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Abstract 

Although oxalate half-esters and their derivatives are among the smallest units of building blocks in 

organic synthesis, they are very important for synthesis of a wide range of significant compounds. 

Utilized as building blocks for pharmaceuticals and natural products, they are typically prepared by 

partial hydrolysis of symmetric diesters or by partial alkylation of oxalyl chloride. Their structural 

properties that enable them to undergo radical deoxygenation are also applied to various significant 

reactions, further leading to synthesis of complex pharmaceuticals and natural products. Oxalate half-

esters are also applied to the preparation of new polymers with novel properties. 
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Introduction  

Half-esters possess both an ester group and a carboxyl group 

within the same molecule. They are typically obtained by 

desymmetrization of symmetric compounds such as symmetric 

diesters. As the reactivities of these two functional groups are 

distinct, they and their derivatives constitute versatile building 

blocks, and have been utilized for the synthesis of a variety of 

significant compounds [1]. Among them, oxalate half-esters have 

no carbon unit between the ester group and the carboxyl group, 

and therefore have the smallest structures. Notably, such units are 

prevalent in natural products and in the body. They also play 

important roles in organic synthesis. This commentary outlines 

some examples of preparations and applications of oxalate half-

esters and their derivatives (Figure 1). 

 

Figure 1: a) General structure of half-ester.  

b) General structure of oxalate half-esters. 

Preparation of Oxalate Half-Esters and Their 

Derivatives 

The commercial availability of oxalate half-esters, 2, including 

their derivatives, is rather limited. Among the most classical and 

typical methods to obtain oxalate half-esters, 2, are partial 

saponification/hydrolysis of dialkyl oxalates, 3, although the 

yields are not particularly high (Figure 2). Their derivatives, such as 

acid chlorides, can also be prepared by partial alkylation of oxalyl 

chloride, 4, in the presence of a base, which can further produce non-

symmetric diesters (double half-esters), for example. All these 

compounds have two different functional groups that exhibit distinct 

reactivities. Brown et al. synthesized some 13C-labaled oxalates 

using these classical reactions for their NMR studies [2]. 

 

Figure 2: Classical synthesis of oxalate half-ester and their derivatives. 

Our laboratory has previously reported highly efficient selective 

monohydrolysis of a series of symmetric diesters (Figure 3) [3-7]. 

These reactions work for selective monohydrolysis of symmetric 

dialkyl oxalates as well, although some tuning of reaction conditions 

based on our mechanistic hypothesis as well as the effects of co-

solvents [6] and the type of base [7], etc., which we reported earlier 

significantly enhances the selectivity. These studies will be reported 

in due course. 

 

Figure 3: Selective monohydrolysis of symmetric diesters reported by 

Niwayama, et al.  

https://doi.org/10.36266/JPCR/125


Citation: Niwayama S (2020). Among The Smallest Building Blocks in Organic Synthesis: Oxalate Half-Esters and Their Derivatives. J Phys 

Chem Res 2(3): 125                          DOI: https://doi.org/10.36266/JPCR/125  

 

Pubtexto Publishers | www.pubtexto.com                                           2                                                                         J Phys Chem Res 

Some oxalate half-esters and/or their derivatives were prepared 

through cyclic oxalate esters of diols such as glycols or 

cycloalkanediol as shown in Figure 4 [8-10]. They include non-

symmetric cyclic oxalate diesters.  

 

Figure 4: Some oxalate half-esters and the derivatives prepared 

through cyclic oxalate esters of diols. 

More recently, Wan et al. reported preparation of various non-

symmetric oxalate diesters from α-bromo ketones, 9, diazo 

acetate, 10, and molecular oxygen mediated by visible light 

(Figure 5) [11]. This reaction is compatible with a wide range of 

α-bromo ketones and diazo acetates. 

 

Figure 5: Synthesis of non-symmetric oxalate esters reported by Wan 

et al. 

Application of Oxalate Half-Esters and Their 

Derivatives 

Oxalate half-esters and their derivatives have been applied as 

building blocks for synthesis of various significant compounds, 

such as natural products and pharmaceuticals. For example, the 

total synthesis of (-)- and ent-(+)-Vindoline and related alkaloids 

was accomplished by Boger et al., and they prepared an 

intermediary oxadiazole unit using a derivative of an oxalate half-

ester, methyl oxalylhydrazide, 13 ( Figure 6) [12]. 

 

Figure 6: Synthesis of alkaloids reported by Boger et al. 

A series of pharmaceuticals with the structures of oxalamide 

derivatives has been synthesized for discovery of novel 

cyclophilin D inhibitors with the use of oxalate half-esters 

(Figure 7 (a)) [13]. These oxalyl linker portions, along with the 

amide or urea linker portions, have been found to play key roles 

in the enhancement of the inhibitory activities in the biochemical 

and biophysical assays, providing a suitable base for further 

optimization. In addition, since oxalates are among the smallest 

building blocks, they have been utilized as short linkers for the 

synthesis of pharmaceuticals as in the discovery of inhibitors of 

apoptosis as studied by Bristol-Myers Squibb ( Figure 7 (b)) [14].  

 

Figure 7: (a) Synthesis of pharmaceuticals for discovery of Cyclophilin D 

inhibitors and (b) apoptosis inhibitors 

Several other structure-activity relationship (SAR) studies including 

oxalates for various biological activities have also been reported 

(Figure 8). For example, Mikolajczak et al. synthesized several 

cephalotaxine esters for their antitumor activities as in 19 [15]. Boger 

and Benkovic et al. reported some analogues of 5,8,10-

trideazafolate, 20, which can serve as potential inhibitors of GAR 

Tfase or AICAR Tfase [16]. Pettit et al. also reported SAR studies of 

synthetic derivatives of a natural product, narciclasine, isolated from 

Narcissus sp. for anti-neoplastic activities as in 21 [17].  

 

Figure 8: Synthesis of some oxalates for SAR studies. 

Because of their structural characteristics, oxalates are prone to 

radical decarboxylation. This property has been applied to various 

reactions. For example, Minisci et al. reported silver-catalyzed 

selective alkoxycarbonylation of heteroaromatic bases, 22, with the 

use of monomethyl oxalate and monoethyl oxalate in the presence of 

S2O8
- under simple two-phase conditions (Figure 9) [18]. 

 

Figure 9: Selective alkoxycarbonylation of heteroaromatic bases reported 

by Minisci et al. 

Barton and Crich reported deoxygenation of tertiary alcohols with 

the use of derivatives of half-esters of oxalates (Figure 10) [19-20]. 

The reaction selectively occurs with tertiary alcohols, producing the 

corresponding hydrocarbons in good yields, allowing cleavage of 

rather strong C(sp3)-O bonds.  
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Figure 10: Deoxygenation of tertiary alcohols reported by Barton and 

Crich. 

Inspired by their pioneering work, Overman and MacMillan et al. 

applied oxalate half-ester salts to deoxygenation of tertiary and 

secondary alcohols in the presence of photoredox catalysts [21-

22]. Such deoxygenation reactions can also be followed by 

coupling reactions with aryl halides or by addition reactions to 

Michael acceptors. Overman et al. reported more stable N-

phthalimidoyl oxalates, 27, allowing similar decarboxylation 

catalyzed by visible-light photoredox [23-25]. This reaction 

further leads to the construction of 1,4-dicarbonyl structural units 

followed by the conjugate additions to various Michael acceptors 

(Figure 11). The stereoselectivities for the formation of the new 

quaternary stereocenter can also be high (>20:1) when the 

precursors are chiral. Such strategies have been applied to 

synthesis of various complex natural products with quaternary 

centers, such as Chelovidene A, 29, Dendrillolode C, 30, and 

Chelovidene B, 31 [26]. They also extended this study to the 

generation of the methoxycarbonyl radical and subsequent 

coupling reactions with various alkenes [27]. Similarly, Fu et al. 

applied these N-phthalimidoyl oxalates, 27, to visible-light 

mediated deoxygenation reactions of tert-alcohols and the 

subsequent coupling reactions with various alkynes [28].  

 

 

Figure 11: Deoxygenation and subsequent Michael addition 

reported by Overman et al. 

Gong et al. also reported that oxalates from tert-alcohols, 33, 

undergo coupling reactions with various sources such as Michael 

reactors, TEMPO, and aromatic compounds via C-O bond 

fragmentation, allowing formation of new quaternary carbon 

centers (Figure 12) [29].  

 

Figure 12: Coupling reactions reported by Gong et al. 

Opatz et al. utilized oxalate half-esters for deoxygenative photoredox 

coupling reactions of alcohols from the oxalate with aromatic nitriles 

under transition metal-free conditions (Figure 13) [30]. They 

demonstrated that similar coupling reactions are also possible with 

carboxylic acids.  

 

Figure 13: Transition metal-free coupling reported by Opatz et al. 

Reiser et al. has reported that ethyl oxalates of 1,2-diols or β-amino 

alcohols undergo similar visible-light-mediated deoxygenation, 

further leading to synthesis of various chiral tetrahydrofurans or 

pyrrolidines (Figure 14) [31].  

 

Figure 14: Visible-light-mediated deoxygeneration reported by Reiser et 

al. 

Reisman et al. furthered the radical deoxygenation reaction of 

alcohols with the use of half-esters of cesium oxalates, and reported 

deoxychlorination with ethyl 2,2,2-trichloroacetate (ETCA), 43, an 

Ir-catalyst, and blue LED [32]. Their method appears to be superior 

to traditional reagents such as thionyl chloride and triphenyl 

phosphine/CCl4, allowing the deoxychlorination to occur on the 

secondary alcohols as well (Figure 15). They also showed that 

deoxybromination with diethyl bromomalonate and 

deoxyfluorination with Selectfluor are possible under essentially the 

same conditions. 

 

Figure 15: Deoxychlorination reported by Reisman et al. 

Interestingly, an oxalate half-ester was utilized for formation of 

crystalline in the process of the synthesis of cathepsin S inhibitor 

(Figure 16) [33]. After numerous trials, the authors accidentally 

found that monoethyl oxalate forms a stable crystalline white solid 

with a purity of 96% for purification of an important intermediate, 

45, and confirmed the structure by X-ray crystal analysis.  

 

Figure 16: Crystallization of Intermediate for cathepsin S inhibitor. 

https://doi.org/10.36266/JPCR/125


Citation: Niwayama S (2020). Among The Smallest Building Blocks in Organic Synthesis: Oxalate Half-Esters and Their Derivatives. J Phys 

Chem Res 2(3): 125                          DOI: https://doi.org/10.36266/JPCR/125  

 

Pubtexto Publishers | www.pubtexto.com                                           4                                                                         J Phys Chem Res 

Oxalate half-esters have also been applied to preparation of 

esterified starch with new properties. Zhang et al. reported that 

starch oxalate half-esters with different degrees of substitution 

can be prepared depending on the quantities of oxalic acid added 

in the reaction (Figure 17) [34]. They demonstrated that the 

average viscometric molecular weight, crystallization and 

thermal stability vary according to the degree of substitution, 

suggesting a potential use of oxalic acid-modified starches as 

bread softening agents and starch gelation inhibitors.  

 

Figure 17: Starch oxalate half-ester reported by Zhang et al. 

Oxalate half-esters are the simplest half-esters with no chiral 

center in the parent chain, and therefore their applicability may 

be tend to be overlooked. However, with this structural 

characteristic, they exert reactivities that other half-esters do not 

have as exemplified here. Future studies for their efficient and 

economical production will be of significance for the synthetic 

organic chemistry community. 
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