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Abstract: 
We apply a combined method of heuristic attribute reduction and evaluation of relative reducts in rough set theory to gene expression data analysis. Our method 
extracts as many relative reducts as possible from the gene-expression data and selects the best relative reduct from the viewpoint of constructing useful decision 
rules. Using a breast cancer dataset and a leukemia dataset, we evaluated the classification accuracy for the test samples and biological meanings of the rules. As a 
result, our method presented superior classification accuracy comparable to existing salient classifiers. Moreover, our method extracted interesting rules including 
a novel biomarker gene identified in recent studies. These results indicate the possibility that our method can serve as a useful tool for gene expression data 
analysis. 
 
 

 
 
Background: 
DNA microarray technology has enabled us to monitor the expression levels of 
thousands of genes simultaneously under certain conditions, and has been 
yielded various applications in the field of disease diagnosis [1], drug discovery 
[2], and toxicological research [3]. Among them, cancer informatics based on 
gene-expression data is an important domain that has promising prospects for 
both clinical treatment and biomedical research. One of the key issues in this 
domain is to discover biomarker genes for cancer diagnosis from a massive 
amount of gene-expression data by using a bioinformatics approach called gene 
selection. A typical gene-selection approach is a statistical test such as t-test 
and ANOVA [4]. This approach detects differentially expressed genes between 
groups of samples obtained from different cells/tissues. Most of the statistical 
tests assume that the expression values of each gene across the samples follow 
a prior probability distribution; hence a sufficiently large number of samples 
are required to obtain statistically reliable results. Rough set theory [5] provides 
a theoretical basis for set-theoretical approximation and rule generation from 
categorical data. Computation of relative reducts is one of the hottest and most 
important research topics in rough set theory as a basis for rule generation. 
Relative reducts are minimal sets of attributes for correctly classifying all 
samples to those classes. We then expect that computation of relative reducts 
from gene-expression data is useful for discovering biologically-meaningful 
information such as biomarker candidates for cancer diagnosis. Because 
computing all relative reducts of the given data requires very high 
computational cost, there have been many proposals of heuristic algorithms to 
compute some of the candidates of relative reducts [6-10].  Kudo and Murai 
proposed attribute-reduction algorithms to compute as many relative reducts as 
possible from a decision table with numerous condition attributes [11]. They 
also proposed an evaluation criterion of relative reducts that evaluates the 
usefulness of relative reducts from the viewpoint of decision-rule generation 
[12]. In this paper, we introduce Kudo and Murai’s heuristic attribute reduction 
algorithms [11] and a criterion of relative reducts [12] for gene-expression data 
analysis. We use these algorithms and criterion in two gene-expression 
datasets, breast cancer [13] and leukemia [14], and discuss the extracted 

decision rules from these datasets and their biological meanings. The 
experimental results indicate that the method used in this paper can identify 
differentially expressed genes between different classes in gene-expression 
datasets and that it can be useful for gene-expression data analysis.  
 
Methodology: 
The method we use in this paper to extract decision rules from gene-expression 
data based on rough set theory consists of the following three components: (1) 
Extraction of as many relative reducts as possible from gene-expression data; 
(2) Selection of relative reducts in accordance with an evaluation criterion of 
relative reducts; (3) Construction of decision rules from the selected relative 
reducts. Figure 1 illustrates the processing flow of our method. In the 
following section, in terms of the method we use in this paper, we introduce 
heuristic attribute-reduction algorithms for generating as many relative reducts 
as possible [11] used in the first step of the above method and a criterion for 
evaluating the usefulness of relative reducts [12] as in the second step. Note 
that the details of these algorithms and the criterion of relative reducts are in  
Supplementary material. 
 
Datasets: 
To evaluate the usefulness of our method, we use two gene-expression datasets: 
breast cancer [13] and leukemia [14]. Both of them are two-class datasets. The 
leukemia dataset is composed of the gene-expression values for 12,582 genes 
in 24 acute lymphocytic leukemia (ALL) samples and 28 acute myeloid 
leukemia (AML) samples. The breast cancer dataset includes the gene-
expression values for 7,129 genes in 25 positive and 24 negative samples. For 
each dataset, the expression values from each gene are linearly normalized to 
have mean 0 and variance 1. Subsequently, they are discretized into six bins    
(-3, -2, -1, 1, 2, 3) by uniformly dividing the difference between the maximum 
and the minimum in the normalized data and into one bin that represents the 
lack of gene-expression values. Discretized positive values represent that the 
genes are up-regulated, while negative values represent that genes are down-
regulated. 
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Figure 1: The method of discovering biomarker candidates based on rough set 
theory 
 
Results and Discussion: 
Parameters: 
Our method was implemented in Java on a Linux workstation (CPU: Intel 
Xeon X5460 (3.16GB) x2, Memory: 8GB, HDD: 160GB, OS: SUSE Linux 
10.1). All experiments were conducted with the following parameters: base size 
b = 10, size limitation L = 25, and number of iterations I = 100.  
 
Classification Accuracy: 
First, we evaluate the classification accuracy of our method. The evaluation is 
conducted by Leave-One-Out Cross Validation (LOOCV). In LOOCV, first, 
we extract one sample as a test sample from the dataset and generate rules 
using the remaining samples. Second, we check whether the test sample is 
correctly classified by the rules. These processes are repeated for all samples. 
Finally we calculate the rate of correctly classified samples. The classification 
accuracy is compared to those of the two salient classifiers, decision tree (C4.5) 
and support vector machine (SVM). Table 1 (see Supplementary material) 
shows the results of LOOCV on our method, C4.5, and SVM. For the breast 
cancer dataset, our method exhibits the similar classification ability with C4.5 
and SVM. For the leukemia dataset, the classification ability of our method 
exceeds greatly that of C4.5.  
 
Biological meanings of extracted rules: 
Next, we discuss the biological meanings of the best results by applying our 
method 10 times for each dataset. In these experiments, we used the same 
parameter settings with the comparison experiments. The best relative reducts 
of two datasets are as follows: (1) Breast cancer dataset: {CRIP1, M34715_at}, 
ACov = 0.08 (= 2/26). (2) Leukemia dataset: {POU2AF1}, ACov = 0.29 (= 
2/7), where the score ACov is the average of coverage of decision rules 
generated from the relative reduct defined by Eq.(2) in Supplementary 
material. For example, the relative reduct {POU2AF1} of leukemia dataset 
generates 7 decision rules from 2 classes, i.e., AML and ALL; hence ACov 
score of the relative reduct {POU2AF1} is 2/7 (= 0.29). We extracted rules 
from each dataset by performing the following three steps: 1) generating all 
decision rules by the best relative reduct of each dataset, 2) removing decision 
rules that contain null values in the antecedents, and 3) combining the 
generated decision rules as long as possible by interpreting the meanings of 
decision rules. As a result, we obtained the rules for each dataset. (see 
Supplementary material)  
 
The extracted rules are evaluated on the basis of known biological findings. To 
this end, we investigate the functions of genes in the rules by reference to a 

genetic disease database (OMIM) [15] and a protein sequence database (Swiss-
Prot) [16]. For the breast-cancer dataset, the samples can be discriminated into 
a true class with an accuracy of 88 percent according to the expression level of 
the Cystein-rich intestinal protein 1 (CRIP1). CRIP1 is a transcription-factor 
gene that induces apoptosis in cancer cells. Interestingly, this gene has been 
identified as a novel biomarker of human breast cancer in recent studies [17, 
18]. In the extracted rule, we can see that the CRIP1 expression is more up-
regulated in the positive samples. Indeed, this is consistent with the recent 
findings by Ma et al. [17] that CRIP1 in human breast cancer was over-
expressed, compared to normal breast tissue in in situ experiments. For the 
leukemia dataset, all samples can be perfectly discriminated by the expression 
level of the POU class 2 associating factor 1 (POU2AF1). POU2AF1 is known 
as a gene responsible for leukocyte differentiation. In Swiss-Prot, we can see 
the description that “a chromosomal aberration involving POU2AF may be a 
cause of a form of B-cell leukemia.” Namely, it suggests that this gene can be 
inactivated/down-regulated in lymphocytic leukemia, such as ALL. In contrast, 
it should be noted that POU2AF1 in the extracted rule shows a weaker 
expression in AML than ALL. At present, the detailed role of POU2AF1 in 
AML has not been revealed [19], whereas we expect that its biological 
relevance will be unveiled by experimental biologists in the near future. 
 
Conclusion: 
In this paper, we introduced a combined method of heuristic attribute reduction 
and evaluation of relative reducts in rough set theory for gene-expression data 
analysis. Our method is based on a heuristic attribute-reduction algorithm for 
generating as many relative reducts as possible and a criterion for evaluating 
the usefulness of relative reducts. We applied our method to two gene-
expression datasets: breast cancer and leukemia. In the comparison of our 
method with C4.5 and SVM, our method showed good classification accuracy 
that is comparable to the results of SVM and considerably exceeds that of 
C4.5.The experimental results also showed that our method can identify 
differentially expressed genes among different classes in gene-expression 
datasets. For the breast-cancer dataset, our method extracted decision rules 
regarding a gene that has been identified as a novel biomarker of human breast 
cancer in recent studies. For the leukemia dataset, rules about a gene 
responsible for leukocyte differentiation were extracted. Thus, these results 
indicate a possibility that our method can be a useful tool for gene-expression 
data analysis. As a future work, we reduce the computation time via 
improvement of the program and will provide the freely available tool. 
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Supplementary material: 
 
Table 1: Comparison of classification accuracy of the proposed method, decision tree, and SVM 

 Classification accuracy (%) 
 Breast cancer Leukemia 
Proposed method 82.86 92.86 
Decision tree (C4.5) 83.67 73.61 
SVM (Linear kernel) 87.75 97.22 

 
Breast cancer dataset: 
(CRIP1 > -2)  (Class = Positive), Certainty = 0.76, Coverage = 0.64. 
(CRIP1 = -3)  (Class = Negative), Certainty = 0.95, Coverage = 0.79. 
 
Note that the gene M34715_at was removed in combining generated decision rules from the best relative reduct {CRIP1, M34715_at} because, in this case, 
M34715_at was used only for classifying one positive subject with CRIP1 = -3. 
 
Leukemia dataset: 
(POU2AF1 > -2)  (Class = ALL), Certainty = 1.0, Coverage = 0.88. 
 (POU2AF1 = -3)  (Class = AML), Certainty = 1.0, Coverage = 1.0. 
 
Heuristic Algorithms for Attribute Reduction Using Reduced Decision Tables: 
We review heuristic algorithms to generate as many relative reducts as possible from decision tables with numerous condition attributes proposed by Kudo and 
Murai [11]. These heuristic algorithms are based on the idea of reduced decision tables that preserve the discernibility of objects that belong to mutually different 
decision classes in the given decision table. Formally, a reduced decision table of a given decision table is defined as follows. 
 
Definition 1. Let DT = (U,C, d) be a decision table, where U is a finite and non-empty set of objects, C is a finite and non-empty set of condition attributes, 
and d is a decision attribute. A reduced decision table of DT is the following triple: 

( , ', )RDT U C d=      (1) 

where U and d are identical to DT. The set of condition attributes C 'satisfies the following conditions: 

1. ' .C C⊆  

2. For any objects xi  and xj that belong to different decision classes, if xi  and  xj are discernible by the indiscernibility relation RC based on C, the two 

objects ix  and jx  are also discernible by the indiscernibility relation RC ' based on C '. 
Algorithm 1 below generates a reduced decision table of the given decision table. In Algorithm 1, the condition attributes are selected from C at random based on 
the parameter of base size b that decides the minimum number of condition attributes of the reduced decision table; some attributes in the elements of the 
discernibility matrix are supplied to preserve the discernibility of the objects in the given decision table. 
 
Algorithm 1 Decision-table reduction algorithm 
Input: decision table ( , , )DT U C d= , discernibility matrix DM  of DT , base size b  

Output: reduced decision table ( , ', )RDT U C d=  

1. Select b attributes 1, , ba aL from C at random by sampling without replacement. 

2. 1' { , , }bC a a= L  

3. For all ij DMδ ∈ such that i j>  do 

4. If ijδ ≠ ∅ and 'ij Cδ ∩ =∅  then 

5.  Select ijc δ∈ at random 

6.  ' : ' { }C C c= ∪  
7. End if 
8. End if 
9. Return ( , ', )RDT U C d=  
 
Note that, for any decision table and any reduced decision table, a set of condition attributes A  is a relative reduct of the reduced decision table if and only if A  
is also a relative reduct of the given decision table. Thus, generating as many reduced decision tables and relative reducts as possible from the given decision table, 
we can extract many relative reducts from the given decision table. Algorithm 2 below generates the relative reducts of the given decision table based on 
generating reduced decision tables by Algorithm 1 and switching the exhaustive attribute reduction and heuristic attribute reduction according to the number of 
condition attributes of each reduced decision table. 
 
Algorithm 2 Exhaustive / heuristic attribute-reduction algorithm 
Input: decision table ( , , )DT U C d= , base size b , size limit L ,number of iteration I  
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Output: set of relative reduct candidates RED  
1. RED =∅   

2. Construct DM of DT  

3. If | |C L≤ then 

4. RED = Set of all relative reducts by exhaustive attribute reduction from  DT 
5. Else 
6. For i = 1 to I  
7.  RDT = Reduced decision table by Algorithm 1 with DT, DM, and b 
8.   If | ' |C L≤ then 

9.    S = Set of all relative reducts by exhaustive attribute reduction from RDT 
10.  Else 
11.   S = Set of relative reduct candidates by heuristic attribute reduction from RDT 
12.   End if 
13.  :RED RED S= ∪  
14. End for 
15. End if 
16. Return RED  
 
In Algorithm 2, the size limit L  is the threshold for switching attribute-reduction methods, and if the number of condition attributes of a decision table is smaller 
than L , Algorithm 2 tries to generate the set of all relative reducts of the decision table. Thus, we need to set the threshold L  appropriately. If the number of 
condition attributes of the given decision table DT  is greater than the threshold L , Algorithm 2 repeats I  times generating the reduced decision table 
RDT and the attribute reduction from RDT  by selecting the exhaustive method or the heuristic method, and generates the set RED  of relative reducts. 

Note that RED may contain some outputs with redundancy if the result of the heuristic attribute reduction is not guaranteed to generate relative reducts. 
 
An Evaluation Criterion of Relative Reducts: 
From the viewpoint of data analysis using rough set theory, Kudo and Murai [12] proposed an evaluation criterion of relative reducts for extracting useful decision 
rules. This criterion evaluates the usefulness of each relative reduct by the average of the coverage of the decision rules generated from the relative reduct. Let 

( , , )DT U C d=  be a decision table. For any non-empty set B C⊆  of condition attributes, the average of coverage ( )ACov B  of all decision rules 

generated from B is calculated as follows [12]: 

{ }
[ ] /

( ) ,
 [ ]

B B

j B j
x U R

ACov B
D x D

∈

=
∈ ∩ ≠∅∑

D

D
   (2) 

where [ ]Bx  is the equivalence class of element x U∈ by the equivalence relation BR , / BU R  is the quotient set of U  by BR , jD  is a decision class, D  is 

the set of all decision classes, and | |X  is the cardinality of set X . For any non-empty set B C⊆  of condition attributes, the range of score ( )ACov B  is 

0 ( ) 1ACov B< ≤  and ( ) 1ACov B =  holds if each decision class is completely described by only one decision rule, or equivalently, the classification result 

using B  is identical to the classification result using the decision attribute d .  
 
Equation  (2) indicates that ( )ACov B  is the number of decision classes over the number of decision rules generated from B  and depends only on the number 

of decision rules, because the number of decision classes is fixed in the given decision table. For each relative reduct E C⊆  of the given decision table, the 
average of coverage ( )ACov E  reflects the roughness of partition / EU R  by the equivalent classes based on ER . It is guaranteed that, for any relative reducts 

,E F C⊆ , if the partition / EU R  is rougher than the partition / FU R , then ( ) ( )ACov E ACov F≥  holds and this property provides a theoretical basis 

for using Eq.(2) as an evaluation criterion of relative reducts. 
 
 
 


