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Abstract—Recently, the installation of 5G networks offers a variety of
real-time, high-performance and human-oriented customized services.
However, the current laying 5G structure is unable to meet all of the
growing communication needs by these new emerging services. In this
paper, we propose a DQL (Deep Q-learning Network) based intelli-
gent resource management method for 5G architecture, to improve
the quality of service (QoS) under limited communication resources.
In the environment of network function virtualization (NFV), we aim at
improving the efficient usage of spectrum resources. In this two-step
solution, our first goal is to guarantee the maximum communication
quality with the smallest number of infrastructures. Then, a DQL-based
wireless resource allocation algorithm is designed to realize the elabo-
rate operation. Unlike previous studies, our system can provide the allo-
cation policy in a more subdivided way and finally maximize the usage
of bandwidth resources. The simulation also shows that our proposed
MSIO improves 3.12% in the performance of the maximum coverage
importance problem and the ARODQ algorithm improves 4.05% than
other standard solutions.

Index Terms—Intelligent control, Intelligent networks, Artificial intelli-
gence, Management decision-making, Mobile communication.

1 INTRODUCTION

Nowadays, the conception of 5G has gradually entered
people’s vision. With the broad deployment of IoT and
mobile devices, 5G technology provides more sufficient
services than conventional mobile communication technolo-
gies. Predictably, billions of devices will be connected to
the new mobile communication band in a few years. Users’
habits will be changing dramatically because of the support
of these mobile wireless communication devices. In 2019
July, the Japanese government has attempted to install 5G-
enabled devices on street power poles to assist the realiza-
tion of a city-level advanced self-driving system [1]. Some
social issues, such as elderly drivers and full-fledged trend
toward population, would be alleviated by the city-level
dedicated band based autonomous systems. As the evolving
of artificial intelligence causes more intelligent services to
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Fig. 1. The architecture of network function visualization based 5G
network. The network is divided into specific channels to satisfy different
uses.

come, more 5G infrastructures for this kind of specific use
would be requested in the future [2].

Different from conventional mobile wireless technolo-
gies, 5G leverages denser cellular technology and flexi-
ble band configurations to achieve greater transmission
throughput [3]. With the increasing of communication de-
mand, 5G may only rely on more infrastructures to pro-
vide individual channels or communication devices for the
specific use of these services, as shown in Fig. 1, which
are limited by the coverage of RRHs (remote radio heads)
and the complicated channel conditions [4]. To overcome
these problems, the pioneers have accordingly provided a
variety of technologies for 5G architecture: C-RAN (cloud
radio access network) [5], as a high-profile design for 5G
networks, can control and allocate spectrum resources more
flexibly [6] from the centralized clouds. WNV (wireless
network visualization), which concentrates on a higher level
of resource management and virtualization, integrates the
network capabilities among the 5G infrastructure architec-
ture [7] [8].

Although the above solutions can use in a more efficient
way, they still cannot fulfill the performance requirements
of the growing heterogeneous wireless network communi-
cations. Specifically, with the advent of the Great Age on
the Internet, various devices such as IoT, smart devices and
wearable devices are on the rise [9]. To improve the usage ef-
ficiency of 5G communication resources, one of the primary
problems is how to flexibly allocate existing communication
resources [10] [11]. In particular, in the absence of effective
expansion of spectrum resources, the existing system has
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to not only take care of the QoE of the traditional services
[12], but also quickly respond to the needs of new type
services. Therefore, how to guarantee the communication
infrastructures for new specific channels, and then provide
sufficient bandwidth usage under limited spectrum resource
is the core problem in our study.

To overcome the resource tradeoff problem in future 5G,
this paper focuses on the flexibility and scalability of the 5G
resource allocation system, to maximally ensure the quality
of service (QoS) in 5G architecture. We propose a deep
reinforcement comprehensive solution for 5G architecture,
to improve overall usage efficiency under limited commu-
nication resources. At first, we formulate the scenario as a
maximum coverage problem and the optimization goal is to
maximize the communication coverage with the minimum
number of infrastructures. Then, a DQL-based network
decision-making method is designed to allocate the network
resource in real-time. Unlike previous studies, this decision-
making method is based on the slicing of the existing chan-
nel conditions, which provides resource allocation policies
in a more subdivided way to realized maximized bandwidth
usage.

The structure of the following part is introduced here:
in Section 2, we discuss the state of art technologies in the
cross-field of C-RAN and DQL. In Section 3, we formulate
the basic service providing problem as a maximum cover-
age quality problem and develop an algorithm to solve it.
Correspondingly, we propose a deep Q-learning method to
manage resource allocation policies in Section 4. In the simu-
lation of Section 5, we testify our theory and emphasize the
flexibility and efficiency of our proposed solution. Finally,
we close our paper with future discussion in Section 6.

2 RELATED WORK

To overcome the spectrum resource inefficiency in 5G ar-
chitecture, the C-RAN technology is needed to maximize
the scheduling of all the message transmission, when the
huge computation can afford the AI technologies to achieve
a higher performance than pre-defined schedules. The chal-
lenge becomes how to realize a stable and joint platform for
new 5G architecture [13]. More than that, the heterogeneous
communication means in 5G also make the combination
of these network resource as new challenges, and only the
highly integrated heterogeneous network could be fluently
controlled by the C-RAN technology.

C-RAN based Solutions: C-RAN, which is a key tech-
nology to enable better capacity and flexibility for the 5G
architecture [14], takes advantage of the computation ability
in the cloud to realize traffic control in RRHs. In recent
years, many studies have developed a large-scale solution
to holistically control the transmission platform. Because
of the cost and unbalanced spectral allocation issues, Park
[15] pays more attention to the front-haul and access links,
to maximize the overall throughput of all mobile devices
which are active in the clusters. Meanwhile, the limitation
of power control is also satisfied in BBUs and RRHs, to
achieve a better efficiency performance in a C-RAN archi-
tecture. Furthermore, to control the wireless communication
system more accurately, Cai [16] overcomes the problem of

outdated CSI (channel state information). The authors high-
light the topology settings and spectrum allocation problem
under the old CSI based framework. Then they propose
a more solid policy for the above stochastic optimization,
where the computation cost is low in the cloud and the
performance is better, due to the online structure of C-RAN
and MCC. To explore a better capacity of cloud-based radio
access control, Li [17] conducts a QoS oriented computation
and communication resource allocations service which aims
at minimizes the overall power consumption of the C-RAN
system. A Mixed Integer Non-linear Problem is proposed to
describe the resource allocation problem, and they develop
a geometric map to fix the virtual machine-users.

Challenges in Heterogeneous Networks: As discussed
in the previous section, a few new concepts emerge to enable
solutions for the specific use of wireless network visualiza-
tion. The traditional NFV (network function visualization),
aiming to implement new network functions with software
design in order to satisfy use of [18], [19]. Another new
innovated conventional technology, SDN (software-defined
network) [20], is used to decouple the control and for-
warding of the data stream, which makes all the resources
programmable. In C-RAN architecture, network computa-
tion intelligence is the advantage of making policies and
resource allocation by the centralized cloud. As in a niche
of wireless network virtualization, resource blocks (RBs) are
considered as a way of spectrum resource allocation solution
to guarantee QoE [21], with a higher rate and lower delay.
As a kind of network slice, the optimization goal transfers
from the data forwarding on the whole spectrum band
to achieve better performance on the dedicated vitalized
wireless band.

DQL in 5G networking: Computation intelligence is
nowadays a widely used approach to improve the decision
making the accuracy of the control system, from individual
devices to the centralized wireless communication resource
control [22] [23]. Sun [24] proposes dynamic reservations
systems to make a more efficient resource arrangement.
As one of the virtual networks’ core problems, the infras-
tructure has to reserve some resources for future use, and
the proposed allocation method can maximize the overall
service utility of these resources through deep reinforce-
ment learning. Then, improve the Q-learning model, Qi
[25] develops a normalized advantage functions to reduce
redundancy of state calculation. The core concept of the
solution is using k-means to find an appropriate action in
the discrete space to speed up the repetition of a similar
policy.

3 SERVICE-ORIENTED COVERAGE PROBLEM

In Fig. 2, it shows the deep Q-learning-based comprehensive
solution for 5G architecture. At first, we transfer the VNF
architecture into a channel dividing based service-oriented
coverage allocation problem, which aims at the reasonable
deployment of RRHs. After solving the maximum cover-
age problem by proposing a channel division based RRH
covering algorithm, we further discuss how to transfer the
real communication condition to neural network learn-able
problem. A DQL based network resource allocation method
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Fig. 2. The system model of network slicing based resource allocation,
which use the infrastructure method to solve the maximum coverage
optimization problem and a DQL based network resource allocation to
complete the allocation policy exploration.

is proposed for policy exploration. Next are the detail steps
to realize the maximum coverage optimization.

3.1 Deployment Model
For some special 5G services, such as autonomous driving
mentioned above, the RRHs for vehicular signal transmis-
sion have to be mounted on the grid along the road in
a region. Without the loss of the generality, we consider a
plane wherever the RRHs can be distributed to conduct our
research. A VNF based 5G architecture can be simplified as
a star topology where the sink head is the base station [26],
and expanded by several distributed RRHs which timely
connected by mobile devices through particular channels.

Next, we consider there exists a set of RRHs M =
{m1,m2, · · · ,mmax} on the map. Meanwhile, there will be
several channels used to sever specific applications, noted
as C = {c1, c2, · · · , cmax}. A channel is considered as pure
subband divided from whole 5G spectrum band to provide
safe and uninterfered communication services. Thus, for one
RRH m, a set of available channels Cm = {c1, c2, · · · } is
defined for specific use of services. For an arbitrary RRH m
holds the non-specific use channel noted as c0 = ∀ci ∈ C .

On the real map, the mobile nodes are usually active
in the street blocks. We consider a communication require-
ment map Φ that can be divided into blocks, noted as
Φ = {Φ1,Φ2, · · · }. Then, we preset an importance ratio φ
to present the service importance in this region (e.g. the
government service area with the fire station and police
station). We also use the acreage set S = {s1, s2, · · · } to
present the actual size of each block. Assume there will be
|C| services that need to use specific channels for wireless
communication. Then, for arbitrary c-th channel, we create
a specific channel map of the region Φc for each, where φck
presents the importance in channel c of block k. If in present
the block k is served by at least one RRH using channel c,
the binary parameter of Xc

k is considered as 1, otherwise,
denoted as 0.

3.2 Maximum Coverage Problem
To guarantee the best service for every channel, the opti-
mization goal is that the RRHs can cover the blocks in all
the channels as much as they can. Then, the problem can
be formulated as follows: On a communication requirement
map Φ divided by blocks, given a set of RRHs M with
limited channel service capacity during a period of service
time T , in order to serve mobile nodes set N ’s demands,

find a schedule for the maximum coverage problem that in
each time slot t the total sum of coverage binary parameter
X could be maximum.

To develop a dynamic solution for the multiple-channel
scenario, we redefine the channel division based maximum
coverage (CDMC) problem as:

On a communication requirement map Φ divided by
blocks with importance ratio φ and acreage s, given a set
of RRH M with limited channel service capacity during
a period of time T , in order to serve randomly deployed
mobile nodes set N ’s served by different channels and
bandwidth requirement, find a solution for channel division
based maximum coverage (CDMC) problem so that during
time period T the overall coverage importance for all chan-
nels C could be maximum.

In a general condition, if we set φ and s as 1, the coverage
quality problem can be easily transferred as a problem of
service coverage. For an arbitrary map of Φ, we denote the
coverage ratio of the map as CO(Φ) = {(Φt, t)|t ∈ T}.
Then, we define the Coverage Importance for the time frame
T as,

Maximize

CO(T ) =

∑
(Φt,t)∈CO(T )

∑
Φj∈Φt

Xj

|T | · |Φ|
(1)

where the upper part of the fraction means the total number
of blocks severed in each time stamp t and the lower part
is sum of blocks |Φ| should be served according to all the
time stamp t ∈ T . Notice that it is possible that multiple
nodes are located in one block, where Xj = 1 is considered
in these cases. The RRH mp served to this block j is noted
as mp ∈ Φj .

Then, if the map Φ is fully covered in any time of T ,
the coverage importance would be CIM(CO(T )) = 1.
When the channel resource is limited, the CIM would be
less than 1 and it will become a problem to search for the
maximum value of CIM ; If the communication resource
is enough CIM ≥ 1, there will be surplus resources for
flexible use. First, we will discuss the necessary condition of
ensuring CIM = 1, then develop an algorithm to maximize
the coverage importance value. Obviously, the necessary
condition of the maximum coverage would be:

(1) Every block belonging to map Φ in arbitrary channel
c ∈ C has been served during T , ∀Xc

k = 1.
(2) Each sub-map covering Φc is always a connected

undirected acyclic graph.
If there is a map Φ served by a set of RRH n = |M ′c|,

where M ′c ∈M for a specific channel c. Let |Φ0| be the area
of Φ, which divided by the squares with length d. When
there exists a positive integer h and 0 < ε < 1 and we can
have

|Φ|
d2

|c|∑
i=1

h∑
j=0

Cj
n(

1

|Φi|/d2
)j(1− 1

|Φi|/d2
)n−j < |c|ε, (2)

where the |Φ|d2 is the number of square blocks and |c| is the
number of channels.

As shown in Fig. 3, in each square, it will be more than
h nodes. Based on the Bayesian probability, all the blocks
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Fig. 3. The worst case of RRH deployment. Square 1 still can be fully
covered.

can be served during the whole duration, and finally we get
CO(T ) = 1.

3.3 Maximum Service Importance Optimization Algo-
rithm

Since a map of Φ with above allocation with computation
complexity O((h + 1)M ) may lead to more than a NP-
hard problem, to approximate the optimization, we de-
velop a maximum service importance optimization algo-
rithm through the following two steps: Temporal Maximum
Coverage Deployment to find one unique RRH which can
optimally improve coverage importance at this time point;
Overall Coverage Construction to calculate the overall solu-
tion for the whole service period T .

3.3.1 Temporal Maximum Coverage Deployment
This subsection is to discuss how to approximate the maxi-
mum coverage importance for all the channels in a specific
time t. Without loss of generality, we assume the channel
requirement in each block is a dynamic value depending
on the time. Thus we develop a more versatile algorithm to
search for the solution.

In a time slot t, there will be c independent maps needed
to be served. At first, we set up the empty |c| disjoint sets,
denoted as M ′ = {M ′1,M ′2, · · · ,M ′c} , which is similar
with Algorithm 1 (CDRRHC). Then, a temporal maximized
coverage importance CIM ′ is used to present the current
value after a node put into the set of M ′, where we have

CIM ′(CO(M ′)) =

∑|c|
i=1

∑
Φi

j∈ΦM′ φjsjX
i
j

|M ′|
∑|c|

i=1

∑
Φi

j∈Φ φjsj
. (3)

The upper part of this fraction is the sum of the coverage
importance served by RRHs while the lower part is the
sum of importance value in all the blocks. If multiple RRHs
are allocated in one block j, Xi

j is also considered as 1 in
channel i. To simplify the problem, we also consider that one
RRH can only serve one channel. Therefore, the arbitrary
RRH mp served to this block j in channel i is noted as
mp ∈ Φi

j .
When a new candidate node j ∈M with specific channel

c is put into the set of M ′, there will be a non-negative value
if a new block is covered. Let a function r(j) represent there
exists a node nearby and connected to the cloud through the
network, where we could denote it as r(j) = {rmobile(j) ∪

rbase(j)} = 1. Then, for ∀j ∈M as a candidate, we calculate
the increment value for putting into the M ′ set as

CIM+(j) = CIM(CO(M ′ ∪ j))− CIM(CO(M ′)) (4)

where r(j) = 1. The value will be positive if a new block
is covered, otherwise, it becomes negative. The reason why
CIM+(j) becomes negative is that if node j provides the
communication area concluded by other nodes in M , based
on Eq. 3, the only increment of denominator would only
lead a smaller CIM ′ in the future, which finally leads to a
negative benefit of CIM+.

To achieve the highest coverage importance, we consider
a greedy strategy that focuses on improving the CIM+ in
every step, which aims at

argmax(CIM(M, j)) = (CIM+(j))′

=

∑|c|
i=1

∑
Φ+ φjsjXj

|M ′2 +M ′|
∑|c|

i=1

∑
Φi

j∈Φ φjsj

(5)

where Φ+ = Φ(M ′∪j) − ΦM ′ . Therefore, this function con-
verges to 0 if no more blocks would be covered. This func-
tion is a general indicator for coverage allocation problems,
which also can be applied in the former problem if the
computation complexity is beyond the polynomial time.

Algorithm 1 Maximum Service Importance Optimization
Algorithm
Require: Φ: a service requirement map, concluding block

importance φ and acreage s; T : a time frame ; M : RRH
node sets;

Ensure: M ′: the disjoint set of nodes for covering blocks;
CIM : the overall service importance;
Set empty disjoint node set M ′ → 0;
for each t = 1; t ≤ T ; t+ +; do

Input importance φ(t) and acreage s(t);
for each j = 1; j ≤ m; j + +; do

Calculate temporal importance array
ImList(j, |C|)← argmax(CIM(M ′, j))

end for
Select node j in the highest value in ImList;
if highest value in Max(Imlist)→ 0 then

Loop Break;
end if
Add Node j into Set M ′t ←M ′t ∪ j;

end for
Calculate the total importance CIM(CO(M ′));

Following is the complexity description of our proposed
Maximum Service Importance Optimization (MSIO) Algo-
rithm: Step.1 and Step.2 are normal set up. Step 3 is a
traversing process for all the nodes in M which causes
computation complexity as O(|M ||C|) and Step 4 makes the
complexity of the loopless than O(|M |2|C|). Through time
period T , the overall complexity to output is the final so-
lution would be O(|M |2|C|T ). When considering T and C
is a relatively small constant value, the overall computation
complexity of MSIO Algorithm becomes O(M2), which is
under polynomial time.
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4 RESOURCE ALLOCATION USING DQL
As mentioned above, the visualized network functions
(VNF) can visualize various resources, including the pre-
defined wireless channels [27] [28]. Although the MSIO
algorithm solves the problems of channel slicing and RRH
allocation, which contains an independent map and nodes
of disjoint set, however, there still allocation problems if one
RRH covers more than one block.

4.1 Optimization Goal and Action Reward

In each channel, the balance of bandwidth resources in
each block is important due to the service standards such
as QoE, and the waste of spectrum would also lead to a
lower capacity of the whole network. Assume on a specific
channel division map Φc, the communication demands in
each block is denoted as D = {d1, d2, · · · , d|Φ|}, and the
allocated bandwidth from all the m RRHs is considered
as B = {b1, b2, · · · , bm}, where ∀bi = [bi1, bi2, · · · , bi|Φ|]T .
Then, the reward for any resource allocation policy is de-
noted as R(d, b), which is also the optimization goal of our
evaluation system, where we have

Maximize

R(d, b) = α1 ·
|min{Bt/p,D}|

|D|
+
α2

|m|
∑
·Sigmod[θ2 · Sigmod(θ1 ·A)]

(6)

s.t, |D| = d1 + d2 + · · ·+ d|Φ|
|B| =

∑|Φ|
i=1

∑m
j=1 bij

|B| ≤ |D|
AT = [1.0, w1, w2]

In Eq. 6, w1 is the bandwidth occupancy ratio of real
utilization and assigned to this block, denoted as w1 =
(min{di, bΦi

})/(bi), and w2 is the overall bandwidth occu-
pancy ratio of the whole assignment, denoted as w2 = bi/B;
p is the packet size of each communication demand.

On the right side of the equation, the first part including
α1 is the QoE value which indicates how many require-
ments have been satisfied, which also reflects the latency
of the waiting queue. The parameter α1 is adjustable to
make the function elastic, which balances the different SLAs
(service-level agreement) for channel C . The second part is
a XNOR function to emphasize the bandwidth occupation
ratio of the whole network, to grantee the overall network
capacity and stability.

As shown in Fig. 4, the XNOR function is implemented
using a combination of AND, NOR, and OR calculation.
Our proposed XNOR neural network has three layers,
including the input layer. The numbers 1 in the first and
second layers are the bias units of these two layers. The
letter θ, on the links, represents the parameter of each layer.
The training process is considered as follows:
1) Input: Four training samples are used here, each with

two characteristics: (0, 0), (1, 0), (0, 1), (1, 1).
2) Target output: Refer to the output between 0 and 1 above,

where the two inputs are the same (e.g. (0, 0) or (1, 1)) as
0, and the maximum different inputs (e.g. (1, 0)) as 1.

3) Parameter Initialization: Random, the range is from (-1,
1).

1.0

𝒂𝒂𝟏𝟏
(𝟏𝟏)

𝒂𝒂𝟐𝟐
(𝟏𝟏)

1.0

𝒂𝒂𝟏𝟏
(𝟐𝟐)

𝒂𝒂𝟐𝟐
(𝟐𝟐)

𝒂𝒂𝟏𝟏
(𝟑𝟑)

𝒂𝒂(𝟏𝟏) 𝒂𝒂(𝟐𝟐) 𝒂𝒂(𝟑𝟑)

Input Layer Output LayerHidden Layer

Fig. 4. The neural network architecture for the reward evaluation.

For network occupation ratio ∀w1 and ∀w2, we combine
the input as A(1) = [1.0, a

(1)
1 , a

(1)
2 ]T , and we have parameter

inside,

a
(2)
1 = Sigmoid(a

(1)
1 · θ

(1)
11 + a

(1)
2 · θ

(1)
12 + 1 · θ(1)

10 )

a
(2)
2 = Sigmoid(a

(1)
1 · θ

(1)
21 + a

(1)
2 · θ

(1)
22 + 1 · θ(1)

20 )

where Sigmoid(z) =
1

1 + exp(−z)
.

(7)

Thus the output of the first layer is [A(2)]T =

[1.0, [Sigmoid(θ(1) · A(1)]T ] = [1.0, Sigmoid([a
(2)
1 , a

(2)
2 ]T ].

Then, the connection between the last two layer of this BP is
A(3) = Sigmoid(θ(2) ·A(2)). With already trained θ, and the
network occupation ratio A, we can have the SE value A(3)

as

A(3) = Sigmoid[θ(2) · Sigmoid(1.0; θ(1) ·A(1))]. (8)

4.2 DQL based Resource Allocation Decision Making
Algorithm

Algorithm 2 Action Reward Optimization Deep Q-learning
Algorithm
Require: Q: current Q-learning network with weight z;

Φ: new updated block information, including use de-
mand d and RRHs M ;
ε: A threshold for convergence

Ensure: π: New policy set π = {π1, π2, · · · , πt} based on
the target network Q+;
for each t = 1; t ≤ T ; t+ +; do

Initiate a new network Q+ ← Q with weight z;
while zi+1 − z ≥ ε do

Randomly select a user demand state si and a
corresponding allocation action ai;

Execute ai, record the reward based on Eq. 6;
Go forward to the next state si+1 based on the

allocation action ai;
Store basic state transformation record as

si, si+1, ai, Reward(s, a) into the mini-batch set Mini;
Update Q+(si, ai) = Reward(si, ai) +

σmaxQ+(si+1, ai+1) using mini-batch set Mini;
Update z;

end while
Update Q← Q+ using new updated parameter z;
Output the resource allocation policy πt;
t← t+ 1;

end for
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Fig. 5. The network architecture of DNN. In the training process, the
input is an array, which including demand state d and bandwidth state
b. The output is the action reward scores for each allocation policy,
respectively. In the resource allocation process, one current state can
be explored for multiple actions. When the highest reward score action
is active, it changes to the next state for further policy exploration.

The above pseudocode is our Action Reward Optimiza-
tion Deep Q-learning (ARODQ) Algorithm. The unique
design of the learning model is the input and output of
DQL, as shown in Fig. 5. The current state of the waiting
queue and bandwidth allocation should be considered as
input, which could significantly compress the input and
output size in a continuous space. The input size is the sum
of blocks and RRHs’ current resource allocation percentage.
The output size the actions of bandwidth allocation in each
block using specific RRH, which is M · |Φ|.

5 SIMULATIONS

In this section, we detail how our experiment is conducted,
where the whole process was divided into two parts, using
the Channel Division based RRH Covering Algorithm to
arrange the RRHs in specific channels and using Action
Reward Optimization Deep Q-learning Algorithm to decide
the allocation policy of bandwidth for users.

5.1 Resource Allocation Efficiency in Coverage Prob-
lem

In this part, we conduct the simulations for resource alloca-
tion in coverage problems to highlight the performance of
our proposed MSIO algorithm. The other two comparison
algorithms are considered as follows: convention algorithm
represents that the block with high requirement importance
should be covered by RRH first, which is a greedy algorithm
to pick up the most beneficial block first. The fast network-
ing placement algorithm (FNPA) [29] is an algorithm that
covers as many blocks for fast networking in real-time. The
core idea of this algorithm is to provide the expansion of
radio access in order to serve more users, which leads to
better coverage usage, especially in resource-limited envi-
ronments.

Then, we conduct a platform that there are basically
40 blocks creating communication demands and 150 RRHs
serving these blocks. A normal communication range of
50m is used in a square of 1000m. In Fig. 6(a), it shows the
coverage importance ratio changes by the communication

ranges. The ranges expand from 50 to 150. The overall trend
for all three algorithms is the same, which increases with
the communication ranges. However, our proposed MSIO is
relatively higher due to more careful allocations depending
on coverage importance. Similarly, in Fig. 6(b), we add more
RRH stations to provide more options for resource alloca-
tion. More stations increase the overall coverage importance
rate. However, the difference also becomes small because
of the overflow of resources and all the blocks cannot be
covered due to the limited communication range, which is
comparatively practical in a 5G scenario.

Fig. 6(c) shows the coverage importance ratio changes by
the extra channels. Since the number of blocks and stations
have been predetermined, more channels means the overall
coverage importance score increases. If the station resources
are limited, the rate decreases due to more uncovered
blocks. Fig. 6(d) is the simulation that the influence of pre-
defined channels for stations. If more static channels exist,
the fewer options of RRHs for resource allocation. It will
cause fewer options between the three algorithms, thus the
results become closer when the pre-defined ratio increases.

5.2 Resource Allocation Efficiency in Deep Q-Learning
Next, we conduct the DQL based resource allocation simu-
lation using the proposed ARODQ algorithm. The other two
comparison algorithms are an average allocation algorithm
and a no-gradient algorithm. The basic idea of the average
allocation algorithm is that it shares the bandwidth in all
blocks based on uniform policy. The no-gradient algorithm
is another solution of DQL policy that similar to the water-
filling algorithm that balances the bandwidth usage step by
step.

In Fig. 7(a), it shows the waiting queue changes by
the different number of RRHs. When the number of RRHs
is small enough, and cannot satisfy the coming of a new
requirement, it leads to the increase of remaining waiting
queue, and finally part of the blocks’ waiting queue reaches
the upper limit. Then, the reward score in Fig. 7(b) shows the
same trend in another vision. When the bandwidth resource
is not enough, the system performs like the best of its
capacity. However, when the bandwidth for the requirement
is enough, the policy would arrange all the communication
resources to satisfy the requirement in the waiting queue
and further handle new demands from blocks.

At last, we test the performance in the same environ-
ments using three algorithms. In Fig. 7(c), when the band-
width is not enough to satisfy all the requirements, every
algorithm performs well with the limited bandwidth so that
the difference between all the results is not big enough.
However, in Fig. 7(d), our proposed result still shows the
better result due to the intelligent allocation policy which
can well fit the overall service demand in each block.

6 CONCLUSION

In this paper, we propose a deep reinforcement learning-
based comprehensive solution for 5G architecture, to solve
the problem of quality of service (QoS) using limited wire-
less communication resources. By ensuring most of the
service is responsive, our proposed scheme aims to mini-
mize the redundancy of resource allocation and maximize
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Fig. 7. Allocation performance comparison.

the efficient usage of communication resources in each
sliced channel. To overcome the computation complexity,
we transfer it into a maximum coverage problem which
ensures the quality of each channel for all the blocks. Then,
a DQL-based network routing decision-making policy is
designed which maximizes the use of bandwidth resources.
The simulation results show that our proposed MSIO algo-
rithm improves 3.12% in the performance of the maximum
coverage importance problem and the ARODQ algorithm
improves 4.05% than other standard solutions. It proves
that our proposed scheme can handle such a comprehensive
problem and allocate the existing resource sufficiently in a
QoE-oriented trade-off scenario.
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