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Abstract—As a promising research area in Internet of Things
(IoT), Internet of Vehicles (IoV) has attracted much attention
in wireless communication and network. In general, vehicle
localization can be achieved by the Global Positioning Systems
(GPS). However, in some special scenarios, such as cloud cover,
tunnels or some places where the GPS signals are weak, GPS
cannot perform well. The continuous and accurate localization
services cannot be guaranteed. In order to improve the accuracy
of vehicle localization, an assistant vehicle localization method
based on Direction-of-Arrival (DOA) estimation is proposed in
this paper. The assistant vehicle localization system is composed
of three Base Stations (BS) equipped with a Multiple Input
Multiple Output (MIMO) array. The locations of vehicles can
be estimated if the positions of the three BSs and the DOAs
of vehicles estimated by the BSs are known. However, the
DOA estimated accuracy maybe degrade dramatically when the
electromagnetic environment is complex. In the proposed method,
a Sparse Bayesian Learning (SBL) based robust DOA estimation
approach is first proposed to achieve the off-grid DOA estimation
of the target vehicles under the condition of non-uniform noise,
where the covariance matrix of non-uniform noise is estimated
by a Least Squares (LS) procedure, and a grid refinement
procedure implemented by finding the roots of a polynomial
is performed to refine the grid points to reduce the off-grid
error. Then, according to the DOA estimation results, the target
vehicle is cross-located once by each two BSs in the localization
system. Finally, robust localization can be realized based on the
results of three-time cross-location. Plenty of simulation results
demonstrate the effectiveness and superiority of the proposed
method.

Index Terms—Vehicle localization, Base station, Off-grid er-
ror, Non-uniform noise, Direction-of-arrival estimation, Sparse
Bayesian learning

I. INTRODUCTION

W ITH the rapid development of economy and automatic
driving technology, the number of mobile devices such

as autonomous vehicles [1], [2] has increased dramatically in
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Internet of Things (IoT). The vehicle localization is becoming
more and more important for Internet of Vehicles (IoV) [3],
[4] since the data transmission is based on accurate location
information of vehicles. Generally, vehicle localization can
be accurately achieved by the cooperation between Global
Positioning Systems (GPS) and motion sensors on the vehicles
in most scenarios when the GPS is available [5]. However,
GPS is not always available anywhere. Therefore, it is partic-
ularly important to exploit an assistant localization system,
which may be composed of radars or sensors [6], [7], to
achieve vehicle localization. The Received Signal Strength
Indication (RSSI) technique has been adopted widely [8], [9],
[10] to achieve target vehicle localization. However, most of
the RSSI-based algorithms need to know the spatial fading
characteristics of signals [11], [12], [13], which is difficult to
obtain accurately due to the complexity of wireless channel.
In addition, some Time Difference of Arrival (TDOA) based
algorithms [14], [15] are arisen, but their performance is highly
sensitive to time difference measurement, which makes it
hard to achieve high accuracy vehicle localization. Aiming at
this, the Direction-of-Arrival (DOA) based target localization
methods [16], [17] become a good choice. Compare with the
RSSI and TDOA, the DOA-based localization methods are just
dependent on the accuracy of DOA estimation, which is easily
obtained by the plenty exist DOA estimation algorithms.

For DOA estimation, a lot of excellent methods have been
proposed based on the subspace technique, such as Multiple
Signal Classification (MUSIC) [18], [19] algorithm and Esti-
mation of Signal Parameters via Rotational Invariance Tech-
niques (ESPRIT) [20]. Further, some Reduced-Complexity
(RC) methods, such as root-MUSIC [21], RC-MUSIC [22] and
RC-ESPRIT [23], are reported for reducing the computational
complexity of the subspace based algorithms. However, only
when the Signal-to-Noise Ratio (SNR) and snapshot number
are large enough, these subspace-based algorithms can achieve
the required DOA estimation performance. When the SNR is
low and/or the snapshot number is limited, their performance
may decrease significantly. To overcome these limitations, the
Sparse Signal Representation (SSR) technique has emerged as
a new DOA estimation technique. Based on the advantages
of SSR technique, amounts of SSR-based methods have been
presented for DOA estimation, including l1-norm optimization
based algorithm [24], [25] and Sparse Bayesian Learning
(SBL) based algorithm [26], [27]. Compared with the l1-norm
optimization based algorithm, the SBL-based methods are paid
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more attention by scholars because of their small estimation
error and better estimation performance [28].

However, it is known that the SBL-based methods usually
obtain the sparsity of the signal by discretizing the spatial
range, which will form a uniform discrete grid, and then DOA
estimation can be realized by using the maximum likelihood
criterion or the maximum posterior probability criterion. How-
ever, without a suitable discrete grid, which is difficult to
select in practice, it is hard for SBL-based method to achieve
the satisfied DOA estimation performance [29]. A dense
enough grid will lead to heavy computation complexity. It is
unavailable for all true DOAs to exactly locate on the discrete
grid points, and then the off-grid error must exist between the
true DOA and its nearest grid point. Aiming at solving the off-
grid DOA estimation problem, a Sparse Total Least Squares
(STLS) solution is proposed in [30], where the off-grid gap
is supposed to follow a Gaussian prior distribution, and the
error is approximated by the first order Taylor expansion of
the true DOA at the grid point closest to it. In addition,
a new method called Off-Grid Sparse Bayesian Inference
(OGSBI) [31], in which the off-grid error is supposed to obey
a uniform distribution within the grid interval, is proposed to
achieve the off-grid DOA estimation by linear approximation.
Furthermore, a block-sparse Bayesian learning method [32],
where the noise variance does not need to be estimated, is
presented to realize the off-grid DOA estimation by utilizing
the covariance matrix of received data. However, both of these
two methods in [31] and [32] achieve the satisfied off-grid
DOA estimation performance at the expense of computational
complexity, and their performances are still unsatisfied under a
very coarse grid condition. Therefore, in order to achieve satis-
fied performance with relatively low computational complexity
and a coarse grid, the root sparse Bayesian learning algorithm
for off-grid DOA estimation (ROGSBL) is reported in [33],
in which the spatial grid is refined by solving a polynomial.
Nevertheless, the process of solving polynomial in [33] is
still computationally inefficient. Hence, to further improve
the efficiency of the grid updating procedure, an enhanced
SBL method [34] is proposed to realize the off-grid DOA
estimation, where the grid point is dynamically updated by a
forgotten factor model.

On the other hand, all the algorithms mentioned above for
off-grid DOA estimation are based on the assumption that the
noise is uniform Gaussian white noise which is unrealistic
to meet in practice due to the non-uniform sensor response
and non-ideal receiving channel [35], [36]. Aiming at dealing
with the non-uniform noise, a large number of Maximum
Likelihood (ML) based algorithms [37]-[40] have been pro-
posed in the past few decades. Particularly, the stochastic
ML method presented in [40] can effectively eliminate the
influence of non-uniform noise by accurately estimating the
covariance matrix of non-uniform noise based on a modified
inverse iteration algorithm. However, the requirement of ML
algorithm for joint search makes it unfavorable for practical
application. On the other hand, the SSR-based algorithms [41]-
[44] for DOA estimation under non-uniform noise condition
also attract great attention. By utilizing the modified inverse
iteration algorithm in [40] to estimate the covariance of non-

uniform noise, an improved SBL-based algorithm is presented
in [41] to realize DOA estimation with non-uniform noise.
Besides, considering the second-order statistical information of
the received signal, several covariance matrix based methods
[42], [43] are investigated to achieve DOA estimation in non-
uniform noise, and the high precision DOA estimation can
be achieved in [43] based on an adaptive procedure [29].
However, the performance of the method proposed in [43]
may suffer from aperture loss and can be further improved.
Moreover, by adopting the Least Squares (LS) strategy, a SBL-
based method [44], which is suitable for non-uniform noise is
proposed to achieve DOA estimation. It is not difficult to find
that all the algorithms mentioned above either consider the
presence of non-uniform noise or the off-grid error. However,
in order to improve the DOA estimation accuracy in complexly
practical environment, the coexisting of non-uniform noise and
off-grid error have to be tackled efficiently.

In this paper, an assistant vehicle localization method based
on a SBL-based robust DOA estimation approach in the co-
existence of non-uniform noise and off-grid error is proposed,
where the assistant vehicle localization system is composed of
three collaborative Base Stations (BSs) equipped with Multiple
Input Multiple Output (MIMO) array. In the proposed DOA es-
timation method, the received data of BS is firstly compressed
by a transformation matrix. Then a sparse model is established
for off-grid DOA estimation, where the variance of echo signal
is estimated by Expectation Maximization (EM) algorithm.
The noise power, which is always non-uniform noise after
dimensional reduction, is estimated by a LS strategy, and the
discrete grid point is refined by the EM algorithm which is
performed by solving a polynomial. Finally, the off-grid DOA
estimation can be realized by performing a one Dimension
(1D) spectrum search of the echo signal on the refined discrete
grid. Extensive simulation results indicate that the proposed
method can maintain superior localization performance based
on the excellent performance of the proposed robust DOA
estimation approach under the coexistence of non-uniform
noise and off-grid error, especially under the condition of a
very coarse grid.

The main contributions of this paper are summarized as
follows:

1) A vehicle localization system consisting of three col-
laborative BSs equipped with MIMO array is presented.
Each two of the three BSs can cross-locate the target
vehicle once, and three results of cross-location can be
obtained. The final localization result is obtained by the
average of three cross-location results, which enables
the proposed method to achieve more stable localization
performance.

2) The collaborative BS is composed of MIMO array which
can expand array aperture effectively, and the spatial
diversity makes radar signal processing achieve more
Degree of Freedom (DOF). These advantages make
MIMO array obtain higher spatial angle resolution for
DOA estimation, improve the accuracy of angle estima-
tion effectively, and increase the maximum number of
discernible targets significantly.

3) A SBL-based robust DOA estimation approach is pro-
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posed under the coexistence of non-uniform noise and
off-grid error. The LS strategy is adopted to estimate the
variance of non-uniform noise, and a grid refinement is
performed by finding roots of a polynomial to update
the discrete grid. Thus the DOA estimation approach
can effectively handle the influence of non-uniform
noise and off-grid error simultaneously. As a result,
the proposed DOA estimation approach can maintain
more accurate and stable localization performance un-
der the coexistence of non-uniform noise and off-grid
error. On the other hand, compare with the subspace-
based method, the proposed SBL-based approach is less
sensitive to SNR and snapshot number, and can maintain
superior performance of DOA estimation under small
SNR or/and low snapshot number.

4) The grid refinement procedure in the proposed DOA
estimation approach can effectively reduce the off-grid
error, especially in the very coarse grid case. Without af-
fecting the performance of DOA estimation, the coarser
the grid partitions, the faster the DOA estimation speed
achieves. In addition, by selecting an appropriate number
of “active” grid points, the DOA estimation speed can be
improved further. Plenty of simulations are conducted to
verify the superiority and effectiveness of the proposed
approach.

The definition of some important notations used in this
paper are given in the following Table I.

TABLE I
SOME IMPORTANT NOTATIONS

Notations Definition

capital bold letters the matrices

lowercase bold letters the vectors

(·)T the transpose operation

(·)H the conjugate transpose operation

(·)−1 the inverse operation

E{·} find the mathematical expectation

diag{·} the diagonalization operation

CM×N the M ×N complex matrix set

⊗ the Kronecker product

tr(·) return the trace of a matrix

min(·) return the minimum value of a set

∥ · ∥F the Frobenius norm

∥ · ∥2 the 2-norm

| · | the absolute value

II. LOCALIZATION SYSTEM AND DATA MODEL

As shown in Fig. 1, consider an assistant vehicle localization
system with three collaborative BSs consisting of a large
number of antennas, where the BS is equipped with MIMO
array. This is reasonable since a large number of antennas can
be used for constructing the MIMO array. All the three BSs

Base Station

Base Station Base Station

Vehicle

Vehicle

Fig. 1. Vehicle localization system with three collaborative base stations

are configured and work in the same way. The BS estimates
the DOA of the target vehicle, and each two BSs cross-
locate the target vehicle based on the DOA estimation results.
The accurate localization can be ultimately achieved through
the three results from cross-localization. Each BS consists of
transmitting array and receiving array, and the transmitting
array and receiving array are colocated, which means that the
DOA of a vehicle is identical for the transmitting array and
receiving array. Both transmitting array and receiving array
are uniform linear array (ULA), and the distance between
adjacent antennas is half-wavelength. Suppose that the trans-
mitting array and receiving array are composed of M and N
antennas, respectively. There exist K target vehicles in the
same plane range, θk represents the DOA of the kth target
where k = 1, 2, · · · ,K. The transmitting array of BS emits
M orthogonal waveforms and the receiving array collects the
echo signal reflected by the target vehicles. Then the echo
signal received by receiving array of the BS at the tth snapshot
can be expressed as [18]

x̃(t) =
K∑

k=1

sk(t)ar(θk)aTt (θk)ΩΩΩ + ñ(t), (1)

where sk(t) = ξk(t)e
j2πfk(t) represents the echo signal

reflected by the kth target vehicle, ξk(t) and fk(t) stand for the
reflection coefficient and the Doppler frequency, respectively.
ΩΩΩ = [ω1, ω2, · · · , ωM ]T is the complex code matrix of M
orthogonal waveforms emitted by transmitting array, where
ωm(m = 1, 2, · · · .M) represents the complex code vector
transmitted by the mth transmitting antenna. When i = j, the
waveforms satisfy ωH

i ωj = 1, and when i ̸= j, they satisfy
ωH
i ωj = 0. ñ(t) represents the unknown non-uniform Gaus-

sian white noise vector and its covariance can be expressed
as Q̃ = E{ñ(t)ñ(t)H} = diag{σ2

1 , σ
2
2 , . . . , σ

2
N}, where σ2

n is
the variance of noise received by the nth receiving antenna
and σ2

1 ̸= σ2
2 ̸= . . . ̸= σ2

N . at(θk) and ar(θk) respectively
represent the transmit steering vector and receive steering
vector with at(θk) = [1, e−jπsinθk , . . . , e−jπ(M−1)sinθk ]T and
ar(θk) = [1, e−jπsinθk , . . . , e−jπ(N−1)sinθk ]T . After matching
filtering, the output data at the receiving array of the BS can
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be expressed as
x(t) = As(t) + n(t), (2)

where x(t) ∈ CMN×1 is the output data vector at the
tth snapshot. A = [at(θ1) ⊗ ar(θ1), · · · , at(θK) ⊗ ar(θK)]
represents the transmit-receive joint steering matrix. And
s(t) = [s1(t), s2(t), · · · , sK(t)]T is the echo signal vector. n(t)
denotes the noise vector after matched filtering, which is still
non-uniform noise. The covariance matrix of n(t) is shown as

Q = E{n(t)n(t)H} = IM ⊗ Q̃. (3)

Collecting T snapshots, the output data in Eq. (2) can be
formulated as the matrix form as follows

X = AS + N, (4)

where X = [x(1), x(2), . . . , x(T )], S = [s(1), s(2), . . . , s(T )],
and N = [n(1), n(2), . . . , n(T )].

By observing the structure of the joint steering matrix A, it
can be found that the joint steering vector at(θk)⊗ ar(θk) ∈
CMN×1. However, there are only P = M + N − 1 unique
entries in it, which means that there exist some redundant
entries in it. Considering the existence of redundant entries in
the joint steering vector, it can be rewritten as

at(θk)⊗ ar(θk) = J × b(θk), (5)

where b(θk) = [1, e−jπsinθk , . . . , e−jπ(P−1)sinθk ]T is the new
steering vector, and J ∈ CMN×P is expressed as

J =



1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 1 0 · · · 0

0 1 0 · · · 0 · · · 0
0 0 1 · · · 0 · · · 0
...

...
...

. . .
...

. . .
...

0 0 0 · · · 1 · · · 0

...
...

...
...

...
...

...

0 · · · 0 1 0 · · · 0
0 · · · 0 0 1 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 1



(6)

Hence, the data model in Eq.(4) can be rewritten as

X = JBS + N, (7)

where B = [b(θ1), b(θ2), · · · , b(θK)] is the new steering
matrix without redundant entries. It should be noticed that it
is inappropriate to directly multiply JH with Eq. (7) to reduce
the dimension, which will transform the noise into color noise
[34]. On the other hand, we can find that

JHJ = diag(1, 2, · · · ,min(M,N), · · · ,min(M,N)︸ ︷︷ ︸
|M − N | + 1

, · · · , 2, 1),

(8)

which is a full rank matrix. Hence, in order to remove the
redundant entries and achieve the purpose of dimensionality
reduction, the following transformation matrix is constructed

D = (JHJ)−1JH . (9)

By multiplying the transformation matrix D with the data
model in Eq. (7), we have

Y = DJBS + DN = BS + E, (10)

where Y = [y(1), y(2), . . . , y(T )]. E = DN is still the
unknown non-uniform noise, and its covariance matrix is
shown as

Q̄ = E{(Dn(t))(Dn(t))H} = diag{σ̄2
1 , σ̄

2
2 , . . . , σ̄

2
P } (11)

where σ̄2
p(p = 1, 2, · · · , P ) can be regarded as the converted

noise power. Obviously, whether the received noise at the
receiving array is uniform or non-uniform, the converted noise
must be non-uniform noise.

Generally, according to the sparse representation strategy,
the plane range from −90◦ to 90◦ where target vehicle is
located is uniformly fixed into K̄ parts with K̄ ≫ P > K.
Then a discrete grid will be formed in the plane and a complete
direction set ϑ̄̄ϑ̄ϑ = [ϑ1, ϑ2, · · · , ϑK̄ ] can be obtained. Obviously,
if the complete direction set is dense enough, the vehicles are
sparse on it. Then the sparse signal model of Eq. (10) can be
expressed as

Y = B̄S̄ + E (12)

where B̄ = [b(ϑ1), b(ϑ2), · · · , b(ϑK̄)] ∈ CP×K̄

is the overcomplete dictionary with b(ϑk̄) =
[1, e−jπsinϑk̄ , . . . , e−jπ(P−1)sinϑk̄ ]T (k̄ = 1, 2, · · · , K̄).
And S̄ = [̄s(1), s̄(2), . . . , s̄(T )], where s̄(t) =
[s1(t), s2(t), · · · , sK̄(t)]T is a K sparse signal vector.
According to the sparse signal model in Eq. (12), the DOA
estimation of vehicles can be achieved by estimating the
parameters of the sparse signal vector.

III. SBL-BASED ROBUST DOA ESTIMATION

A. Sparse Bayesian framework

Based on the statistical Sparse Bayesian Learning (SBL)
strategy [26], each column of the sparse matrix S̄ is supposed
to follow the independent complex Gaussian distribution in
this paper, i.e.,

s̄(t) ∼ CN (0,ΥΥΥ), (13)

where CN (0,ΥΥΥ) represents the complex Gaussian distribu-
tion with zero mean and variance ΥΥΥ = diag(γγγ). γγγ =
[γ1, γ2, · · · , γK̄ ]T is known as the hyper-parameter set, and
γk̄ denotes the variance of echo signal from the direction ϑk̄.
Since S̄ contains the echo signal of T snapshots, its probability
density distribution can be calculated as

p(S̄|γγγ) =
T∏

t=1

CN (s̄(t)|0,ΥΥΥ). (14)

In addition, the entries of γγγ are assumed to follow the
independent Gamma distribution, i.e., γk̄ ∼ Γ(α, β), with
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k̄ = 1, 2, · · · , K̄. Then the probability density distribution of
ΥΥΥ can be obtained as

p(ΥΥΥ) =

K̄∏
k̄=1

Γ(γk̄|α, β), (15)

where Γ(γk̄|α, β) = Γ(γk̄)
−1βαγα−1

k̄
e−βγk̄ with Γ(γk̄) =∫∞

0
tγk̄−1e−tdt. Generally, α and β are two constants close

to zero [26].
According to the above assumptions and Bayesian principle,

it is easy to deduce that the received data Y also follows the
complex Gaussian distribution. Hence, the probability density
function of Y is

p(Y|S̄, Q̄) =
T∏

t=1

CN (y(t)|B̄s̄(t), Q̄)

= |πQ̄|−T exp{−tr[(Y − B̄S̄)HQ̄−1
(Y − B̄S̄)]}.

(16)

Then by utilizing the Bayesian derivation, the posterior
probability density of S̄ can be calculated as

p(S̄|Y;γγγ, Q̄) =
p(Y|S̄; Q̄)p(S̄|γγγ)∫
p(Y|S̄; Q̄)p(S̄|γγγ)dS̄

= |πΣΣΣ|−T exp{−tr[(S̄ −µµµ)HΣΣΣ−1(S̄ −µµµ)]},
(17)

where µµµ and ΣΣΣ respectively represent the mean and covariance,
which are calculated as

µµµ =ΥΥΥB̄H
(Q̄ + B̄ΥΥΥB̄H

)−1Y, (18)

ΣΣΣ = ΥΥΥ−ΥΥΥB̄H
(Q̄ + B̄ΥΥΥB̄H

)−1B̄ΥΥΥ. (19)

In order to estimate µµµ and ΣΣΣ , the hyper-parameter γγγ and the
non-uniform noise covariance matrix Q̄ should be estimated
first. The posterior probability density distribution of Y with
respect to γγγ and Q̄ can be calculated as follows

p(Y|γγγ, Q̄) =

∫
p(Y|S̄, Q̄)p(S̄|γγγ)dS̄

= |πΣΣΣY|−T exp{−tr(YHΣΣΣ−1
Y Y)},

(20)

where ΣΣΣY = Q̄ + B̄ΥΥΥB̄H . Obviously, it is a type-II maximum
likelihood problem for the estimation of γγγ and Q̄. By taking
the logarithm of Eq. (20) and neglecting the constant terms, the
objective likelihood function for estimating hyper-parameter γγγ
is shown as follows

L(γγγ, Q̄) = ln|ΣΣΣY |+ tr(ΣΣΣ−1
Y R̂), (21)

where R̂ = 1
T YYH is a substitute for R = E[y(t)yH(t)],

because the ideal R is unrealistic to obtain in practice.

B. Estimation of echo signal and non-uniform noise power

To estimate the hyper-parameter γγγ, we just have to minimize
the objective likelihood function in Eq. (21). Generally, the Ex-
pectation Maximization (EM) algorithm is adopted to optimize
the objective likelihood function and achieve the estimation
of γγγ. Hence, according to the strategy of EM algorithm, the

partial derivative of Eq. (21) with respect to γγγ is taken and
we set it to be zero, i.e.,

∂L(γγγ, Q̄)

∂γγγ
= 0. (22)

Then, by solving Eq. (22), the updating formula for γγγ can
be derived as γ

(i)

k̄
= 1

T ∥(µµµ
(i))k̄·∥22 + (ΣΣΣ(i))k̄,k̄. However, in

the process of convergence, most elements of γγγ tend to be
zero due to its sparsity, which may lead to the calculation
singularity. Therefore, in order to avoid this phenomenon, the
updating formula for γγγ is revised as [28]

γ
(i)

k̄
=

1

T
∥(µµµ(i))k̄·∥22/

[
1−

(ΣΣΣ(i))k̄,k̄

γ
(i)

k̄

]
+ τ, (23)

where k̄ = 1, 2 . . . , K̄. (·)k̄ and (·)k̄,k̄ represents the k̄th entry
of a vector and (k̄, k̄)th entry of a matrix, respectively. γ(i)

k̄
,

µµµ(i) and ΣΣΣ(i) denote the estimated results of γk̄, µµµ and ΣΣΣ
in the ith iteration, respectively, where µµµ(i) and ΣΣΣ(i) can be
calculated by Eq. (18) and Eq. (19). τ is a small positive
constant, such as τ = 10−10 [28].

On the other hand, Q̄ can also be estimated theoretically
by optimizing the objective likelihood function in Eq. (21).
However, it seems impossible to obtain the analytical esti-
mation of Q̄ by optimizing the objective likelihood function
in Eq. (21) through the partial derivative due to the non-
uniformity of Q̄ [28]. Therefore, LS procedure is adopted to
estimate the non-uniform noise covariance matrix Q̄. After
each iteration, the crude estimation of K DOAs, which is
denoted as ϑ̂̂ϑ̂ϑ = [ϑ̂1, ϑ̂2, · · · , ϑ̂K ], can be obtained by the
1D spectrum search, and the corresponding steering matrix is
B̂K = [b(ϑ̂1), b(ϑ̂2), · · · , b(ϑ̂K)]. Based on the theory in [44]
and the knowledge of subspace technique, the subspace formed
by the columns of R−Q̄ and B̂K are the same subspace, which
means

R − Q̄ = B̂KH, (24)

where R = E[y(t)yH(t)], and H is a full rank matrix. The
p(p = 1, 2, · · · , P )th column of R − Q̄ can be represented by
up = vp − σ̄2

pep, where vp denotes the pth column of R and
ep is a column vector with only the pth element is 1 and the
other elements are 0. Then, the error between column vectors
of R − Q̄ and B̂KH can be calculated by

g(p) = ∥up − B̂Khp∥22, (25)

where hp represents the pth column of H. By utilizing the LS
procedure to solve the Eq. (25), the LS solution of hp can
be obtained as hp = (B̂

H

KB̂K)−1B̂
H

Kup. Then, the objective
function for estimating noise variance can be derived by
substituting hp back into g(p) as follows

ℓ(σ̄2
p) =

P∑
p=1

∥up − B̂Khp∥22 =

P∑
p=1

uH
p ΠΠΠup, (26)

where ΠΠΠ = IP − B̂K(B̂
H

KB̂K)−1B̂
H

K . Then, the updating
formula for the non-uniform noise covariance matrix Q̄ is
derived by taking the partial derivation of ℓ(σ̄2

p) with respect
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to σ̄2
p, i.e., ∂ℓ(σ̄2

p)/∂σ̄
2
p = 0. Thus, the updating formula for

σ̄2
p can be derived as

σ̄2
p =

eTpΠΠΠvp − vHp ΠΠΠep
2eTpΠΠΠep

. (27)

Until now, the variance of echo signal and non-uniform
noise can be estimated by Eq. (23) and Eq. (27), respectively.
Based on the sparsity of S̄, the DOA estimation can be realized
through the 1D spectrum search now. However, the obtained
accuracy of DOA estimation is still seriously affected by
the off-grid error. Especially, when the discrete grid is very
coarse, the performance will be seriously degraded. Aiming
at solving this problem, the off-grid DOA estimation with a
coarse grid will be achieved by a grid refinement procedure
in the following subsection.

C. Off-grid DOA estimation

Similar to the procedure in [33], the EM algorithm is used to
refine the grid points. In E-step, the mathematical expectation
of Eq. (16) is first calculated as follows

Ep(S̄|Y;γγγ,Q̄){ln(p(Y|S̄, Q̄))}

= −
T∑

t=1

∥Q̄− 1
2 (yt − B̄µµµt)∥22 − T tr

(
(Q̄− 1

2 B̄)ΣΣΣ(Q̄− 1
2 B̄)H

)
,

(28)

where yt and µµµt represent the tth column of Y and µµµ,
respectively. Then, in M-step, the mathematical expectation
(i.e., Eq. (28)) of Eq. (16) is maximized. Let φk̄ , e−jπ sinϑk̄ ,
and then we set the partial derivative of Eq. (28) with respect
to φk̄ to be 0, i.e.,

(b̈
′

k̄)
H

(
b̈k̄

T∑
t=1

(|µµµt,k̄|2 + εk̄,k̄)

+ T
∑
i̸=k̄

εi,k̄b̈i −
T∑

t=1

µµµ∗
t,k̄ ÿt−k̄

)
= 0,

(29)

where b̈k̄ = Q̄− 1
2 bk̄ and b̈

′

k̄ = db̈k̄/dφk̄. bk̄ denotes the k̄th
column of B̄. ÿt−k̄ = ÿt −

∑
i ̸=k̄ µµµt,k̄b̈i with ÿt = Q̄− 1

2 yt.
µµµt,k̄ denotes the (t, k̄)th element of µµµ, and εi,k̄ is the (i, k̄)th
element of ΣΣΣ. Then, by defining the following equation

Φ(k̄) ,
T∑

t=1

(|µµµt,k̄|2 + εk̄,k̄), (30)

Ψ(k̄) , T
∑
i ̸=k̄

εi,k̄b̈i −
T∑

t=1

µµµ∗
t,k̄ ÿt−k̄, (31)

Eq. (29) can be transformed into a polynomial form as

[φk̄, 1, φ
−1
k̄

, . . . , φ
−(P−2)

k̄
]



P (P−1)
2 Φ(k̄)

Ψ
(k̄)
2

2Ψ
(k̄)
3
...

(P − 1)Ψ
(k̄)
P

 = 0, (32)

where Ψ
(k̄)
p denotes the pth entry of Ψ(k̄). Since |φk̄| = 1,

the root with absolute value nearest to 1 in the P − 1 roots is
chosen to refine the grid point after solving the polynomial.
The chosen root is represented by φk̄∗ , and then the k̄th new
grid point can be calculated by

ϑref

k̄∗ = arcsin
(
− λ

2πd
· angle(φk̄∗)

)
. (33)

Actually, when the true DOAs of vehicles overlap with the
original grid points, the refinement procedure would inevitably
reduce the accuracy of DOA estimation. Therefore, in order
to avoid this negative impact, a further threshold is set to
determine whether to refine the grid points or not as follows

ϑk̄∗−1 + ϑk̄∗

2
≤ ϑref

k̄∗ ≤
ϑk̄∗ + ϑk̄∗+1

2
. (34)

Now, a SBL-based robust DOA estimation approach under
the coexistence of non-uniform noise and off-grid error has
been proposed. The estimation of variance of echo signal and
non-uniform noise can be obtained by an iterate procedure.
The proposed method is summed up in Algorithm 1.

Algorithm 1 SBL-Based Robust DOA Estimation Approach
1: Input: The received data X;
2: Construct the transformation matrix D according to Eq.

(9);
3: Obtain Y according to Eq. (10);
4: Initialization: Q̄, γγγ;
5: while ∼ Converge do
6: Update µµµ and ΣΣΣ by Eq. (18) and Eq. (19);
7: Update γγγ according to Eq. (23);
8: Update Q̄ according to Eq. (27);
9: Refine ϑ̄ϑϑ according to Eq. (32), Eq. (33) and Eq. (34)

10: end while
11: Output: ϑ̄ϑϑ and µµµ;
12: Achieve off-grid DOA estimation through 1D spectrum

search on new ϑ̄ϑϑ.

Remark 1: In step 4, Q̄ is initialized as Q̄ = (σ̄2)(0)IP with
(σ̄2)(0) = |tr{(IP − B̄B̄H

)R̂}/(P −K)|, where IP denotes a
P × P unit matrix. γγγ is initialized as (γk̄)

(0) = 1
T ∥(µµµ

(0))k̄·∥22
with µµµ(0) = B̄H

(B̄B̄H
)−1Y.

Remark 2: The proposed robust DOA estimation method can
maintain superior performance in the case of the coexistence
of non-uniform noise and off-grid error, mainly caused by step
8 and step 9. In step 8, the variance of non-uniform noise can
be accurately estimated. In step 9, the off-grid error can be
minimized effectively. Actually, the refinement procedure in
step 9 does not need to be implemented for every grid point
in each iteration. In order to speed up the DOA estimation
of the proposed algorithm, a proper number of “active” grid
points are selected to be refined [33]. Define f = ∥µµµt∥F , and
then the “active” grid points are determined according to the
index of the first η maxima value of f , where 1 ≤ η ≤ P .
Usually, η is set to be η ≥ K. When the number of signal is
unknown, η = P is recommended.
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Fig. 2. Simplified diagram for vehicle localization with three collaborative
base stations

IV. VEHICLE LOCALIZATION BASED ON DOA ESTIMATION

For the sake of simplicity, the BSs in Fig. 1 are simplified to
the bold red line as shown in Fig. 2, and the central antenna of
BS is set as the reference point. The coordinates of reference
points A1, A2 and A3 corresponding to the three collaborative
BSs are known to be (0, a), (0, 0) and (b, 0), respectively. S is
the position of the target vehicle, and its azimuth angles related
to A1, A2 and A3 are defined as θ1, θ2 and θ3, respectively.

According to the measured data of BS A1, A2 and A3, θ1, θ2
and θ3 can be obtained by the robust DOA estimation approach
in Algorithm 1, respectively. Then the following equation can
be obtained as

tanθ1 =
a− y

x
, (35)

tanθ2 =
y

x
, (36)

tanθ3 =
b− x

y
. (37)

Based on Eq. (35) and Eq. (36), the target vehicle can be
cross-located, and the coordinate of S(x, y) can be calculated
as

x1 =
a

tanθ1 + tanθ2
, y1 =

atanθ2
tanθ1 + tanθ2

. (38)

Similarly, based on Eq. (36) and Eq. (37), Eq. (35) and Eq.
(37), the coordinates of S can be obtained respectively as

x2 =
b

1 + tanθ2tanθ3
, y2 =

btanθ2
1 + tanθ2, tanθ3

, (39)

x3 =
b− atanθ3

1− tanθ1tanθ3
, y3 =

a− btanθ1
1− tanθ1tanθ3

. (40)

Ultimately, based on the results of three cross localization
in Eq. (38), Eq. (39) and Eq. (40), the coordinate of S(x, y)
can be determined by

x =
x1 + x2 + x3

3
, y =

y1 + y2 + y3
3

. (41)

Remark 3: Theoretically, we only need two of the three
BSs in Fig. 2 to determine the coordinate of S and achieve
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Fig. 3. Power spectrum under different grid intervals

TABLE II
DOA ESTIMATION RESULTS BY THE PROPOSED DOA ESTIMATION

APPROACH

Grid interval DOA 1 DOA 2 DOA 3

r = 1◦
True DOA −22.5000◦ 9.9600◦ 36.1900◦

Estimated DOA −22.4988◦ 9.9212◦ 36.2518◦

r = 2◦
True DOA −20.8700◦ 1.3900◦ 34.3400◦

Estimated DOA −20.9657◦ 1.4466◦ 34.3429◦

r = 4◦
True DOA −22.1800◦ 4.5700◦ 33.3800◦

Estimated DOA −22.1599◦ 4.5272◦ 33.3420◦

r = 6◦
True DOA −27.3300◦ 2.1900◦ 36.9100◦

Estimated DOA −27.3579◦ 2.2131◦ 36.9920◦

the vehicle localization, and the result calculated by Eq. (38),
Eq. (39) and Eq. (40) are equal. However, in practice, the
coordinates estimated by only two collaborative BSs must exist
errors due to various disturbances, and the results of Eq. (38),
Eq. (39) and Eq. (40) cannot be completely equal. In this
paper, three collaborative BSs are used, in which each two BSs
can estimate the coordinates of the target vehicle once. The
finally estimated coordinates are averaged by Eq. (41), which
can reduce the localization error and make the localization
result more stable.

V. SIMULATION AND TEST RESULTS

In this section, the performance of the proposed vehicle
localization method is mainly evaluated by the DOA esti-
mation performance of the proposed robust DOA estimation
method. The OGSBI [31], ROGSBL [33] and the enhanced
SBL method (abbreviated as ESBL) [34] are adopted to
compare with the proposed method. In addition, the Cramér-
Rao Bound (CRB) is utilized to evaluate the performance of
these methods. Each BS in the localization system consists
of M = 8 transmitting antennas and N = 10 receiving
antennas, and the distance between adjacent antennas in both
transmitting and receiving arrays is half-wavelength. Suppose
there exist K = 3 un-correlated targets in the same range,
and for the sake of generality, their DOAs are randomly
generated from [−30◦,−20◦], [0◦, 10◦] and [40◦, 50◦] with a
resolution of 0.01◦, respectively. The range from −90◦ to 90◦
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Fig. 4. RMSE versus SNR under non-uniform noise condition
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Fig. 5. RMSE versus the number of snapshot under non-uniform noise
condition

is uniformly fixed by 4◦, which will form a very coarse grid.
Except for special instructions, the number of “active” grid
points is generally selected as η = P = M +N − 1, and the
covariance matrix of received non-uniform noise is modeled
as Q̃ = diag{[10, 1, 9, 7, 2, 8, 1.5, 0.5, 1, 3]}. The Worst Noise
Power Ratio (WNPR) is defined by

WNPR , σ2
max

σ2
min

, (42)

where σ2
max and σ2

min represent the maximum value and
the minimum value of noise power, respectively. In order to
analyze the performance of these methods intuitively, the Root
Mean Square Error (RMSE) is defined by

RMSE =
1

K

K∑
k=1

√√√√1

ξ

ξ∑
i=1

(
θ̂i,k − θk

)2
, (43)

where ξ represents the total number of Monte Carlo trials,
which is set as ξ = 100 in this paper. θ̂i,k denotes the
estimated result of DOA for the kth target in the ith Monte
Carlo simulation.

Firstly, the power spectrum of the proposed DOA estimation
method with different grid intervals in the case of non-uniform

20 30 40 50 60 70 80 90 100

WNPR

10-3

10-2

10-1

100

101

102

R
M

S
E

(d
eg

re
e)

OGSBI
ROSBL
ESBL
Proposed

Fig. 6. RMSE versus WNPR under non-uniform noise condition

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Grid interval(degree)

10-3

10-2

10-1

100

101

102

103

R
M

S
E

(d
eg

re
e)

OGSBI
ROGSBL
ESBL
Proposed

Fig. 7. RMSE versus grid interval under non-uniform noise condition

noise (i.e. Q̃ = diag{[10, 1, 9, 7, 2, 8, 1.5, 0.5, 1, 3]}) is simu-
lated. The results are given in Fig. 3, where the SNR is set
as SNR = 0dB, and the number of snapshot is T = 200. The
different grid intervals are set as r = 1◦, r = 2◦, r = 4◦ and
r = 6◦, respectively. As shown in Fig. 3, the power spectrum
of the proposed method has very sharp peaks, which can be
used to estimate DOA, in the case of different grid intervals.
This represents that the proposed method has the advantages
of high accuracy and high resolution under the coexistence of
non-uniform noise and off-grid error, especially under a very
coarse grid condition. On the other hand, the DOA estimation
results of Fig. 3 are given in Table II. It can be seen that no
matter how large the grid interval is, the proposed method can
still maintain high estimation accuracy. This further illustrates
that the proposed method can effectively reduce the influence
of non-uniform noise and off-grid error, and maintain high
DOA estimation accuracy.

Then, the performance of the four methods under different
SNRs are compared in the case of non-uniform noise. Fig.
4 shows the change of RMSE versus SNR of four methods,
which is carried out under the condition that the number of
snapshot is T = 200. As shown in Fig. 4, with the increase of
SNR, the RMSE of OGSBI almost does not decrease, while
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Fig. 8. RMSE versus grid interval with different number of active grid points

that of the other three methods keep decreasing. It is obvious
that the proposed method has the lowest RMSE among the four
methods, and the RMSE of the proposed method is closer to
CRB. The main reason for this result is that the performance
of OGSBI in a very coarse grid case is mainly limited by
the off-grid error, and the increase of SNR cannot effectively
reduce this error. On the other hand, although ROGSBL and
ESBL can effectively reduce the off-grid error under coarse
grid condition, they ignore the non-uniform noise.

Fig. 5 shows the RMSE versus the number of snapshot in
the non-uniform noise case, where SNR = 0dB, T = 200.
It is clear from Fig. 5 that the performance of the proposed
method improves with the increase of the number of snapshots
and is more approach CRB. Conversely, the performance of
the other three methods do not improve significantly with the
increasing number of snapshots. This is due to the existence
of non-uniform noise, which is neglected by the other three
methods.

Fig. 6 depicts the relationship between RMSE and WNPR
with SNR = 0dB and T = 200, where WNPR is generated
only by changing the maximum value of noise power. It can be
observed that the increase of WNPR does not affect RMSE of
OGSBI because the off-grid error is dominant in a very coarse
grid condition. On the other hand, the RMSE of ROGSBL
and ESBL keep increasing with the increase of WNPR, which
means that their performance are seriously degraded. While the
proposed method always keeps a lowest RMSE at all WNPRs,
and its performance is slightly influenced by the non-uniform
noise. This is because the proposed method can effectively
reduce the influence of non-uniform noise, while the other
three methods completely ignore it.

Fig. 7 is the comparison of RMSE of different methods
versus different grid intervals in non-uniform noise, where the
SNR and snapshot number are respectively set as SNR = 0dB
and T = 200. As shown in Fig. 7, the proposed method can
achieve lower RMSE than the other three methods at all grid
interval conditions, especially in a very coarse case, which
demonstrates that the proposed method can guarantee the DOA
estimation accuracy under the coexistence of off-grid error and
non-uniform noise.
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Fig. 9. Average simulation time versus grid interval with different active
grid points

Fig. 8 illustrates the RMSE versus grid interval with d-
ifferent number of active grid points, and Fig. 9 illustrates
the average simulation time versus grid interval with different
number of active grid points, where η is selected as η = 4,
η = 8, η = 12 and η = 16, respectively. Both of these two
results are generated in the case of SNR = 0dB and T = 200.
As shown in Fig. 8, no matter how many activate grid points
are selected, the performance of the proposed method can be
maintained in almost the same excellent performance. Besides,
it can be found from Fig. 9 that the average simulation
time decreases with the increase of grid intervals, and the
smaller the number of active grid points is, the less the
average simulation time needs. The results in Fig. 8 and Fig.
9 demonstrate that the DOA estimation speed of the proposed
method can be accelerated by selecting an appropriate number
of active grid points and grid interval without affecting the
accuracy of DOA estimation.

Finally, the vehicle localization performance of different
DOA estimation methods is tested based on the proposed
assistant localization system, where T = 200, r = 4◦ and
η = P = M + N − 1. Supposed there exist two vehicles
in the same plane range as shown in Fig. 10, their posi-

Y

X

1(0,500 )A m

2 (0,0)A
3(600 ,0)A m

#1(200 ,400 )m m

#2(500 ,300 )m m

Fig. 10. Localization diagram for two vehicles
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TABLE III
VEHICLE LOCALIZATION RESULTS AND ERRORS BY OGSBI

SNR/dB (x#1, y#1)/m Error/m (x#2, y#2)/m Error/m

-10 (193.30, 399.30) 6.74 (504.67, 294.16) 7.48

-5 (202.61, 394.08) 6.47 (494.92, 305.76) 7.68

0 (194.56, 399.16) 5.51 (505.07, 295.03) 7.10

5 (194.34, 399.32) 5.70 (505.34, 295.00) 7.31

10 (194.24, 399.36) 5.79 (505.48, 294.98) 7.43

TABLE IV
VEHICLE LOCALIZATION RESULTS AND ERRORS BY ROGSBL

SNR/dB (x#1, y#1)/m Error/m (x#2, y#2)/m Error/m

-10 (193.35, 400.59) 6.68 (503.76, 295.57) 5.81

-5 (195.61 399.17) 4.47 (502.84, 296.66) 4.38

0 (198.51 398.21) 2.34 (502.59, 298.02) 3.26

5 (199.97 398.91) 1.09 (501.12, 299.88) 1.13

10 (199.54 399.73) 0.53 (500.40, 299.51) 0.63

tion coordinates are #1(200m, 400m) and #2(500m, 300m),
respectively. The coordinates of reference points of three
BSs are A1(0m, 500m), A2(0m, 0m) and A3(600m, 0m),
respectively. Theoretically, the DOAs of these two vehicles
with respect to A1, A2 and A3 are θ#1

1 = 26.56◦, θ#1
2 =

63.43◦, θ#1
3 = 45.00◦ and θ#2

1 = 21.80◦, θ#2
2 = 30.96◦,

θ#2
3 = 18.43◦. The vehicle localization results and errors

versus SNR by different DOA estimation methods are given
in Table III, IV, V and VI, respectively. By comparing these
results, it can be obviously found that the localization error of
our proposed DOA estimation method is the smallest among
the four methods, which is consistent with the performance of
DOA estimation.

VI. CONCLUSIONS

In this paper, an assistant vehicle localization method based
on three collaborative BSs via a robust SBL-based DOA esti-
mation approach is proposed. Through EM algorithm and LS
strategy, the power of non-uniform noise and the discrete grid
points can be accurately estimated and updated respectively by
the proposed robust DOA estimation approach, which enables
it to maintain superior DOA estimation performance under the
coexistence of non-uniform noise and off-grid error. Based
on the collaborative BSs and the proposed DOA estimation
approach, the vehicle localization with both off-grid error
and non-uniform noise scenario can be accurately achieved.
Large number of simulation results have fully demonstrated
the effectiveness and superiority of the proposed method. In
the future, the proposed vehicle localization method can be
combined with the GPS localization to further improve the
localization accuracy and real-time localization performance.
Thus how to combine the proposed vehicle localization system
with GPS system and how to design the localization algorithm
is the key problem to be further solved.

TABLE V
VEHICLE LOCALIZATION RESULTS AND ERRORS BY ESBL

SNR/dB (x#1, y#1)/m Error/m (x#2, y#2)/m Error/m

-10 (208.13, 394.10) 10.05 (501.65, 305.52) 5.76

-5 (193.05, 405.01) 8.57 (504.45, 297.05) 5.34

0 (195.84, 402.92) 5.08 (500.52, 299.34) 0.84

5 (196.13, 402.87) 4.82 (500.58, 299.44) 0.81

10 (196.90, 401.97) 3.67 (500.29, 299.51) 0.57

TABLE VI
VEHICLE LOCALIZATION RESULTS AND ERRORS BY THE PROPOSED

APPROACH

SNR/dB (x#1, y#1)/m Error/m (x#2, y#2)/m Error/m

-10 (201.88, 400.11) 1.88 (502.40, 299.26) 2.51

-5 (199.70, 398.89) 1.15 (499.27, 300.35) 0.81

0 (200.37, 399.52) 0.60 (500.29, 299.76) 0.37

5 (199.54, 400.12) 0.47 (500.12, 300.22) 0.25

10 (199.76, 400.09) 0.26 (500.04, 299.88) 0.13
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