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Abstract—Individually reinforcing the robustness of a single
deep learning model only gives limited security guarantees
especially when facing adversarial examples. In this paper, we
propose DeSVig, a Decentralized Swift Vigilance framework to
identify adversarial attacks in an industrial artificial intelligence
systems (IAISs), which enables IAISs to correct the mistake in
a few seconds. DeSVig is highly decentralized, which improves
the effectiveness of recognizing abnormal inputs. We try to
overcome the challenges on ultra-low latency caused by dynamics
in industries using peculiarly-designated mobile edge computing
and generative adversarial networks (GANs). The most important
advantage of our work is that it can significantly reduce the
failure risks of being deceived by adversarial examples, which
is critical for safety-prioritized and delay-sensitive environments.
In our experiments, adversarial examples of industrial electronic
components are generated by several classical attacking models.
Experimental results demonstrate the DeSVig is more robust,
efficient, and scalable than some state-of-art defences.

Index Terms—Deep learning, adversarial examples, industrial
artificial intelligence systems (IAISs), mobile edge computing,
generative adversarial networks (GAN).

I. INTRODUCTION

INDUSTRIAL artificial intelligence systems (IAISs) have
great potentials to complete some complex industrial tasks,

replacing a large variety of human vigour in many industrial
scenarios. As one of the key enabling technologies in IAISs,
deep learning with the superiorities of standardizable structure
and high accuracy has achieved increasing attention in recent
years. Significant performance of deep learning attracts a lot of
researchers from different fields and then such interdisciplinary
cooperation greatly expands the application scope of deep
learning [1, 2, 3]. For example, the power of deep learning
in signal compression and signal detection revolutionizes the
physical layer communications [4]. We consider that the
industrial artificial intelligent system is a promising application
scenario, which supports edge computing, deep learning, and
5G networks.

Since many industrial systems are delay-sensitive and con-
fidential, deep learning must process industrial data locally,
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leading to the bottleneck in terms of local resource exhaus-
tion. At present, in order to overcome such difficulties, both
academic and industrial circles are strongly advocating mo-
bile edge computing, which enables context-aware resources
offloading [5, 6]. With sufficient computation resources, de-
ploying the deep learning models at edges in a distributed
way has been a popular trend in recent years [7, 8, 9].

One common prospect of deep learning in a smart industry
what many researchers want to achieve is “Deep Learning of
Things (DLoT)”, a term we define as a special case of on-
edge/device deep learning [10, 11, 12]. Without a good on-
edge/device deep learning model, where following the model
does not correctively and timely output the corresponding
result, smart industry can not succeed thoroughly. Although it
is not a difficulty for industrial engineers to train deep learning
with high accuracy, many industrial vendors are still on the
sidelines and few deep learning models are adopted in real
production lines, due to potential security vulnerabilities.

Adversarial example [13], which is specially-designed with
iterative optimization, gradually growing into the greatest
threat to deep learning. Different from common hacking
attacks in computer networks, the goal of generating an adver-
sarial example is to fool the deep learning model rather than
to steal some confidential data. Many machine learning and
deep learning models have been validated to be susceptible to
adversarial examples. There are many interests in constructing
defences to enhance the robustness of deep learning, while new
powerful optimization-based attacks are also arising [14, 15].

Together with deep learning, the adversarial example is
introduced into industrial scenarios, possibly leading to serious
accidents or economic losses [16]. Attackers can achieve great
attacking effects in industries only by feeding several adver-
sarial examples into the deep learning model with ultra-low
frequency [17]. For example, in the semiconductor industry,
vendors can use a deep learning model to identify the type of
electronic devices (such as capacitor, inductor, and transistor)
on circuit boards. A mistake that identifies a capacitor as an
inductor may cause important chips to burn out. Fig. 1 shows
possible attacks that may feed adversarial examples into IAISs.

To promote the practicality of various deep learning prod-
ucts in the upcoming smart world, exploring the effective
defence methods to circumvent adversarial examples is an
indispensable and urgent need. However, it is not an easy task
to evade the impact of adversarial examples. Moreover, the
variability of industrial scenes makes such evasion extremely
difficult. We identify three difficulties of evading adversarial
examples in industrial scenes:
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Fig. 1. Possible attacks that feed adversarial examples into industrial artificial intelligence systems.

• Irregular interferences are unexpected noises caused ei-
ther intentionally by privacy protection or unintentionally
by situational changes. Coincidentally, some interferences
may transfer real inputs into abnormal inputs, which has
the same function with adversarial examples.

• Shattered feeding is a highly discrete and distributed
attack trick, which is effective for attackers to hide their
identities during the attacking stage. Common defences
are not sensitive to such weak signaling.

• Ultra-short reaction time is maximum latency (less than
5ms) of real-time industrial applications. For 5G-enabled
Tactile Internet [18, 19], this latency is in range of 1ms,
leading to the inapplicability of complex defences.

In this paper, we propose a Decentralized Swift Vigilance
(DeSVig) framework, which can circumvent the unknown ad-
versarial examples in industrial artificial intelligence systems
(IAISs). We consider the DeSVig framework with several deep
learning models and more than one conditional generative
adversarial network (CGAN). Each deep learning models
sends its inputs and outputs to CGANs for asking vigilance
service. Each CGAN calculates the corresponding vigilance
decisions rapidly and distributes the vigilance decisions on
demands. During the defence process, CGANs work at the
control plane and deep learning models at the data plane.
The failure risks of being deceived by adversarial examples
can be detected with no requirement on complex robustness
reinforcement to original deep learning model, which is critical
for safety-prioritized, delay-sensitive industrial environments.
Moreover, decoupling the control plane from the data plane
reduces the vigilance latency significantly. DeSVig is of great
advantage for industrial robots to correct the mistake in
a few milliseconds. Contributions of our work are mainly
summarized as the following three aspects.

• We formulate a mathematical description to identify the
relationship CGANs and adversarial examples. And then,
we investigate the applicability of existing defence mod-
els. Different from existing studies, we deduce a novel
defence decision-making (DDM) function for IAISs to
swiftly detect adversarial examples from a large number
of data inputs, which fulfills the delay and privacy pro-
tection requirements of industrial environments.

• We propose the decentralized swift vigilance (DeSVig)
framework, which decouples defence decision-making
(control plane) from deep learning models (data plane). In
the control plane, we exploit CGAN to generate an input

copy and mobile edge computing agent to execute D-
DM function. We provide vigilance acceleration methods
based on privacy-aware incentive mechanism and energy-
efficient distributed consensus mechanism.

• We propose a flexible implementation prototype of
DeSVig framework, which firstly extends the concept of
OpenFlow [20] into “OpenExample”. OpenExample is
defined as a communication protocol between DeSVig
controller and deep learning models. To demonstrate
DeSVig’s superiority on hitting rate and response latency,
both open dataset (MNIST) and real industrial dataset are
used in our experiments.

The rest of this article is organized as follows. Section
II gives the related work and specifies the strength of work
against existing studies. Section III introduces the system of
DeSVig. Both main components and workflow of DeSVig are
introduced in this section. Experimental evaluation is provided
in Section IV. Section V concludes this paper.

II. RELATED WORK

The susceptibility of deep learning to adversarial example
is usually described as a quasi-chaos phenomenon, where a
tiny but meticulously worst-case perturbation on inputs will
lead to abnormal outputs with high confidence [30]. The
adversarial example is an “obstinate disease” that can survive
in the physical world, and can bypass the state of the art
defence technologies with simple reinforcement. The study on
circumventing adversarial examples in industrial scenarios is
in an initial and rising stage.

As surveyed in [21], there have been 15 types of defence
models to adversarial examples in total. Among these defence
models, inputs transferring has low additional cost because
it does not directly modify the original neurons or add
new parameters on the neurons. The state-of-the-art inputs
transferring-based defence models include data compression
[22], wavelet-based noising [23], and Saak Transform [24].
However, inputs transferring may reduce the accuracy of
normal classification because normal inputs also need to
be processed by the above inputs transferring technologies.
Considering a valid adversarial example is generated by it-
eratively optimizing the loss function with a proper gradient,
many existing defence methods provide apparent robustness
mainly relying on obfuscated gradients. However, most of
these defence methods mainly rely on the obfuscated gradients
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but this kind of defence methods has been validated to give a
false sense of security [15].

The state of the art defences have two branches: 1) certified
defence, and 2) GAN-based defence. The certified defence is
often implemented via semi-definite relaxation [31] or differ-
entiate privacy [32] Although this kind of defences achieves
some promotions, it is not very scalable to high-dimensional
datasets because it is a complex task to evaluate a reasonable
noise. The GAN can learn data distribution of real inputs and
has been applied in many fields like wireless communication
[33]. The GAN-based defence often trains a generative model
to learn the distribution of unperturbed images. By leveraging
the expressive capability of generative models, a defence-GAN
framework is proposed to defend deep neural networks against
adversarial attacks [41]. The biggest advantage of defence-
GAN is that it can be used without any modification on the
classifier structure and its training procedure. However, this
method require the used GAN to gain some prior knowledge
about the attackers. To make the defence independent of the
prior knowledge, study [42] proposes MimicGAN, which for-
mulates the adversarial defence as a general inverse problem
and address it with a unsupervised technique. However, since
this kind of defence requires to train many generative models
for different datasets, too many computational resources will
be consumed. Up to now, there is no apposite solution that
can completely eliminate this vulnerability of AI to adversarial
examples with low costs.

In order to support the secure and fast control requirements
of industrial artificial intelligent systems, integrating mobile
edge computing (MEC) and 5G networks to achieve tactile
platform has been perceived as a promising trend [25, 26].
Industrial operators can use MEC servers to train or run these
complex learning tasks, while the 5G networks can be utilized
to deliver the model parameters or aggregate the datasets. In
particular, software-defined networking (SDN) is also adapted
to enhance the manageability of industrial control networks
[27, 28, 29]. The SDN uses a controller to decide the packet’s
fate. The decouple between routing algorithms and forwarding
actions inspire us. The application of these emerging tech-
nologies in industrial environments brings defence up to par
with offence, which will change everything in future industrial
systems. Simultaneously, it provides soil for the breeding of
new attacks and provides a new direction for defences.

Different from existing defence methods that blindly pursue
high robustness, we propose a novel defence framework named
as DeSVig to evade the unknown adversarial examples from
a large number of inputs in real IAISs. The most important
advantage of our work is that the proposed scheme can
significantly reduce the failure risks of being deceived by
adversarial examples with no requirement on complex ro-
bustness reinforcement, which is critical for safety-prioritized,
delay-sensitive environments. The performance of DeSVig is
independent of the trained model parameters. We identify the
reason why adversarial examples can success is that the train-
ing process of deep learning has irreversibility but each label
is of polysemy. The significant novelties of our work include:
1) we propose to use a CGAN, which learns the distribution
law of given dataset, to generate a copy of input; 2) we train a

discriminator to compare the distribution law of original input
and generated copy; 3) we create OpenExample protocol to
decouple defence decision-making from deep learning models.
The proposed framework can fit any networks which enables
artificial intelligence and edge computing.

III. SYSTEM MODEL OF DESVIG

We consider the system model of DeSVig with the control
plane, data plane and an OpenExample protocol. In the data
plane, there are N deep learning (DL) models with network
brakes and each DL model serves for several users. In the
control plane, there is a controller that consists of one mobile
edge computing agent, one CGAN and one discriminator. The
control plane is separated and hidden.

TABLE I
THE KEY SYMBOLS AND EXPLAINS

Symbols Explains

xi The original input
δi The small perturbation added into original input xi
ai The adversarial example created based on xi
g(xi, δi) The attacking function to generate ai
yi The real label of original input xi
y′i The mistake label of adversarial ai
Xn
ti The original input feed by DL n at time ti

X
′n
ti The input copy generated by CGAN

P (xi|yi) The possibility of mapping xi into yi
P (ai|yi) The possibility of mapping ai into yi
βntm The attacker’s intent to DL n at tm
G The generator of CGAN
D The discriminator of CGAN
V (D,G) The value function of CGAN
θ The parameter of a neural network
z A random noise function in generator of CGAN
e The loss function of a deep learning model
F (.) The mapping function of a deep learning model
H(.) The mapping function of a CGAN

A. Attacking Patterns

In this paper, we focus on the emerging attacking patterns
caused by introducing deep learning into industrial scenarios.
Different from traditional attacking patterns, industrial adver-
sarial examples have many significant features such as irreg-
ular interference, shattered feeding, and ultra-short reaction.

We use δi to denote the perturbation on input xi and
ai = g(xi, δi) to denote adversarial example, where g(·, ·)
is one kind of generation function of adversarial examples.
An adversarial example can be described with a brief math-
ematical primitive [25]. There exists a ai that satisfies the
following two properties: 1) the euclidean metric of xi and ai
is small enough, lim||ai − xi|| = 0; and 2) the possibility
P (xi|yi) of mapping image xi as real category label yi
is far greater than the possibility P (ai|yi) of mapping ai
into yi, P (xi|yi) 6= P (ai|yi). Adversarial example has been
brought into the physical world, where the printed adversarial
examples can deceive machine learning-based applications on
cellphone camera [34, 35]. For a given input image xi, the
corresponding adversarial example is generated using iterative



IEEE TRANSACTION ON INDUSTRIAL INFORMATICS 4

optimization, which attempts to gain a minimum perturbation
δ that make ||aδii − xi|| ≈ 0 as well as P (ai|yi) 6= P (xi|yi).
Many methods have been developed to efficiently generate
adversarial examples. In this article, we will use the IBM’s
Adversarial Robustness Toolbox (ART) [36], which provides
an implementation for 9 attacking methods.

In industrial scenarios, several adversarial examples mixed
in a large number of inputs may appear suddenly. For a smart
plant with N workshop and each workshop has one DL model,
the normal inputs of DeSVig observed during a period time
can be formulated as the product of a M ×N binary matrix
and an input matrix:

X =

 βt11 · · · βt1N
...

. . .
...

βtM1 · · · βtMN


 x1
· · ·
xN

 (1)

where βntm ∈ {0, 1}. Therefore, the abnormal inputs with
several adversarial examples are denoted as A:

A = X + δ =

 βt11 · · · βt1N
...

. . .
...

βtM1 · · · βtMN


 x1
· · ·
xN

+

 δ1
· · ·
δN


(2)

Usually, to pick out adversarial examples from a large number
of inputs, we must know what/when/where is the attack, which
is very hard in industrial scenarios.

B. Basic Components

To circumvent adversarial examples in industrial scenarios,
we firstly propose to decouple defence control strategies from
data processing of deep learning. DeSVig contains conditional
generative adversarial networks (CGAN), mobile edge com-
puting agent, untrusted deep learning and perceptual hashing
discriminator. Fig. 2 shows the basic components and connec-
tion matrix of DeSViG.
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Fig. 2. Basic components in DeSVig.

1) Conditional Generative Adversarial Network: Condi-
tional generative adversarial network (CGAN) is extended
from the Generative adversarial network (GAN), which is
a novel way of training generative model. It contains two
“adversarial models”: 1) Generative model G for learning data
distribution, and 2) Discriminant model D for estimating the
probability of an input coming from training dataset instead of
G. Both G and D are multi-layer neural networks. In G, a non-
linear function G(z; θg) that maps noise distribution pz(z) into
data space is defined for G to learn the distribution of training
data x. The output of D is a percentage, which is denoted by
D(x; θd) represents the probability of an input coming from
training dataset instead of G. The optimization problem of a
GAN can be formulated as a value function V (G,D) base on
a two-player min-max game.

min
G

max
D

V (D,G) =Ex∼pd(x)[logD(x)]+

Ez∼pz(z)[log(1−D(G(z)))]
(3)

Adding some specified conditions into G and D respectively
can control their outputs. The value function of CGAN can be
denoted as:

min
G

max
D|y

V (D,G) =Ex∼pd(x)[logD(x|y)]+

Ez∼pz(z)[log(1−D(G(z|y)))]
(4)

where y represents the specified condition. In this paper, we
use CGAN to generate copy images of inputs in real-time.
During the generation process, the category labels received
from distributed DL models in data plane are specified as
CGAN’s conditions.

2) Mobile Edge Computing Agent: Mobile edge computing
(MEC) agent is designed to improve the throughput capacity
of DeSVig controller, which serves for multiple DL models.
Usually, the MEC agent has two main functions: 1) queuing
inspection requests, and 2) distributing defence decisions. As
illustrated in Fig.1, the defence decisions must be generated
with less than 0.35ms. Otherwise, the DL model’s output will
be sent out. For a large scale industrial network, where there
are several DeSVig controllers, MEC agent is also responsible
to build communication among DeSVig controllers. This case
will be introduced in Section V in detail.

3) Untrusted Deep Learning: The deep learning mod-
el trained for multi-label classification is often formulated
as iterative optimization problem. For given inputs x =
(x1, x2, ..., xk), the cross-entropy loss function is often defined
as:

e = crossEntropy(s, y) =

k∑
i=1

yilog(si) (5)

where si = exi∑k
t=1 e

xt
. Therein, k represents the number of

inputs and y denotes the real category labels. A accurate
deep learning model minimizes the above cross-entropy loss
function e by calculating its gradient values. Under attack
environment, the attackers may add some perturbations into
the inputs to induce the direction of gradient descent.

The framework of DeSVig is hierarchical. All the deep
learning models are working in the data plane of DeSVig,
while CGAN, perceptual hashing discriminator, and mobile
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edge computing agent are working in the control plane. Differ-
ent deep learning models in the data plane remain independent
and also have a certain association.

One one hand, since forwarding all data inputs to a data
center is realistic obviously, the deep learning models are
deployed in every corner of the future industrial systems in
a distributed way. Considering a real scenario where a large
industrial company has many factories around the world, each
factory trains some different deep learning models based on
different computational intelligence to classify the electronic
components. Under such application scenario, the sensed im-
ages may be randomly feed into some of these heterogeneous
deep learning models for classification. Therefore, different
deep learning models are working independently. On the other
hand, to schedule the resources among different factories,
we need to monitor and synchronize the running statuses
of different learning learning models. Therefore, the deep
learning models are associated with each other through some
efficient networks (i.g., 5G).

The adversarial examples can attack every node in the data
plane of DeSVig. Obviously, it is inefficient and inelastic
to deploy defences on every node especially when we want
to configure new defences. The DeSVig creates a control
plane for efficiently detecting adversarial examples and swiftly
assigning vigilance among different deep learning models.
This scheme allows the operators to add whatever they want
into the DeSVig controller to update their defence strategies
or configure new defences.

4) Perceptual Hashing Discriminator: In Fig. 2, the
DeSVig controller contains a specially-designed discriminator,
which is named as perceptual hashing discriminator. This spe-
cial discriminator is different from the CGAN’s discriminator.
We summarize three key aspects to clarify the difference
between the DeSVig’s discriminator and the CGAN’s discrim-
inator as follows.
• Structural difference. The DeSVig’s discriminator is de-

signed based on the perceptual hashing [37] rather than
the neuron network. The DeSVig’s discriminator has two
different inputs 1) the original images sent from the
distributed DL models, and 2) the copy image generated
by the CGAN. The DeSVig’s discriminator is decoupled
with the generative model and does not need any training
procedure.

• Functional difference. The CGAN’s discriminator is an
assistant component, which works during the training pro-
cedure. The main function of CGAN’s discriminator is to
monitor if the generated sample is real. Different from the
CGAN’s discriminator, perceptual hashing enables fast
and flexible similarity detection of multimedia data by
calculating the Hamming Distance between the different
inputs. The main function of DeSVig’s discriminator is
to monitor if the input is an adversarial example.

C. Defence Principles

In this section, we will introduce the defence principles
of DeSVig in detail by clearly clarifying the relationship
between basic components. It is common to see that there

is an adversarial example ai generated from xi in a group of
inputs x = (x1, x2, ..., xk). If ai is feed into DL model n, the
corresponding outputs y = (y1, y2, ..., yk) of DL model n will
include a mistake label y′i.

To explain it more intuitively, we follow the definition for
data labels illustrated in Fig. 2. In real industrial scenarios, the
inputs and outputs of DL models are denoted as Xn

ti and Lnti
respectively, where ti represents the arriving time of input X
and n represents the serial number of DL model. Adversarial
examples in this real scenario is denoted as Anti Lti , while the
corresponding mistake label is denoted as L

′n
ti .

Creatively, we propose to feed the identified labels into
CGAN to generate a copy of each input. Given an accurate
CGAN, the generated copy X

′n
ti is obviously similar to Xn

ti
in Hamming space if the label is corrective. The mathematical
formulation is listed as follows:

Xn
ti

hm
= H(F (Xn

ti)) (6)

where F (.) is the function of a DL model and H(.) is the
function of CGAN. Additionally, hm denotes the Hamming
distance between Xn

ti and Xn
ti . Here, we focus on the workflow

explanation of DeSVig. Table II and Table III respectively
give the detail workflows in data plane and control plane of
DeSVig.

1) Privacy-preserving in DeSVig Data Plane: Data plane of
DeSVig consists of various DL models in a big industrial plant,
which may directly receive requests from various end-users
(EU). Data plane provides low-latency services for distributed
EU and must protect the EU’s privacy that is highly essential
in industrial scenarios.

TABLE II

Principle 1: Privacy-Aware decentralized condition generation
algorithm in DeSVig data plane.

Input: X,EU,R Noise
Output: L,Xγ
1: Identify the recognition request and the ID of source EU
2: Iteratively optimize equation (5) and give the final value of
F (X)

3: Mapping F (X) into label L
4: for label in RT
5: if label==L
6: for label′ in FT
7: if label′ == L
8: go to step 6
9: else
10: Add R Noise into X: Xγ=X+R Noise
11: Send Xγ and L to control plane
12: Update the FT with L
13: end
14: else
15: Add R Noise into X: Xγ=X+R Noise
16: Send Xγ and L to control plane
17: Update the FT with L
18: end
19: end

The privacy-aware decentralized condition generation algo-
rithm illustrated by Table II exploits the method of local differ-
ential privacy [39] to hide the real values of the original inputs.
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TABLE III

Principle 2: Decision-making process in DeSVig controller
against multi-attacks.

Input: Xγ = {x1γ , x2γ , ..., xkγ}, Lγ = {l1γ , l2γ , ..., lkγ}
Output: S
1: Monitor the workload W of DeSVig controller
2: if W < W0

3: Receive Xγ and Lγ
4: Identify the type of Xγ and Lγ
5: Select appropriate CGAN for each label L
6: Iteratively optimize equation (4) to generate input copy X ′

γ

7: Send Xγ and X ′
γ to perceptual hashing discriminator

8: else
9: Forward Xγ and Lγ to neighboring DeSVig controller
10: end
11: Resize Xγ and X ′

γ as 8× 8 matrix
12: Simplify the color into 64 levels
13: Calculate the mean of all pixels of each image
14: Binarization by comparing each pixel with the mean
15: Compose binary values as integer Iγ and I ′γ with 64 bits
16: Calculate hash value H1 = (Iγ) and H2 = (I ′γ)
17: if H1==H2

18: Normal inputs, then set S=true
19: else
20: Adversarial example, and set S=false
21: Trace the sources of adversarial examples
22: end

Symbols used in Table II are denoted as follows. X denotes the
raw inputs, while Xγ denotes the privacy-preserving inputs. L
represents the real category label. R Noise denotes the noises
that will be added into X . At the beginning stage, DeSVig
controller believes the outputs (L) of distributed DL models
are corrective. The DeSVig controller can be maintained by
the third-party organization because it cannot restore X with
given Xγ .

This algorithm is of two great advantages: 1) Privacy-aware;
2) low latency. In step 10 and step 15, each device with a DL
model needs to add some noises R Noise into original data
to make them fulfil a certain distribution. Step 5 and Step
7 remove some redundant condition generation, which will
reduce DeSVig controller ’s cost and accelerate its response.
Additionally, RT and FT are two different tables maintained
by individual DL model. Authenticated labels are logged in
RT and pending labels are recorded in FT .

2) Decision-making of DeSVig Controller: In this section,
we will introduce the decision-making process of DeSVig
controller step by step. Decision-making process of DeSVig
controller mainly consists of three modules: 1) load balance on
MEC agent, 2) input copy generation on CGAN, and 3) Simi-
larity calculation on discriminator. The detail decision-making
process is shown step by step in Table III. Additionally, the
symbols used in Table III are denoted as follows. Xγ and Lγ
denote a pair of inputs and labels. W represents the workload
of DeSVig controller. X ′γ denotes the generated input copy. H1

and H2 are the hashing values. S is an indicator. S = false
means that the input is an adversarial example.

Load balance on MEC agent: In a big industrial network,
there are many DeSVig controllers. As mentioned above,

DeSVig controller is responsible to swiftly detect adversarial
examples from a large number of inputs. To generate trusted
vigilances as soon as possible, the MEC agent is designated
to provide load balance services among DeSVig controllers.

Input copy generation on CGAN: Initially, MEC agent
receives data and their labels from distributed DL models. Sub-
sequently, the CGAN generates an input copy X ′ according to
the condition L and sends it to perceptual hashing discrimina-
tor together with Xγ . Notably, the D and G of CGAN must be
trained with the same dataset to the corresponding DL model.
If the DL models are heterogeneous, a DeSVig controller
should smartly schedule the work of multiple CGANs.

Similarity calculation on discriminator: We propose to
use a perceptual hashing algorithm to calculate the Ham-
ming distance between X ′ and Xγ . By iteratively optimizing,
DeSVig controller learns a flexible threshold of Hamming dis-
tance to identify the similarity between two images. Similarity
calculation on discriminator is scalable to detect multiple kinds
of attacks.

3) OpenExample Protocol: The OpenExample protocol
starts from the reference of a typical industrial artificial
intelligence system. Such a network has two major com-
ponents: 1) deep learning nodes, and 2) industrial control
networks. First, the deep learning node which receives inputs
on input port, decide the input’s fate by consulting some
control strategies, and then enacts the executable actions.
Second, the industrial control networks perform more high-
level functions such as running dynamic routing protocols
(BGP, OSPF, STP, etc), supporting a resource management
interface (SNMP, CLI, SOAP, etc), and broadcasting the deep
learning nodes’ parameters as necessary. The industrial control
networks can be established based on a typical ethernet and
then generally upgrades as 5G networks, including software-
defined networks. OpenExample protocol decouples the model
control from model computing. Architectural components of
OpenExample are shown as illustrated in Fig. 3.

PKG_IN PKG_OUTIndustrial control network

OutputInput

Deep learning

Controller

OpenExample–DL node

Packet parser

OpenExample stack

OpenExample stack

DeSVig
OpenExample–DL node

OpenExample–DL node

Hyperopt

Load balance

OpenExample

Fig. 3. Architectural components of OpenExample.

IV. EVALUATION AND DISCUSSION

In this section, we introduce the performance evaluation of
DeSVig on detecting adversarial examples. Usually, adversar-
ial example generated by white-box attacking is more difficult
to detect than that generated by black-box attacking because
white-box attacking can observe the parameters of pre-trained
DL models and ultimately provide more robust adversarial
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TABLE IV
THE ACCURACY(%), COST AND DELAY OF DIFFERENT DEFENCES UNDER ATTACK SCENARIOS (BEST RESULT)

Baseline FGSM Rand FGSM DeepFool Cost Delay
Without defence 98.9 90.29 40.70 49.02 +0 0.06s
Feature squeezing 98.9 96.31 91.09 96.68 +2 0.12s
Adversarial training 98.9 91.86 49.77 85.91 +5 0.07s
Differential Privacy 98.9 99.2 90.52 94.24 +1.5 0.08s
GDA + RELU 98.9 98.47 80.25 97.84 +1 0.08s
DeSVig 99.9 (+1) 98.29 (+8) 97.9 (+57.20) 96.02 (+47) +0.1 0.062s

examples. Additionally, detecting high dimensional adversarial
examples (such as color images) will consume more resources.

Considering there are few open industrial datasets for ad-
versarial examples, direct comparisons with existing defence
methods are very hard. To fairly evaluate the performance
of DeSVig, our experiments are implemented on two dif-
ferent datasets: 1) MNIST dataset; 2) self-made industrial
dataset. The simulation results relying on MNIST datasets is
to demonstrate the strengths of DeSVig against exiting defence
methods, while simulation results relying on the self-made
industrial dataset is to highlight the scalability, applicability,
and rationality of DeSVig in industrial scenarios.

For easy maintenance, we develop the corresponding agent
for each pre-trained model. The underlying communication
stack for these agents is implemented with WIFI and the
communication module is developed by JSON tools. Each
agent is assigned with one specific url. The CGAN models
and the DL models are pre-trained on a computer with
Inteli7 − 4770CPU and then deployed on the Raspberry 3.
The required hardware is affordable for many institutes. Some
specific experimental setting are described according to the
dataset.

A. Performance Validation based on MNIST

We deploy four DL models that are pre-trained based
on MNIST dataset. DLA and DLB are disconnected with
DeSVig; DLC and DLD are connected with DeSVig. DLA
and DLC are feed with 100 normal images, respectively; DLB
and DLD are feed with 100 adversarial examples, respectively.
The selected attacking methods include FGSM [30], rand
FGSM and DeepFool [38].

The used CGAN is also trained based on MNIST dataset.
The function of CGAN is to generate an image according to
the specified label. For example, given a label “3”, CGAN will
return an image written with “3”. Communication between
DeSVig controller and distributed DL models is formed by
the local area network (LAN) and OpenExample protocol,
which is defined to formulate the formats of exchanged data.
Perception hashing discriminator exchanges data with CGAN
relies on internal process iteration.

1) Certified Accuracy: To bring out the advantages of
DeSVig, we measure the accuracy of different defences under
several typical attacks. Simulation results show that adversarial
examples both DeepFool and FGSM can be accurately detect-
ed by DeSVig. The detail comparisons are listed in Table IV.

Certified Accuracy is the most important inductor that
decides the availability of a DL model. Due to the possibility
theory base of deep learning, DL models with strong defences
still can not achieve 100% accuracy. The DeSVig is more
willing to discover the mistake of DL models but not improve
the DL models’ robustness. With the usage of DeSVig, almost
all of the abnormal inputs will be evaded from the input
queues. Therefore, the baseline accuracy is further improved
with 1%.

For adversarial examples generated by FGSM, Rand FGSM,
and DeepFool, DeSVig outperforms the same generalization to
the state of art defence method differential privacy. Besides,
defence effects of DeSVig also can be certified because we can
adjust the threshold of hamming distance. Fig. 4 demonstrates
the relationship between certified accuracy and threshold.

Fig. 4. Certificated accuracy on MNIST.

B. Application in Self-made Industrial Dataset

Except for the accuracy which has been perceived as an
insufficient measure for evaluating the defence performance,
average distortion is an important quantifiable inductor [40].
Although these parameters have provided well insights into the
defence behaviors, some fine-grained features that can identify
the source of adversarial example are still not presented.

In this article, a set of experiments are designed to validate
the applicability of the DeSVig in real industrial scenarios.
The used industrial datasets include 1000 images (8 classes)
of common electronic components. Since most of the common
electronic components are often encapsulated with black and
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Fig. 5. Industrial datasets on common electronic components

white surfaces, all images can be transferred to gray images
to save training time, as illustrated in Fig. 5. The size of used
image is also reshaped as 28 × 28. In this experiment, the
keep prob is 0.25 and the activation function is RELU .

1) Controllable Cost: Controllable Cost is a key reference
that decides the applicability of a new defence method. In
industrial scenarios, available resources may be very limited
especially when some emergent events appear. However, there
are few studies that evaluate such critical inductor. By carefully
collecting and deeply analyzing, in this paper we provide
the cost comparison among different defences. Additional
costs caused by defences are mainly divided into two parts:
1) training cost; and 2) running cost. Obviously, adversarial
training consumes too many resources during the training
process. Training cost of differential privacy is controllable
by dynamically adjusting the size of added noises.

However, the cost of differential privacy is also proportional
to the number of inputs in the whole network. The DeSVig
reduces the additional cost caused by defences by decoupling
the defence control logic from the data plane. Fig. 6 shows
the cost comparison among different defences. Significant cost
reduction makes DeSVig is more applicable especially in large
scale industrial systems.

Fig. 6. Controllable cost.

2) Swift vigilance: Low delay is to fulfil the real require-
ments of industrial control. Previous experiments evaluate
the effectiveness of defence models usually by imputing all
adversarial examples into a single pre-trained DL model.

However, for deep learning in a real physical world especially
in industrial fields, it is common to see that the adversarial
examples are often mixed with normal examples and these
adversarial examples may be feed into multiple deep learning
models synchronously.

The DeSVig aims to swiftly detect the unknown adversarial
examples in distributed DL models. In a distributed scenario,
it not only requires the incumbent DL model to identify which
is the adversarial example from random inputs accurately
but also requires the other involved DL models to swiftly
circumvent the adversarial examples. Therefore, evaluating the
latency is a must before deploying the defence methods in real
IAISs. As shown in Fig. 7, we record the measuring delay of
different defences. The additional delay is the measuring value
minus the baseline. Therefore, the additional delay of DeSVig
is about 2ms, while the additional delay of the other defences
are in range of 20ms ∼ 60ms.

Fig. 7. Swift vigilance.

3) Elastic Robustness: As described in Section III, there
may multiple DeSVig controllers in a large smart plant.
To evaluate the robustness of the whole industrial network,
we propose to compute the controller credibility. Controller
credibility depends on the available resources and loads on
the DeSVig controller.

In mobile edge computing, edge nodes’ resources are often
offloaded from the cloud by using some incentive mechanism.
Thus, the robustness evaluation problem can be formulated
as a constraint in the incentive mechanism. With the increase
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Fig. 8. Robustness estimation: a smaller dynamical change of IFGor’s reward
provides more robust defense accuracy at different rewards coefficients.

of incentive, edge nodes will gain more resources. And then,
the defence effect of DeSVig to adversarial examples will be
improved significantly. Finally, the robustness change of IAIS
to adversarial examples will be reduced as illustrated in Fig.
8. And also, different reward coefficients can not resist the
robustness convergence of IAIS. This interesting phenomenon
will help us aggregate more edge nodes in the whole system
to identify the unknown adversarial examples.

V. CONCLUSION

In this paper, we propose DeSVig, a decentralized swift
vigilance framework to identify adversarial attacks in indus-
trial artificial intelligence systems (IAISs). The most important
advantage of our work is that the proposed scheme can
significantly reduce the failure risks of being deceived by
adversarial examples with no requirement on complex ro-
bustness reinforcement, which is critical for safety-prioritized,
delay-sensitive environments. The DeSVig is highly distributed
and enables fast response, which is essential to improve the
effectiveness of recognizing adversarial examples. The chal-
lenges on privacy-preserving and ultra-low latency in industri-
al scenarios are resolved by integrating differential privacy,
MEC agents, generative adversarial networks (GANs), and
perceptional hashing. Recouping defence control from deep
learning model significantly improves the vigilance delay. In
our experiments, adversarial examples of industrial electronic
components are generated by several classical attacking mod-
els in Adversarial-Robustness-Toolbox. Experimental results
demonstrate the DeSVig is more robust, efficient, and scalable
than some state-of-art defences.
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