used to compute relative
reducts in incomplete decision tables [11].

Example 1: Table 1 shows an example incomplete de-
cision table DT . The decision table consists of a set of
eight users of sample products. Here U = {u1, · · · ,u8} is
the set of users, the set of attributes AT consists of the set
of condition attributes C = {Gender,Q.1,Q.2,Q.3} that
represents user gender and the answers to questions 1,
2, and 3 about the sample products, and the decision at-
tribute Purchase that represents user answers to the ques-
tion about purchase.

Each attribute a ∈ AT has the following range of values
Va. Note that each condition attribute in this example has
null value ∗ in the following range:

VGender = {female, male, ∗},
VQ.1 = {no, yes, ∗},

VQ.2 =VQ.3 = {v.b., bad, normal, good, v.g., ∗},
VPurchase = {no, maybe, yes},

and each attribute a ∈ AT has the following set of binary
relations on the set Va of values:

Gender : {=}, Q.1 : {=,≺Q.1,⪯Q.1},
Q.2 : {=,≺Q.2,⪯Q.2}, Q.3 : {=,≺Q.3,⪯Q.3},
Purchase : {=,≺Purchase,⪯Purchase},

where each relation ≺a is a preference relation that is de-
fined as follows:

≺Q.1: no ≺ yes,
≺Q.2: v.b.≺ bad ≺ normal ≺ good ≺ v.g.,
≺Q.3: v.b.≺ bad ≺ normal ≺ good ≺ v.g.,
≺Purchase: no ≺ maybe ≺ yes.

The contents of Table 1 is described by the infor-
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Table 1. Incomplete decision table

U Gender Q.1 Q.2 Q.3 Purchase
u1 female yes good v. g. yes
u2 male no good v. g. yes
u3 male no ∗ good yes
u4 female yes normal normal yes
u5 female ∗ ∗ ∗ maybe
u6 male no good ∗ maybe
u7 male no ∗ bad no
u8 ∗ yes good normal no

mation function ρ; e.g., ρ(u1,Gender) = female, and
ρ(u5,Q.1) = ∗.

Here, we consider the similarity relation and relative
reduct of Table 1. The generalized decision ∂C of Table 1
by the set of all condition attributes C ⊆ AT is defined as
follows:

∂C(u1) = ∂C(u2) = ∂C(u3) = ∂C(u4)
= {yes,maybe},

∂C(u5) = ∂C(u6)
= {yes,maybe,no},

∂C(u7) = ∂C(u8)
= {maybe,no}.

Let A = {Q.1,Q.2,Q.3} be a subset of condition at-
tributes. For each object u ∈ U , the set of similar objects
SA(u) with respect to the similarity relation SIM(A) by (2)
is as follows:

SA(u1) = {u1,u5}, SA(u2) = {u2,u5,u6},
SA(u3) = {u3,u5,u6}, SA(u4) = {u4,u5},
SA(u5) =U, SA(u6) = {u2,u3,u5,u6,u7},
SA(u7) = {u5,u6,u7}, SA(u8) = {u5,u8}.

For example, u5,u6 ∈ SA(u3) means that the object u3
is indiscernible from the objects u5 and u6 by the values
of attributes in A, which confirms that the generalized de-
cision ∂A(u3) is {yes,maybe}. Consequently, it is clearly
obserbed that A = {Q.1,Q.2,Q.3} is a relative reduct of
Table 1, i.e., ∂A = ∂C and ∀B ⊂ A, ∂B ̸= ∂C holds.

Similarly, we can also consider a relative reduct of
some objects and decision rules. Let X = {Q.3}. It can
be clearly observed that SX (u3) = {u3,u5,u6} and it pro-
vides ∂X (u3) = {yes,maybe} = ∂C(u3), i.e., X is a rela-
tive reduct of u3 in Table 1. By using the relative reduct
X and the generalized decision of u3, we obtain the fol-
lowing optimal decision rule:

(Q.3,good)→ (Purchase,yes)∨ (Purchase,maybe).

3. Interrelationship Mining for Complete Deci-
sion Tables

In this section, we review rough-set-based interrela-
tionship mining for complete decision tables [3–7, 10].

3.1. Observations and motivations
Comparison of attribute values between objects is a

common basis of rough set data analysis. For example,
in Pawlak’s rough set, the equality of attribute values for
each attribute a ∈ A is essential for an indiscernibility re-
lation IND(A) by the subset of attributes A ⊆ AT . In the
dominance-based rough set approach [1], the total pre-
order relation among attribute values in each attribute pro-
vides a dominance relation between objects.

Generally, the domain of such comparison between at-
tribute values is separated into each set of attribute values
Va, a∈AT . However, the following characteristics are dif-
ficult to describe without comparing the values between
different attributes:

• the evaluation score of movie A is better than that of
movie B,

• the color of sample A is similar to that of sample B,

• users prefer the design of car A to that of car B.

To treat the above characteristics in the framework of
rough sets, we must extend the domain of binary relations
R for comparison of attribute values from each range Va,
i.e., R ⊆ Va ×Va to the Cartesian product of two ranges
Va and Vb, i.e., R ⊆Va×Vb. This extension enables us to
describe the interrelationships between attributes by com-
paring the attribute values of different attributes in the
framework of rough set theory [3].

3.2. Interrelationships between attributes and in-
discernibiilty of objects by interrelationships

Various relations between attribute values can be con-
sidered to compare values, e.g., equality, equivalence, or-
der relations, and similarity. These situations between at-
tributes in a given decision table can be formulated as in-
terrelationships as follows.

Let DT be a decision table by (1), a,b ∈C be two con-
dition attributes with ranges Va and Vb, respectively, and
R ⊆ Va×Vb be a binary relation from Va to Vb. The at-
tributes a and b are interrelated by R if and only if there
exists an object x ∈ U such that (ρ(x,a),ρ(x,b)) ∈ R
holds [3].

We denote the set of objects wherein the values of at-
tributes a and b satisfy the relation R as follows:

R(a,b) = {x ∈U | (ρ(x,a),ρ(x,b)) ∈ R}, . . (10)

and we call the set R(a,b) the support set of the interrela-
tionship between a and b by R.

An interrelationship between two attributes by a binary
relation provides a way to compare attribute values be-
tween different attributes; however, for simplicity, we also
allow the interrelationship between the same attributes.

Indiscernibility relations in a given decision table by
interrelationships between attributes are introduced as fol-
lows [3]. Let a,b ∈C be two condition attributes in a de-
cision table DT . We assume that a,b ∈C are interrelated
by a binary relation R ⊆ Va×Vb, i.e., R(a,b) ̸= /0 holds.
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The indiscernibility relation on U based on the interrela-
tionship between a and b by R is defined by

IND(aRb)

=

{
(x,y) x ∈U,y ∈U, and

x ∈ R(a,b) iff y ∈ R(a,b)

}
.

(11)

For any objects x and y, (x,y) ∈ IND(aRb) means that x
is not discernible from y relative to whether the interrela-
tionship between the attributes a and b by relation R holds.
Any binary relation IND(aRb) on U defined by (11) is
an equivalence relation, and we can construct equivalence
classes from an indiscernibility relation IND(aRb) [3].

3.3. Decision tables for interrelationship mining
The decision table DT by (1) is reconstructed to treat

interrelationships between attributes explicitly by intro-
ducing the given binary relations to compare the values of
different attributes.

Definition 1—[6, 10]: Let DT be a decision table
by (1). The decision table DTint for interrelationship min-
ing with respect to DT is defined as follows:

DTint = (U,ATint ,V ∪{0,1},Rint ,ρint), . . . (12)
where U and V =

∪
a∈AT Va are identical to DT .

The set ATint is defined by
ATint = AT ∪{aRb | ∃R ∈ {Ra×b},R(a,b) ̸= /0}, (13)

where AT = C∪{d} is identical to DT and each expres-
sion aRb is a newly introduced condition attribute called
an interrelated condition attribute. The set {Ra×b} of bi-
nary relation(s) is defined below.

The set Rint of sets of binary relations is defined as
Rint

= RAT ∪
{

{Rai×bi}
Rai×bi ⊆Vai ×Vbi ,
∃ai,bi ∈C

}
∪{{=} | For each aRb},

(14)

where each set {Rai×bi}= {R1
ai×bi

, · · · ,Rni
ai×bi

} consists of
ni (ni ≥ 0) binary relation(s) defined on Vai ×Vbi .

The information function ρint is defined by

ρint(x,c)=

 ρ(x,c), if c ∈ AT,
1, c= aRb and x ∈ R(a,b),
0, c= aRb and x ̸∈ R(a,b).

(15)

Each interrelated condition attribute aRb represents
whether each object x ∈ U supports the interrelationship
between the attributes a,b ∈C by the binary relation R ⊆
Va ×Vb [3]. Therefore, interrelated condition attributes
are nominal attributes and we only treat the equality re-
lation to compare attribute values of different objects for
each interrelated condition attribute.

Note that the equation (14) means that binary relations
for comparing attribute values between different attributes
are assumed to be given. In general, comparison of at-
tribute values between different attributes is needed to
treat carefully and we need to determine whether two at-
tributes in a given decision table are comparable in some
sense based on some background knowledge. However,
comparability between attribute values depends on the
“meaning of dataset,” in other words, semantics of in-
terrelationship mining and the formulation of semantics

is one of the most important issues for rough-set-based
interrelationship mining [10].

The following property guarantees the equivalence of
representation ability between the interrelationship be-
tween attributes a and b by R and the corresponding in-
terrelated condition attribute aRb.

Proposition 1—[3]: Let DT be a decision table by (1)
and DTint be a decision table by (12). The following
equality holds.

INDDT (aRb) = INDDTint ({aRb}), . . . . . (16)
where INDDT (aRb) is the indiscernibility relation in DT
with respect to the interrelationship between a and b by R
defined by (11), and INDDTint ({aRb}) is the indiscernibil-
ity relation in DTint constructed from a singleton {aRb}.

The authors have discussed effectiveness of interrelated
condition attributes in relative reducts of complete deci-
sion tables [9]. The following property guarantees that in-
terrelated condition attributes in relative reducts enhance
representation ability of decision rules generated from rel-
ative reducts.

Proposition 2—[9]: Suppose A ⊆ ATint is a relative
reduct of the decision table DTint for interrelationship
mining. For any two condition attributes a,b ∈ A, let a
set A′ be either A′ = (A\{a})∪{aRb} or A′ = (A\{b})∪
{aRb} and A′ is also a relative reduct of DTint . The fol-
lowing inequality holds:

ACov(A)≤ ACov(A′). . . . . . . . . . . (17)
Note that ACov(·) is an evaluation criterion for relative

reducts proposed by the authors [2] based on the rough-
ness of partitions generated from the relative reducts. The
criterion ACov(·) is defined by

ACov(A)
= |D |

∑
[x]A∈U/IND(A)

|{Di ∈ D | [x]A ∩Di ̸= /0}| , . (18)

where |X | is the cardinality of the set X , and D =
U/IND({d}) is the set of decision classes of the given de-
cision table. For every relative reduct A ⊆ ATint , the score
ACov(A) represents the average of coverage scores of de-
cision rules generated from A, the decision attribute d, and
every object x ∈U [2].

4. Interrelationships between Attributes in In-
complete Decision Tables

In this section, we revise the concept of interrelation-
ships between condition attributes to treat null value in the
interrelationships and introduce similarity relations based
on the interrelationship between attributes.

4.1. Three cases in which interrelationships are not
available by null value

Here, let a,b ∈ C be two condition attributes and R be
a binary relation defined on Va×Vb. Similar to the case
of binary relations Ra on Va, we do not treat the relation
between null value ∗ and other values by R, which causes
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the following three cases in which we cannot consider the
interrelationship between a and b by R:

1. The vaule of a is null but that of b is not null:
ρ(x,a) = ∗ and ρ(x,b) ̸= ∗,

2. The vaule of b is null but that of a is not null:
ρ(x,a) ̸= ∗ and ρ(x,b) = ∗,

3. The values of both a and b are null: ρ(x,a) =
ρ(x,b) = ∗.

Because the occurrences of null value are different
among these three cases, we can consider the three cases
separately to treat null value in the interrelationship be-
tween a and b by R. Moreover, this fact indicates that each
object x ∈U fits one of the following three situations:

(a) x supports the interrelationship between a and b by
R, i.e., x ∈ R(a,b),

(b) x does not support the interrelationship between a
and b by R,

(c) The values of x at a and b are not comparable by one
of the above three cases.

The situation (c) causes difficulty of interrelationship
between attributes, and therefore, in the next section, we
discuss an approach to treat the situation (c) and intro-
duce similarity relations by interrelationship between at-
tributes.

4.2. Similarity relation by interrelationship be-
tween attributes

According to the discussion in Section 4.1, we intro-
duce the following three sets of objects:

LN(a,b) = {x ∈U | ρ(x,a) = ∗ and ρ(x,b) ̸= ∗}, (19)
RN(a,b) = {x ∈U | ρ(x,a) ̸= ∗ and ρ(x,b) = ∗}, (20)
BN(a,b) = {x ∈U | ρ(x,a) = ρ(x,b) = ∗}. . . (21)

The sets LN(a,b), RN(a,b), and BN(a,b) correspond
to the cases 1, 2, and 3, respectively. We denote the union
of LN(a,b), RN(a,b), and BN(a,b) as NULL(a,b) def

=
LN(a,b)∪RN(a,b)∪BN(a,b). The set NULL(a,b) cor-
responds to the set of of objects in the situation (c).

For every binary relation R defined on Va×Vb, the do-
main of R can be naturally extended to the case that Va

and Vb include the null value ∗. As we mentioned in Sec-
tion 4.1, for any two condition attributes a,b ∈C and any
binary relation R defined on Va×Vb, we do not treat the
relationship between the null value ∗ and all values v ∈Va

and w∈Vb by R, i.e., neither vR∗ nor ∗Rw holds. Note that
this modification does not affect the definition of support
set R(a,b) by (10).

We then represent the set of objects that does not sup-
port the interrelationship between a and b by R as follows:

Rc(a,b) =U − (R(a,b)∪NULL). . . . . . (22)

Note that the set Rc(a,b) defined by (22) corresponds to
the support set of the interrelationship between a and b

by the binary relation Rc def
= (Ua×Ub)−R, where the set

Ui
def
= {x ∈ U | ρ(x, i) ̸= ∗} is a set objects in which the

value of the attribute i is not null.
The following is obvious from the definitions of the

supprot set R(a,b), nonsupport set Rc(a,b), and LN(a,b),
RN(a,b), and BN(a,b).

Lemma 1: The collection S of sets defined as

S =

{
R(a,b),Rc(a,b),LN(a,b),
RN(a,b),BN(a,b)

}
−{ /0} . (23)

comprises a partition of U .
The proof of Lemma 1 can be found in Appendix A.
Here, we introduce a similarity relation by the interre-

lationship between attributes.
Definition 2: Let DT be a given decision table, and S

be a familly of object sets by (23). Suppose that two con-
dition attributes a,b ∈C are interrelated by the binary re-
lation R ⊆Va×Vb, i.e., R(a,b) ̸= /0 holds.

The similarity relation on U by interrelationship be-
tween a and b by R is defined as follows:

SIM(aRb)

=

 (x,y)

∃S ∈ S , x,y ∈ S, or
x ∈ NULL(a,b) and
y ̸∈ NULL(a,b), or
x ̸∈ NULL(a,b) and
y ∈ NULL(a,b)

 .
. . (24)

It is easy to confirm that the binary relation SIM(aRb)
by the interrelationship between a and b by R is a toler-
ance relation on U .

Theorem 1: Let a,b ∈ C be two condition attributes in
a given decision table DT and R ⊆ Va ×Vb be a binary
relation. The binary relation SIM(aRb) defined by (24)
satisfies reflexivity and symmetry.

The proof of Theorem 1 can be found in Appendix A.
If both attribute a and b do not have null value, the simi-

larity relation SIM(aRb) is identical to the indiscernibility
relation IND(aRb) by the interrelationship between a and
b by a binary relation R, i.e., IND(aRb) is a special case
of SIM(aRb).

Corollary 1: If both ∗ ̸∈ Va and ∗ ̸∈ Vb hold, then
SIM(aRb) = IND(aRb) holds, where IND(aRb) is the in-
discernibility relation by the interrelationship between the
attributes defined by (11).

Example 2: We introduce two interrelationships be-
tween two condition attributes Q.2 and Q.3 in Table 1 by
comparing the values of these attributes by the following
two binary relations defined on VQ.2×VQ.3:

• ≺Q.2×Q.3: the answer to Q.3 is better than the an-
swer to Q.2,

• ⪯Q.2×Q.3: The answer to Q.3 is equal to or better
than the answer to Q.2.

The range of these two attributes is identical; therefore,
we can consider the preference relation, ≺Q.2, as the bi-
nary relation ≺Q.2×Q.3 defined on VQ.2 ×VQ.3 with the
following order:

≺Q.2×Q.3: v.b.≺ bad ≺ normal ≺ good ≺ v.g..
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Here, we concentrate on the similarity relation between
Q.2 and Q.3 by the binary relation ≺Q.2×Q.3. Hereafter,
we omit the indices of binary relations. We construct the
support set ≺ (Q.2,Q.3) of the interrelationship defined
by (10) and the other four sets defined by (19)-(22) as
follows:

≺ (Q.2,Q.3) = {u1,u2},
≺c (Q.2,Q.3) = {u4,u8},
LN(Q.2,Q.3) = {u3,u7},
RN(Q.2,Q.3) = {u6},
BN(Q.2,Q.3) = {u5}.

We then obtain the set NULL(Q.2,Q.3)= {u3,u5,u6,u7}
and a partition S by (23) as follows:

S = {{u1,u2},{u4,u8},{u3,u7},{u6},{u5}}.
The support set ≺ (Q.2,Q.3) is not empty, therefore,

we can construct the similarity relation SIM(Q.2 ≺ Q.3)
based on the interrelationship between Q.2 and Q.3 by
the binary relation ≺ by (24). From the constructed simi-
larity relation, we obtain the following results:

• (u1,u2),(u4,u8) ∈ SIM(Q.2≺Q.3): u1 and u2, and
u4 and u8 are indiscernible from each other, respec-
tively; both u1 and u2 (u4 and u8) support (do not
support) the interrelationship.

• (u3,u4),(u4,u5) ∈ SIM(Q.2≺Q.3): u3 and u4, and
u4 and u5 are indiscernible from each other, respec-
tively; an object in the pair adopts one of the three
cases that cannot treat the interrelationship between
attributes and another does not adopt any of the three
cases.

• (u3,u7) ∈ SIM(Q.2 ≺ Q.3): both u3 and u7 adopt
the same case that cannot treat the interrelationship
between attributes.

• (u3,u5) ̸∈ SIM(Q.2≺ Q.3): u3 and u5 adopt differ-
ent cases that cannot treat the interrelationship be-
tween attributes.

The results (u3,u4),(u4,u5) ∈ SIM(Q.2 ≺ Q.3) but
(u3,u5) ̸∈ SIM(Q.2 ≺ Q.3) demonstrate that the simi-
larity relation by the interrelationship between attributes
generally does not satisfy transitivity.

5. Interrelated Attributes for Incomplete Deci-
sion Tables

To describe the three cases discussed in Section 4.1, we
introduce three null values ∗l , ∗r, and ∗b for interrelated
condition attributes. These null values ∗l , ∗r, and ∗b cor-
respond to cases 1, 2, and 3, respectively.

Definition 3: Let DT be a decision table by (1), and
DTint be a decision table for interrelationship mining with
respect to the DT defined by (12). We redefine the infor-
mation function ρint for interrelationship mining defined

by (15). The redefined information function ρint is ex-
pressed as follows:

ρint : U ×ATint →V ∪{0,1}∪{∗l ,∗r,∗b} . . (25)
such that

ρint(x,c)

=



ρ(x,c), if c ∈ AT,
1, c= aRb and x ∈ R(a,b),
0, c= aRb and x ∈ Rc(a,b),
∗l , c= aRb and x ∈ LN(a,b),
∗r, c= aRb and x ∈ RN(a,b),
∗b, c= aRb and x ∈ BN(a,b).

(26)

Note that there exists various interpretations of the null
value ∗, e.g., missing value, nondeterministic value, and
do not care. We interpret the newly introduced null value
∗l (∗r, ∗b) as ”the value of the interrelated condition at-
tribute is not determined by the null value of condition at-
tribute(s) at left (right, both) side(s).” This interpretation
does not depend on the interpretation of null value ∗ that
causes the occurrence of null values ∗l , ∗r, and ∗b.

Similar to the interrelationship mining for complete
decision tables, we can represent the similarity relation
based on an interrelationship between attributes using the
corresponding interrelated condition attribute.

Definition 4: Let DTint be a decision table for the inter-
relationship mining defined by (12) and assume that DTint
has a revised information function ρint defined by (26).
For any interrelated condition attribute aRb, a similarity
relation based on the singleton {aRb} is defined as fol-
lows:

SIM({aRb})

=


(x,y)

ρint(x,aRb) = ρint(y,aRb),
or
ρint(x,aRb) ∈ {1,0} and
ρint(y,aRb) ∈ {∗l ,∗r,∗b},
or
ρint(x,aRb) ∈ {∗l ,∗r,∗b}
and ρint(y,aRb) ∈ {1,0}.


.

(27)

It is easy to confirm that the binary relation
SIM({aRb}) from an interrelated condition attribute aRb
by (27) is a tolerance relation.

Theorem 2: Let DTint be a decision table for the inter-
relationship mining defined by (12) and assume that DTint
has a revised information function ρint defined by (26).
For any interrelated condition attribute aRb ∈ ATint , the
binary relation SIM({aRb}) defined by (27) satisfies re-
flexivity and symmetry.

The proof of Theorem 2 can be found in Appendix A.
The newly introduced null values ∗l , ∗r, and ∗b are mu-

tually discernible.
Corollary 2: Let SIM({aRb}) be the similarity rela-

tion defined by (27), and i, j ∈ {l,r,b}. For any object
x,y ∈U , if ρ(x,aRb) = ∗i, ρ(y,aRb) = ∗ j, and i ̸= j hold,
then (x,y) ̸∈ SIM({aRb}) holds.

Similar to the indiscernibility relations in complete de-
cision tables by Proposition 1, the similarity relation by
the interrelationship between attributes is perfectly repre-
sentable by the similarity relation with respect to the cor-
responding interrelated condition attribute.

Theorem 3: Let DT be a decision table by (1) and DTint
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be a decision table for interrelationship mining by (12)
with the redefined information function by (26). The fol-
lowing equality holds.

SIMDT (aRb) = SIMDTint ({aRb}), . . . . . (28)
where SIMDT (aRb) is the similarity relation in DT with
respect to the interrelationship between a and b by R de-
fined by (24), and SIMDTint ({aRb}) is the similarity rela-
tion in DTint constructed from the singleton {aRb} of the
interrelated condition attribute aRb by (27).

The proof of Theorem 3 can be found in Appendix A.
Similar to the case of similarity relation by the inter-

relationship between attributes by Corollary 1, the simi-
larity relation SIM({aRb}) by the interrelated condition
attribute aRb can be considered as the indiscernibility re-
lation IND({aRb}), if attributes a and b do not have null
value.

Corollary 3: If both ∗ ̸∈ Va and ∗ ̸∈ Vb hold, then
SIMDTint ({aRb}) = INDDTint ({aRb}) holds.

By Theorem 3 and the tolerance of similarity re-
lation by (3), we can combine the similarity relation
SIM({aRb}) by the interrelated condition attribute aRb
with the similarity relation SIM(A), A⊆C, defined by (2).
Moreover, by Corollary 3 and the property of similarity
relation [11], the combined similarity relation can be con-
sidered an indiscernibility relation if there is no null value
in the ranges of the attributes in A∪{aRb} used to con-
struct the similarity relation.

Therefore, the results of this study enable us to flex-
ibly treat the similarity between objects with respect to
both characteristics by comparing the values of the same
attributes and by the interrelationship between attributes.

Example 3: Here, we introduce two interrelated condi-
tion attributes Q.2≺Q.3 and Q.2⪯Q.3 based on binary
relations ≺ and ⪯ defined on VQ.2 ×VQ.3, respectively.
We can use the results of Example 2 to construct the inter-
related condition attribute Q.2≺Q.3 and define the value
for each object. For the interrelated condition attribute
Q.2⪯Q.3, the support set ⪯ (Q.2,Q.3) defined by (10)
and the non-support set ⪯c (Q.2,Q.3) defined by (22) are
as follows, respectively:

⪯ (Q.2,Q.3) = {u1,u2,u4},
⪯c (Q.2,Q.3) = {u8}.

The sets LN(Q.2,Q.3), RN(Q.2,Q.3), and BN(Q.2,Q.3)
are identical to the case of relation ≺Q.2×Q.3 in Exam-
ple 2.

We then construct the two interrelated condition at-
tributes Q.2≺Q.3 and Q.2⪯Q.3 using the five sets for
each binary relation ≺ and ⪯, respectively. Table 2 is the
incomplete decision table with the two interrelated condi-
tion attributes.

Similar to Example 1, we consider the similarity rela-
tion and relative reduct of Table 2. Let Cint =C∪{Q.2≺
Q.3,Q.2⪯Q.3}. The generalized decision ∂Cint of Table 1
by the set of all condition attributes C ⊆ AT is defined as

follows:
∂Cint (u1) = ∂Cint (u2) = ∂Cint (u4) = ∂Cint (u6)

= {yes,maybe},
∂Cint (u3) = {yes},
∂Cint (u5) = {yes,maybe,no},
∂Cint (u7) = {no},
∂Cint (u8) = {maybe,no}.

In Table 2, the object u3 is discernible from u6 by
the difference in the null values in the interrelated con-
dition attributes, i.e., ∗l at u3 and ∗r at u6. Simi-
larly, u7 is discernible from u6 and these differences pro-
vide the above revision of the generalized decision, i.e.,
∂Cint (u3) = {yes} and ∂Cint (u7) = {no}, respectively.

We construct the similarity relation SIM({Q.2≺Q.3})
with respect to the singleton of the interrelated condition
attribute by (27). By Theorem 3, the constructed sim-
ilarity relation SIM({Q.2 ≺ Q.3}) correctly reflects all
relationships between objects by the similarity relation
SIMDT (Q.2≺Q.3) by interrelationship between Q.2 and
Q.3 with the binary relation ≺ in Example 2. For exam-
ple, similar to the above discussion, the null values of u3
and u5 are different in Table 2, i.e., ∗l at u3 and ∗b at u5,
which provides (u3,u4),(u4,u5) ∈ SIM({Q.2 ≺ Q.3})
but (u3,u5) ̸∈ SIM({Q.2≺ Q.3}).

Here, we consider the relative reduct of Table 2. Let
A = {Q.1,Q.3,Q.2 ⪯ Q.3}. For each object u ∈ U , the
set of similar objects SA(u) with respect to the similarity
relation Sim(A) by (2) is as follows, respectively:

SA(u1) = {u1,u5}, SA(u2) = {u2,u5,u6},
SA(u3) = {u3}, SA(u4) = {u4,u5},

SA(u5) =
{

u1,u2,u4,
u5,u8

}
, SA(u6) = {u2,u6},

SA(u7) = {u7}, SA(u8) = {u5,u8}.
If we remove some attribute from A, e.g., Q.3, the

subset A′ = {Q.1,Q.2 ⪯ Q.3} cannot keep the general-
ized decision by Cint , e.g., SA′(u7) = {u2,u3,u7} and
∂A′(u7) = {yes,no} ̸= ∂Cint (u7). Consequently, it is easy
to observe that A = {Q.1,Q.3,Q.2 ⪯ Q.3} is a relative
reduct of Table 2.

Similarly, we can obtain relative reducts of an ob-
ject, which are used to express optimal decision rules.
Let X = {Q.3,Q.2 ⪯ Q.3}. It can be clearly observed
that SX (u7) = {u7} and ∂X (u7) = {no} = ∂Cint (u7), and
any subsets cannot keep the generalized decision, e.g., if
X ′ = {Q.3}, then SX ′(u7) = {u5,u6,u7} and ∂X ′(u7) =
{maybe,no} ̸= ∂Cint (u7). Therefore, X is a relative reduct
of u7. We then obtain an optimal decision rule of u7 as
follows:

(Q.3,bad)∧ (Q.2⪯ Q.3,∗l)→ (Purchase,no).

6. Conclusion

In this study, we applied rough-set-based interrelation-
ship mining to incomplete decision tables. First, we ob-
served three cases in which the interrelationship between
attributes unavailable by null values and introduced sim-
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Table 2. Incomplete decision table for interrelationship mining

U Gender Q.1 Q.2 Q.3 Q.2≺Q.3 Q.2⪯Q.3 Purchase
u1 female yes good v. g. 1 1 yes
u2 male no good v. g. 1 1 yes
u3 male no ∗ good ∗l ∗l yes
u4 female yes normal normal 0 1 yes
u5 female ∗ ∗ ∗ ∗b ∗b maybe
u6 male no good ∗ ∗r ∗r maybe
u7 male no ∗ bad ∗l ∗l no
u8 ∗ yes good normal 0 0 no

ilarity relations based on the interrelationship between
attributes. Next, we introduced three types of null val-
ues that correspond to the above three cases and demon-
strated that the similarity relation by the interrelationship
between attributes is perfectly representable by the sim-
ilarity relation with respect to the corresponding interre-
lated condition attribute. In future, we plan to refine the
theoretical aspects of the proposed approach and apply
it to real-life data analysis. In particular, how to deter-
mine the existence or non-existence of interrelationships
between condition attributes and how to construct interre-
lated condition attributes from the scratch by generating
binary relations between attribute values are very impor-
tant issues for applying rough-set-based interrelationship
mining to real-life data.
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Appendix A. Proofs of Theoretical Results

Lemma 1: The collection S of sets defined as

S =

{
R(a,b),Rc(a,b),LN(a,b),
RN(a,b),BN(a,b)

}
−{ /0}

comprises a partition of U .
Proof: From the definitions of support set R(a,b),

nonsupport set Rc(a,b), and LN(a,b), RN(a,b), and
BN(a,b), it is obvious that, for any Si,S j ∈ S , if Si ̸= /0,
S j ̸= /0, and i ̸= j hold, then Si ∩ S j = /0 holds. Thus,
it is sufficient to show ∪S∈S S = U . Moreover, every
set S ∈ S is obviously a subset of U , which implies
∪S∈S S ⊆U .

Let x ∈ U be any object. If both v = ρ(x,a) ̸= ∗
and w = ρ(x,b) ̸= ∗ hold, either (v,w) ∈ R or (v,w) ̸∈ R
holds, which implies that either x ∈ R(a,b) or x ∈ Rc(a,b)
holds. Otherwise, if v = ∗ or w = ∗ or both hold, either
x ∈ LN(a,b) or x ∈ RN(a,b) or x ∈ BN(a,b) hold. These
facts imply that ∪S∈S S ⊇U ; thus, ∪S∈S S =U .

Theorem 1: Let a,b ∈ C be two condition attributes in
a given decision table DT and R ⊆ Va ×Vb be a binary
relation. The binary relation SIM(aRb) defined by (24)
satisfies reflexivity and symmetry.

Proof: First, we show that SIM(aRb) satisfies re-
flexivity, i.e., (x,x)∈ SIM(aRb) for all x ∈U . Because S
is a partition by Lemma 1, for every x ∈U , there exists a
set S ∈ S such that x ∈ S; thus (x,x) ∈ SIM(aRb) for all
x ∈U by (24).

Next, we show symmetry, i.e., if (x,y) ∈ SIM(aRb)
holds, then (y,x) ∈ SIM(aRb) holds. Suppose (x,y) ∈
SIM(aRb) holds. If there exists a set S ∈ S such that
x,y ∈ S holds, it is obvious that (y,x) ∈ SIM(aRb) also
holds. We then assume that x ∈ NULL(a,b), which im-
plies that y ̸∈ NULL(a,b) by (24). Therefore, (y,x) ∈
SIM(aRb) also holds by (24). The case of x ̸∈NULL(a,b)
is shown similarly, which indicates that SIM(aRb) satis-
fies symmetry.

Theorem 2: Let DTint be a decision table for interrela-
tionship mining defined by (12) and assume that DTint has
a revised information function ρint defined by (26). For
any interrelated condition attribute aRb∈ATint , the binary
relation SIM({aRb}) defined by (27) satisfies reflexivity
and symmetry.

Proof: It is obvious that ρ(x,aRb) = ρ(x,aRb)
for every x ∈U ; therefore, (x,x) ∈ SIM({aRb}) holds for
every x ∈U , i.e., the binary relation SIM({aRb}) satisfies
reflexivity.

We show that SIM({aRb}) satisfies symmetry. Sup-
pose (x,y)∈ SIM({aRb}) holds. If ρ(x,aRb) = ρ(y,aRb)
holds, it is obvious that ρ(y,aRb) = ρ(x,aRb) also holds
and (y,x) ∈ SIM({aRb}). If ρ(x,aRb) ̸= ρ(y,aRb) and
ρ(x,aRb) ∈ {1,0} hold, according to the definition of
SIM({aRb}) by (27), it is implied that ρ(y,aRb) ∈
{∗l ,∗r,∗b} holds. Thus, (y,x) ∈ SIM({aRb}). We can
also prove the case of ρ(x,aRb) ∈ {∗l ,∗r,∗b} similarly.
Thus, SIM({aRb}) satisfies symmetry.

Theorem 3: Let DT be a decision table by (1) and DTint
be a decision table for interrelationship mining by (12)
with the redefined information function by (26). The fol-
lowing equality holds.

SIMDT (aRb) = SIMDTint ({aRb}),
where SIMDT (aRb) is the similarity relation in DT with
respect to the interrelationship between a and b by R de-
fined by (24), and SIMDTint ({aRb}) is the similarity rela-
tion in DTint constructed from the singleton {aRb} of the
interrelated condition attribute aRb.

Proof: Suppose that (x,y) ∈ SIMDT (aRb) holds.
If there exists a set S ∈ S such that x,y ∈ S holds,
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it is clear that ρint(x,aRb) = ρint(y,aRb) holds by the
definition of the redefined information function ρint
by (26), which indicates that (x,y) ∈ SIMDTint ({aRb})
by (27). Otherwise, if x ∈ NULL(a,b) and y ̸∈
NULL(a,b), it is implied that ρint(x,aRb) ∈ {∗l ,∗r,∗b}
and ρint(y,aRb) ∈ {0,1} hold by (26); thus, (x,y) ∈
SIMDTint ({aRb}) holds by (27). We can also show the
case of x ∈ NULL(a,b) and y ̸∈ NULL(a,b) similarly,
thus, SIMDT (aRb) ⊆ SIMDTint ({aRb}) holds. The op-
posite inclusion SIMDT (aRb) ⊇ SIMDTint ({aRb}) is also
provable in the same manner as the above proof, which
completes the proof.

References:
[1] S. Greco, B. Matarazzo, and R. Słowiński, Rough set theory for
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