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Characteristic function of momentum density

distribution. 1l
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Rigorous relations between the moments {pprp"> and <{p") and the characteristic function B(r) of the
momentum density distribution p(p) are here generalized to the case of negative /, m, and n. A simple
application is given which illustrates that the present results enable us to obtain the moments of momenta

without referring to any momentum-space quantity.

I. INTRODUCTION

The characteristic function B(r) [= [dpexp(—ipr)p(p)]
of the electron momentum density p(p) is used to facili-
tate the analysis of experimental Compton profiles' and
its fundamental properties have been discussed in detail
by Weyrich et al.? and Thakkar ef al.® In a previous
paper,* we have shown that B(r) and its spherical aver-
age

b(r) [= (4m) foz' do fo " d0sin BB(r)]

are useful for the calculation of the moments {p}pTpD
and (p") where p=|p| =(pZ+p2+p?)'/2. The resultant
relations are

(pLpspp=i*mn im0y, m

(=1)%%(n +1)5 "(0) for even n ,

(p" = - ,
(—1)(’"”’2[2(n+1)/11]f drrp™(r) for odd n ,
, ()

, (2)
where B™"(r) and () denote, respectively,
a"*™nB(r)/ox'@y™az" and d"b(r)/dr", and I, m, and n are
nonnegative integers.

In this paper, we discuss the corresponding formulas
for negative integers I, m, and n, in order to complete
a general relation between the characteristic function
and the moments of momenta. The results are illus-
trated by the calculation of the moments (p") for several
Slater-type orbitals.

Il. B(r) AND {(p3/p;™ p;"}

We assume /, m, and » are posmve integers., By
definition,

505" f app;'py"p" o(p)

=(21r)-3fdrB(r)[fdp < Dy exp(+zpr)] (3)

Since the Fourier transform of p_? is i’ sgn(x)(x/2)*2
x[(@ =11 %™ (Ref. 5), Eq. (3) is rewritten as

(pFpsmpmy =240 =D o =D (e =1 ]
x [ar Br)lsentex ' sgne ™ Isgnlz™] . (@)
It is then clear that };‘py ') vanishes if one of I, m,

and » is odd, because B(r) is an even function, For
even I, m, and n, we finally obtain ’
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(P pympemy =gtmnl (1 — 1)1 (m—l)!(n—l)!]"

fffdxdydzx” m1lzm1B(r) . (5)

When only one or two components are cohcerned,
Eq. (5) is reduced to

=il =T [ aex*t B, 0,0) (62)
-
ppymy =i [ =Dl m =T
” ® -1, m=1
x_[o fo dx dyx*1y™* Blx,y,0), (6b)

and ‘their analogs.

When positive and negative 7, m, and » are mixed,
equations with mixed form of Eqs. (1) and (5) are ob-
tained. For example,

(BpympTy =i ™ = D)1 e =1
X * ”d d m=1 n-lB(l,O,O)o’ , ,
[ J avazymiami5o0k0,, 2

o) = [ =N T [ dz 2T B 00,02 ,
(7b)

(7a)

where all of I, m, and » are assumed to be even.

1. b(r) AND {p™")
Since b(7) is related to the radial momentum density
2r T s .
I(p) [=jo- dqb,_/(; de, p*sin6, p(p)]
through .
rb(r)=j; dp sin(pr)I1(p)/p] ,
= [ dpp™I
(5= [ dapp 1)
=(2/1r)f drrb(r)[f dpp""‘sin(pr)] . (8
, 0 0
For a special case of n=1, we obtain
=@/ [ arsl) (9)
0
since [§ dpsin(pr) =1/r in the sense of hyperfunctions,®
For n=2, the integral in the square brackets of Eq. (8)
is a special case of a more general integral [§ dp sin(pr)/

p° (@, >0). By taking its finite part (partie finie), the
latter integral is found to be’
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TABLE 1. Existing moments (p") for the first six Slater-type orbitals with exponent .

(o™ /cn ,
Orbital n==6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
1s ' 16 8 16
5 3T 1 37 1 3T 5 o
2s 368 8 1 16
e o oo 0 LY LYY 1 —— —— — —_— LS se 0 LN ] 00
: 1 45m 1 5m 3 157 1
: 256 7 64 128 . 64 7 256
% 2 1% 3 1er 1 B 1 Ter 3 1sn 2
3s e eee ee ... 93 632 128 1 256 1 128 5632 93
5 525 1057 5 525m 5 10?# 525 5
s vee ... 289 G656 37 9088 . o472 7 128 17 5l2 9 .. .
D 5 1757 9 1575m 4725 15 1057 45 3157 5
o 429 2048 33 1024 9 2048 512, 2048 9 1024 33 2048 429
5 35T 5 1057 5 525 175m 525T 5 105 5 357 5
- ' 7r1/[2T(a) sin(ma/2)] for a #even integer ,
[ apsin(on)/p° = ~ (10)
0

(=1y2y (@ =1)! ] [In(r) = p(a)] for a=even integer ,

where (@)= =y +32, (@ =1)/{nla -1 +n)}] is the digamma function with y being the Euler constant. We therefore

obtain

(= 1);'/2.1[(n - fﬂo drr"b(r)
0
(™=

(=112 /(-2 T f" dr v b()In(») = ¥(n =1)] for odd 7 .
0 .

for even n ,

(1)

Note that for a positive integer n, () is simplified to the finite sum —y+1+1/2+1/3++-++1/(n =1). The results
for (p™') and (p~%) agree with those given by Thakkar ef al.?

IV. A SIMPLE APPLICATION

An important aspect of the characteristic function
B(r) is that for one-electron orbitals (e.g., indepen-
dent-particle model and natural orbital expansion), B(r)
is equivalerit to the overlap integral S(r).2 Therefore we
can evaluate the moments {p&p"p*") and (p*") directly
in position space based on the table of overlap integrals
(see, e.g., Refs. 8-10) without invoking the momentum-
space concepts such as momentum density (cf. Ref. 11).
As a simple application of this method, we have exam-
ined the moments (p*") for the first six Slater-type or-
bitals with exponent {. The b(») functions are obtained
as '

bio () =S, =exp(=1)(1+1 +£2/3)
bo(#) =Sy =exp(=1)(1 +£ +4£2/9 +2 /9 +1*/45) ,
bop (1) = 5S5p0 +2S0pe =€xp(—1)(1 +1 +£2/3 =1 /45) |

by (r) =S5 =exp(—1)(1 +¢+7£2/15 +2£3 /15
+2t* /15 +1° /225 +1°/1515) ,

by (¥) =5S3,q + 355, =€xp(=1)(1 +¢ +19£/45
+4£/45 +4¢t* /675 —1° /675 - 1°/1575) ,
bag(¥) = £Ss40 + 2S34r + Ss4s
=exp(—1)(1 +t+£2/3 =2¢*/75 —°/225 +1°/1575) ,

where £ =¢r. Then applying Eqgs. (2) and (11), we have
calculated {p*") for various n. The existing moments
are summarized in Table I, which of course agree with
the results from the momentum-space calculation, In-
terestingly, we see some regularity for the coefficients
(p"™/¢. For 1s, 2p, and 3d orbitals, the coefficients
are symmetric with respect to n=1, and for 3s orbital
they are symmetric with respect to n=3. However,
there seems to be no regularity for the 2s and 3p or-
bitals.
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