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Abstract—We present a new design approach of shape and
topology optimization utilizing the full-vectorial beam propaga-
tion method (FV-BPM) so as to achieve efficient design for high-
refractive-index contrast optical waveguides and devices based
on gradual mode-evolution. In our design approach, material
distribution is represented via normalized density parameters,
and these design parameters are updated with sensitivity com-
puted based on an adjoint variable method (AVM). The sensitivity
analysis method and the design procedure are offered in the
specific case that the density method, the AVM, and the FV-
BPM based on an alternative direction implicit method (AIDM)
are employed. The applicability of our design approach is
numerically studied by designing high-refractive-index contrast
photonic components which induce polarization rotation: a TM0-
to-TE1 mode order converter and a polarization rotator. The
results of the design examples indicate that our approach has
potential to be suitable for efficient initial design of optical devices
based on gradual mode-evolution.

Index Terms—Topology optimization, Adjoint variable method,
Alternating direction implicit method, Beam propagation method,
Optical waveguide device.

I. INTRODUCTION

STRUCTURAL optimization using numerical simulation
is widely employed techniques for design of optical

circuit components used in optical communication networks.
In particular, shape and topology optimization have attracted
attention due to its potential to enhance device performance
more highly than ever. In topology optimization, the aim is to
find material distribution itself which fulfills the performance
requirements. There are so many design variables in shape and
topology optimization that the results of these optimization
can offer novel concept of photonic devices with smaller foot-
print and higher performance. So far, it has been demonstrated
that compact photonic components in planner lightwave circuit
(PLC) or silicon on insulator (SOI) platform can be designed
by shape or topology optimization [1]–[10].

In the design problems calling for 3D full-vectorial (FV)
analysis, a great deal of computational cost is required because
numerical analysis is iterated many times in the optimization
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process. As a numerical analysis method, the finite element
method (FEM) [1]–[7], the finite difference time domain
(FDTD) method [8], [9], or its frequency domain (FDFD)
method [10] is widely applied to topology optimization, how-
ever, they require large computational effort in particular 3D-
FV problems. The beam propagation method (BPM) [11]–[15]
is an efficient, useful technique for longitudinally varying op-
tical waveguides. The BPM can greatly reduce computational
cost because of a slowly varying envelope approximation
(SVEA) which allows large mesh size in the longitudinal
direction. Although the BPM does not offer exact solution due
to the SVEA, this method can estimate wave propagation to
some extent even in high-index-contrast waveguides as long
as the variation of refractive index distribution is adiabatic
enough in the propagation direction. The shape and topology
optimization with the BPM has potential to be suitable for the
initial design, where the accuracy does not count primarily,
of high-index-contrast photonic components based on gradual
mode evolution. In the authors’ previous works [16], [17],
we have already presented the topology optimal design ap-
proach with the BPM for 2D and 3D semi-vectorial design
problems, and we have demonstrated its applicability for low-
index-contrast waveguides. The 3D-FV analysis is necessary
for relatively high-index-contrast (high-∆) waveguide devices.
Above all, it is a must to design devices which induce
polarization rotation, such as polarization rotator (PR) [18]–
[21], and polarization beam splitter [22]–[28].

In this paper, we adapt the topology optimal design ap-
proach reported in [17] so as to deal with the 3D-FV problems,
and present shape and topology optimal design with FV-BPM.
We verify the applicability of our design approach applying it
to the design problems of a TM0-to-TE1 mode converter and
a PR in the silicon nitride platform. We consider in this study
the case that a finite difference (FD) scheme is employed to
descritize the transverse direction, and an alternative direction
implicit method (ADIM) is utilized for efficient FVFD-BPM
analysis. As a way to express material distribution, we employ
a density method. In this method, normalized density param-
eters are mapped in design region and refractive index distri-
bution is expressed via density distribution. Since there are a
large number of design parameters in topology optimization,
these parameters are usually updated by a sequential (non-
)linear programming, or gradient methods with sensitivity of
device performance. Sizing optimization based on sensitivity
analysis with FV-BPM has already reported in [29] and a
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general way of sensitivity analysis is formulated, however, this
report is not aimed at shape or topology optimization. We will
describe the way of sensitivity analysis in the specific case of
using the FV-BPM and the density method.

In section II, we review the FVFD-BPM based on ADIM,
and describe present shape and topology optimal design ap-
proach, and the way of sensitivity analysis based on adjoint
variable method (AVM) in the case of using the FVFD-
BPM and the density method. In section III, the application
examples of a TM0-to-TE1 mode converter and a PR are
shown to verify applicability of the present design method for
high-index-contrast waveguide devices. In addition, we give
some discussion on application range of our approach. Section
IV is the conclusion.

II. SHAPE AND TOPOLOGY OPTIMIZATION WITH THE
FV-BPM

A. The FVFD-BPM based on the ADIM

First, we will review the formulation of FVFD-BPM based
on ADIM. We consider a 3D optical waveguide which is
composed of linear, isotropic materials. The 3D-FV wave
equation is [13]

∂2 {Φt}
∂z2

+
(
[P ] + k20n

2[I]
)
{Φt} = 0 (1)

with

{Φt} =
{

Φx

Φy

}
[P ] =

[
Axx +Ayy Cxy

Cyx Bxx +Byy

]
where Φα(α ∈ {x, y} ,Φ ∈ {E,H}) is a transverse compo-
nent of electromagnetic field, k0 is a wavenumber in vacuum,
n is a refractive index, and [I] is an identity matrix. Aαα, Bαα,
and Cαβ [(α, β) ∈ {(x, y) , (y, x)}] are differential operators
defined by

AxxΦx =
∂

∂x

{
p
∂
(
p−1Φx

)
∂x

}
(2)

AyyΦx = q
∂

∂y

{
q−1 ∂Φx

∂y

}
(3)

BxxΦy = q
∂

∂x

{
q−1 ∂Φy

∂x

}
(4)

ByyΦy =
∂

∂y

{
p
∂
(
p−1Φy

)
∂y

}
(5)

CαβEβ =
∂

∂α

{
1

n2
∂
(
n2Eβ

)
∂β

− ∂Eβ

∂β

}
(6)

CαβHβ =
∂Hβ

∂β∂α
− n2 ∂

∂β

{
1

n2
∂Hβ

∂α

}
(7)

where p = 1/n2, q = 1 for Φ = E, or p = 1, q = n2 for
Φ = H . In this study, the transversal differential operator,
Aαα, Bαα, and the cross coupling term, Cαβ , are approxi-
mated by Stern’s method [30], [31], and six-point FD formula

described in [32], [33], respectively. The computational win-
dow is terminated by a perfectly matched layer (PML) based
on complex coordinate stretching [34]:

∂

∂α
→ 1

sα

∂

∂α

where

sα = 1− j
(

d

TPML,α

)2

tan δ. (8)

TPML,α is thickness of the PML, d is distance from an
interface between computational window and the PML, and
tan δ is loss tangent. When the phase constant of traveling
light-wave in +z-direction is in the vicinity of k0n0, {Φt}
can be described by

{Φt} = {ϕt} exp (−jk0n0z) (9)

with

{ϕt} =
{
ϕx
ϕy

}
.

ϕ ∈ {e, h} is the slowly varying envelope amplitude with
respect to z-direction. In the FV-BPM based on ADIM and an
implicit Crank-Nicolson scheme [15], the output field from an
optical component, {ϕt}Nz

, can be computed by

{ϕt}Nz
=

Nz−1∏
l=0

(
[Γ4]

−1[Γ3][Γ2]
−1[Γ1]

)
l
{ϕt}0 (10)

where {ϕt}k = {ϕt(x, y, k∆z)}, [Γa]k(a = 1, ..., 4) are
propagation operators at k-th cross section, and ∆z is step
size in z-direction. Note that in (10),

∏
is a reverse-order

product:
N∏
l=0

Ul ≡ UNUN−1 · · ·U1U0.

(10) can be computed very efficiently using Gaussian elimina-
tion in the tridiagonal matrix, known as the Thomas algorithm.

B. Shape and topology optimization with FV-BPM

In the density-based topology optimization, the material dis-
tribution is represented via the normalized density parameter
[1]. The relative permittivity distribution in a certain design
region, n2Ω(= εr,Ω), can be expressed via normalized density
distribution as follows:

n2Ω(x, z) = n2cl + (n2co − n2cl)H(ρΩ(x, z),m). (11)

ncl and nco are the refractive indices of a cladding and a core
material, respectively. We assume that in (11) core height is
uniform in the design region as shown in Fig. 1. H(ρ,m)
∈ [0, 1] is a Heaviside function with a transition region. The
definition is described in [16]. m is a penalty parameter which
controls intermediate materials (gray materials) between the
cladding (white) and the core (black) materials. H(ρ,+∞)
means a complete Heaviside step function. The gray region
is completely removed when m → +∞. Since the gray
materials are not real, they should be removed in the final
phase of optimization. However, device performance is not



JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. XX, NO. Y, MONTH 2019 3

nco

ncl

x

y

z

Design region, Ω

nΩ(x
, z)

Fig. 1. 3D schematic of reflactive index distribution in (11). z is longitudinal
direction of an optical component. The layer width and depth are x- and y-
direction, respectively.

improved if m is excessively large because the value of the
sensitivity is zero in the non-gray region. In this study, m is
moderate small value in the initial phase of optimization, and
we increase gradually the value toward the final phase. The
procedure is described in detail later in this section. When the
computational region is discretized by FD cells and the density
parameters are allocated at each cell, (11) is rewritten by

n2i,k = n2cl + (n2co − n2cl)H(ρi,k,m) (12)

where n2i,k = n2Ω(i∆x, k∆z) and ρi,k = ρΩ(i∆x, k∆z)
[(i∆x, k∆z) ∈ Ω]. Shape and topology optimization can be
carried out by solving an optimization problem of the density
parameters.

Performance of optical waveguide components is usually
represented by normalized power which is computed using
an S-parameter, or normalized power |Sn1,r|2 where Sn1,r

denotes an S-parameter related to an input modal field in port
1 (input port) and an r-th eigenmode field in port-n (output
port). In the case of our study, the sensitivities with respect to
the density parameters (∂Sn1,r/∂ρi,k) have to be computed
to update the density distribution so that the performance
is improved. We assume an eigenmode field in port-n is
normalized by∫∫

DNz

(
ψ∗
y,n,rϕx,n,r − ψ∗

x,n,rϕy,n,r
)
dxdy = 1.

An S-parameter can be estimated by the following overlap
integral:

sn1,r =

∫∫
DNz

(
ψ∗
y,n,rϕx,Nz − ψ∗

x,n,rϕy,Nz

)
dxdy (13)

where (ϕ, ψ, sn1,r) ∈
{
(e, h, Sn1,r), (h, e, S

∗
n1,r)

}
, ϕα,n,r and

ψα,n,r are r-th eigenmode fields in port-n, Dk is a transverse
computational window at z = k∆z, ϕα,Nz

is an output field
at z = Nz∆z, and ∗ denotes complex conjugate.

Discretized form of (13) can be written by

sn1,r = {gn,r}† {ϕt}Nz
(14)

with

{gn,r} = ∆x∆y

[
{ψy,n,r}
−{ψx,n,r}

]
{ϕt}Nz

=

[
{ϕx}Nz

{ϕy}Nz

]
where † denotes Hermitian transpose. Differentiating both side
of (14) to ρi,k, we have

∂sn1,r
∂ρi,k

= {gn,r}†
∂ {ϕt}Nz

∂ρi,k
. (15)

In (15), we assume that input port is not in the design region.
Substituting (10) into (15), we get

∂sn1,r
∂ρi,k

= −
{
λn,r,k+1/2

}T ∂ [Γ4]k
∂ρi,k

{ϕt}k+1

+
{
λn,r,k+1/2

}T ∂ [Γ3]k
∂ρi,k

{ϕt}k+ 1
2

− {λn,r,k}T
∂ [Γ2]k
∂ρi,k

{ϕt}k+ 1
2

+ {λn,r,k}T
∂ [Γ1]k
∂ρi,k

{ϕt}k (16)

where T denotes transpose.
{
λn,r,k+1/2

}
and {λn,r,k} are

adjoint vectors obtained by solving the following adjoint
equations:

[Γ4]
T
k

{
λn,r,k+1/2

}
=

Nz−1∏
l=k+1

(
[Γ1]

T
[Γ2]

−1T
[Γ3]

T
[Γ4]

−1T
)
l
{gn,r}∗

(17)

[Γ2]
T
k {λn,r,k} = [Γ3]

T
k

{
λn,r,k+1/2

}
.

(18)

Since the refractive index at an FD cell, ni,k, is differen-
tiable, the derivative of propagation matrix in the ADIM,
∂[Γa]k/∂ρi,j , can be computed without using a central finite
difference approximation.

In the sensitivity analysis in this study, we let

{gn,r} → ∆x∆y

[
{ϕx,n,r}
{ϕy,n,r}

]
and in (16), {λn,r,k} and

{
λn,r,k+1/2

}
are let to be{

λn,r,k+1/2

}
→ [pk]

{
λn,r,k+1/2

}
{λn,r,k} → [pk] {λn,r,k}

[pk] =

{
[I] for ϕ = e[

1/n2k
]

for ϕ = h

for simple implementation, where [1/n2
k] is a diagonal matrix

composed of cross sectional relative permittivity distribution,{
1/n2

k

}
. In addition, we employ the following 3 × 3 simple

moving average filter in order to avoid complex profile, such
as a checkerboard pattern.(

∂f

∂ρi,k

)
filtered

←
1∑

ξ=−1

1∑
η=−1

1

9

∂f

∂ρi+ξ,k+η
(19)
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port 2

port 1

ncl

z
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nco

y

Ω2

Ω1
dx

dz

T
E
0 or

T
M
0
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0 or TE

1

w1

h

w2

Fig. 2. A 3-D schematic of a TM0-to-TE1 mode converter. Ωi(i = 1, 2) is
a design region.

Fig. 3. An initial profile in an optimal design of a TM0-to-TE1 mode
converter.

The procedure of shape and topology optimization in this study
is as follows:

1. Initialize m, ρΩ, and let iteration count M ← 0.
2. Solve the minimization problem of objective function

f(|S21|2, · · · , |Sn1|2) by repeating the following proce-
dure until m > mmax.
(a) Evaluate device performance using FV-BPM and

compute f .
(b) Compute sensitivity and filter it using (19), then

update ρΩ using a gradient method so that the value
of f decreases.

(c) If M > 0 and |fM − fM−1| < δ (arbitrary small
value), then let m ← Km where K(> 1) is an
arbitrary constant value.

(d) Let M ←M + 1.

III. APPLICATION EXAMPLE

A. TM0-to-TE1 mode converter

First, we apply our design approach to a design of a TM0-
to-TE1 mode converter so as to illustrate its applicability.
This mode converter is employed as a functional section of a
polarization beam splitter and rotator (PSR) [26]–[28]. In this
converter, a fundamental TE-like wave (TE0) goes through it,
and a fundamental TM-like wave (TM0) is transformed into a
first higher-order TE-like wave (TE1). A design schematic of
the mode converter is shown in Fig. 2. Core size, dimensions
of a design region, and refractive indices of core and cladding
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Fig. 4. Objective function as a function of iteration number in the design of a
TM0-to-TE1 mode converter. The insets show |hx| and |hy | fields calculated
by the FV-BPM in an optimized structure.

Fig. 5. An optimized profile of a TM0-to-TE1 mode converter. (a) An
optimized profile. (b) The bird’s-eye view.

materials are as follows: w1 = 0.8 µm, w2 = 1.2 µm,
h = 0.4 µm, dx = 3 µm, dz = 40 µm, nco = 2.2, ncl =
1.445. Since waveguide symmetry has to be broken vertically
to induce TM0-to-TE1 conversion [26], the design region is
divided into two region: Ω1 and Ω2. Density distribution in top
and bottom layers, ρΩ1 and ρΩ2 , are optimized simultaneously.
We solve a minimization problem of the following objective
function:

minimize
{ρ}Ω1

,{ρ}Ω2

f = f1 + f2 + f3 (20)

with

f1 =
(
1− |S21,TE0→TE0 |

2
)2

f2 =
(
1− |S21,TM0→TE1 |

2
)2

f3 =

(
0− |S21,TM0→TM0 |

2

|S21,TM0→TE1 |
2

)2
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Fig. 6. Magnetic fields calculated by the FDTD method in the optimized
TM0-to-TE1 mode converter: (a) TE0 wave and (b) TM0 wave at wavelength
of 1.55 µm are launched into port 1.

where {ρ}Ωi
(i = 1, 2) is a vector of density parameters.

Subscripts of an S-parameter, X→Y, denotes an input mode
(X) and an output one (Y). We estimate these S-parameters
at the wavelength of 1.55 µm. The step size in the BPM
analysis is ∆x = ∆y = 10 nm and ∆z = 50 nm. The
transverse computational window is truncated by the PML
with thickness of 0.5 µm. To avoid TE0-to-TM0 conversion
completely, we impose symmetric condition at x = Lx/2
where Lx is computational window size in x-direction. An
inverse taper waveguide shown in Fig. 3 is given as an initial
profile.

The value of objective function as a function of iteration
number is shown in Fig. 4. As optimization proceeds, the
value of the objective function decreases monotonically until
iteration count 40. The value increases partially in iteration
count from 41 to 55 because gray region is removed by in-
creasing the value of penalty parameter m. Figure 5 shows an
optimized profile of the mode order converter. For validation of
the results of optimization with the FV-BPM, we analyze the
optimized structure using the 3D-FDTD simulation. Magnetic
fields calculated by a handmade 3D-FDTD solver are shown in
Fig. 6. Also in the FDTD results, the TE0 wave passes through
the device, and the TM0 wave is gradually transformed into
the TE1 wave. Since the optimized converter is composed
of periodic rib waveguides, we can see that this conversion
is based on repeated re-coupling of two hybrid modes [18].
For further investigation, tolerance with respect to boundary
deviation in x-direction, ∆, is calculated using the FDTD, and
the results are compared with those of the FV-BPM analysis in
Fig. 7(a). One FV-BPM analysis run takes ∼1 minute whereas
one 3D-FDTD run takes ∼28 hours using our handmade
solvers and a PC with a Intel Xeon CPU E5-2660 (2.00 GHz).
Although the results by the FV-BPM are not in complete
agreement with those calculated by the FDTD, the tendency
is almost in accord. In the FDTD simulation, the optimized
profile with +5 nm boundary deviation has better performance.
According to the FDTD calculation, the optimized converter
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Fig. 7. (a) Tolerance with respect to boundary deviation, ∆, at wavelength of
1.55 µm and (b) transmission spectra in the optimized mode order converter.
In (b), we compare numerical results of the FDTD (∆ = +5 nm) with those
of the FV-BPM (∆ = 0 nm).

has insertion loss of < 0.146 dB (< 0.317 dB) for TE0 (TM0)
input, and crosstalk (TM0-to-TM0) of < −18 dB within the
boundary deviation of ±5 nm.

Figure 7(b) shows transmission spectra and a comparison of
numerical results of the FV-BPM (∆ = 0 nm) and the FDTD
(∆ = +5 nm). The FDTD results show that this converter has
insertion loss of < 0.4 dB, and crosstalk of < −20 dB in the
range from 1.5 to 1.565 µm covering C-band. Reflection is
not illustrated in the figure, but it is not significant and is at
most −30 dB.

B. Polarization rotator

Next, we will show the design results of a PR. The configu-
ration of a rotator is shown in Fig. 8. Core size and dimensions
of a design region are as follows: w = h = 0.8 µm,
dx = 3 µm, dz = 25 µm. In this design, dispersive nature
of materials is taken into account. Core (nco) and cladding
(ncl) indices are determined by Sellmeier equations of SiO2

[35] and Si3N4 [36]. It is known that polarization rotation is
induced when a cross sectional core profile is L-shaped [21].
If a core profile is simple L-shaped, two hybrid modes are
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port 1
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TM0

TE0
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ncl
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z
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Fig. 8. A 3-D schematic view of a polarization rotator. Ωi(i = 1, 2) is a
design region.

Fig. 9. An initial profile in an optimal design of a polarization rotator.

excited, and the device length can be determined by the beat
length

Lπ =
λ

2∆ne
(21)

where λ is wavelength and ∆ne is difference of effective
indices between the two hybrid modes. In a simple L-
shaped rotator, Lπ is approximately 37.6 µm at wavelength
of 1.55 µm. dz is set to be shorter than the device length of
simple one. Objective function in this design are determined
as follows so that TM0 input into port 1 converts into TE0

wave at port 2:

minimize
{ρ}Ω1

,{ρ}Ω2

f =
∑
λ∈Λ

(f1 + f2) (22)

with

f1 =
(
1− |S21,TM0→TE0

|2
)2

f2 =

(
0− |S21,TM0→TM0

|2

|S21,TM0→TE0
|2

)2

.

To obtain a wavelength-flattened rotator over the range from
1.5 µm to 1.6 µm, the device is optimized at three wave-
lengths: Λ = {1.5 µm, 1.55 µm, 1.6 µm}. Considering the
operation principle of an L-shaped rotator, we optimize a
rotator imposing symmetric condition at z = Lz/2 where Lz

Fig. 10. An optimized polarization rotator. (a) An optimized profile. (b) The
bird’s-eye view.
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Fig. 11. Magnetic fields calculated by the FDTD method in the optimized
rotator: Hx(left) and Hy(right) fields at wavelength of 1.55 µm.

is computational window size in z-direction. An initial profile
is a straight waveguide shown in Fig. 9.

The optimized polarization rotator is shown in Fig. 10.
Figure 11 shows magnetic fields calculated by the 3D-FDTD
solver at wavelength of 1.55 µm in the optimized rotator. We
can see that almost complete polarization rotation is verified
in the optimized PR. Tolerance with respect to boundary
deviation and transmission spectra are calculated using the
FDTD, and comparison with the results of the FV-BPM
analysis is shown in Fig. 12. The results by the FV-BPM are in
almost agreement with those by the FDTD, and the tendency
of transmittance is practically estimated using the FV-BPM.
Figure 12(a) shows tolerance with respect to ∆ at a center
wavelength of 1.55 µm. According to the FDTD simulation,
insertion loss of < 0.082 dB and crosstalk of < −22.4 dB
in the range of ∆ = [−10 nm,+10 nm] are achieved. Figure
12(b) indicates transmission spectra of TE0 and TM0 waves at
port 2. The optimized PR attains low insertion loss of < 0.06
dB and low crosstalk of < −34 dB in the shown range.

C. Discussion

As shown in the two design examples, our design approach
can practically estimate shape- or topology-optimized profile
although it does not always offer rigorous solution. Since
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Fig. 12. Tolerance with respect to boundary deviation and transmission spectra
in the optimized rotator. (b) Tolerance at a center wavelength of 1.55 µm and
(b) transmission spectra.

the BPM is based on the SVEA, it is difficult to apply this
design approach to design of optical components which have
complicated profile, such as devices based on a binary material
reported in [37]–[39]. The application range of our design
approach is limited to optical components where geometrical
profile is gradually changed in the propagation direction. Our
design approach can contribute to enhance performance of
optical devices based on directional coupling, or gradual mode
evolution. Recently, waveguide devices with relatively high-∆
(∆ ∼ 20%) have been attracted attention because fabrication
requirements can be relaxed, but these devices have a large
footprint, and are time-consuming to optimize numerically
using rigorous simulation methods. Since the FV-BPM costs
considerably lower computational time than the FDTD, our
approach is useful for efficient initial design of such optical
components based on gradual mode conversion. Nevertheless,
a valid geometrical constraint condition has to be studied.
Although the sensitivity smoothing filter used in this work
can eliminate extremely complex structure, it does not always
assure appearance of specific profile which can be analyzed
accurately to some extent using the FV-BPM. In the BPM, an
equivalent propagation constant, βe, is widely utilized so as

to minimize the phase error, where βe is defined by

βe =

√
{Φt}† ([P ]− k20n2[I]) {Φt}

{Φt}† {Φt}
. (23)

Since βe is a weighted average on phase constants of all
propagating modes, it may be utilized as a constraint condition
to obtain optical devices based on gradual mode evolution. It
is our future work to develop a valid filtering technique and a
constraint condition which forbid abrupt change of waveguide
profile or βe in the propagation direction.

IV. CONCLUSION

We presented the shape and topology optimal design ap-
proach utilizing FV-BPM for optical waveguide devices. Sen-
sitivity analysis and design procedure are described in the
specific case that the density method and the FVFD-BPM are
employed. Applying our approach to design of a TM0-to-TE0

mode converter and a PR in the relatively high-∆ platform,
we investigated the applicability of our design approach. The
design results indicate that our approach has potential to be
useful for efficient initial design of photonic devices based on
gradual polarization rotation, or mode evolution.
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