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Perturbation equations for the H(ls)-H+ long-range interaction are solved directly 
in momentum space up to the fourth order with respect to the reciprocal of the 
intemuclear distance. As in the hydrogen atom problem， the Fock transformation is 
used which projects the momentum vector of an electron from the three-dimensional 
hyperplane onto the four-dimensional hypersphere. Solutions are given as linear 
combinations of several four-dimensionalspherical harmonics. The present results 
add an example to the momentum剛spacesolution of the nonspherical potential 
problem. 

1. INTRODUCTION 

In a recent paper，1 the long-range interaction between 
the ground-state hydrogen atom and the proton has been 
studied from the momentum-space viewpoint， and it has 
been shown that the origin of the stabilizationムE
=一(9/4)R-4十 O(R-6)of this system is interpretable as 
the contractive reorganization of the momentumdensity. 
In that study， the required perturbation wave function in 
the momentum representation has been derived by the 
Dirac-Fourier transformation of the corresponding wave 
function in the position representation， which is analyti-
cal1y known as a power series of the reciprocal of the 
intemuclear distance R by the long圃rangeperturbation 
theo町・2
In this paper， we show that the perturbation equation 

for the H(ls)-H+ long-range interaction problem can be 
directly solved in momentum space. The kemel of the 
integral equation is expanded by the four-dimensional 
spherical harmonics after the Fock transformation3-S which 
projects the momentum vector of an electron from the 
three-dimensional hyperplane onto the four圃dimensional
hypersphere. Then the integral perturbation equation in 
momentum space is solved up to the fourth qrder (with 
respect to R-1) based on the orthonormal property of the 
four-dimensional spherical harmonics.. Solutions are given 
as lin~ar combinations of these harmonics，and are .iden-
tical withthe previous l'esults1 obtained by the Dirac-
Fourier transformation of the solutions of the position-
space perturbation equation2 when the inverse Focktrans-
formation is carried out. The ptesent results add an 
example to the ex，act solution of momentum-叩 aceSchro" 
dinger equations. Atomic units are used. throughout this 
paper. 

日.THEORETICAL GROUND 

A. Perturbation equation in momentum space 

The momentum圃spaceSchrるdingerequation for a 
one-electron system is given by 
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山一E州十j町拘刷qω仰)
U町拘刷(何ωqω)=町3J侃仰州p酬(刷帆 (μlb肋) 

where J-門司r吋)is the potential energy ope釘ra幻to町rl泊nthe position 
representation. For the present system of H(1s)-H+ long-
range interaction，円r)is 

同r)=九(r)+ V'(r)， (2a) 

凡(r)= _，-1， ，= iri， (2b) 

V'(r) = _，'-1十 R-1= L: R一(n+1)九(r)， (2c) 
n~1 

Vn(r) = _，npn(COS 0，). (2d) 

Equations (2c) and (2d) follow from the Legendre expan-
sion of the reciprocal of the electron-proton distance ，'， 
and 0， denotes the angle of r measured from the inter-
nuclear axis. Then the momentum-space counterparts 

U(q) = Uo(q)十L:R-(n+l)Un(q)， (3a) 
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(3b) 

Uo(q) =一(2π2)-lq-2，q= iqi， (3c) 

U1(q) = (-i)o(O，O，l)(q)， (3d) 

U2(q) = -(1/2)[O(2，0，0)(q) + O(0，2刈(q)-2O(0，0，2)(q)]， (3e) 

U3(q) =一(ij2)[3o(2，0，1)(q)+ 3o(0ムl)(q)-2O(0，0，3)(q)]， (3f) 

and so on， where o(l，m，n)(q) represents the product [d'o(qx)/ 
dq~] [dmo( qy)/ dq;'] [dno( qz)/ dq~]. 
If we assume the expansions 

E =z R-nEn， (4a) 
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'I'(p) = L R-nれ(p)， (4b) 
n=O 

and equate to zero the coefficients of the individual 
powers of R-1 of Eq. (la)， we obtain perturbation equa-
tions to be solved: 

zeroth: 

山一Eo]1fo(p)+ I UO(山一例=0， σ 
負rs坑此t仁: 

ザ/2-E1川 )-EI1fo(p) + I ~仇山陥州ü(制岬(何ωqω州)
(5b) 

second: 

[p2/2 -Eo]ψ2(P) -EI1fl(P) -E2れ(p)

+I附恥(p-q) + U1(山 -q仲 0，(5 

and generally for n ;:注主 2， 

nth: 

n 

[p2/2 -Eu]れ(p)-L EkYln-IAP) 
k=l 

+I附れ(p一q)
n-l 

+玄 Uk(q)九一k-l(P-q)]dq = O. (5d) 
k=l 

Thezeroth order equation (5a) is由eSchrodinger equation 
for the hydrogen atom， and its solutions have been 
already known.3，5-7 For the ground state， the resu1t is 

Eo = -1/2， 

れ(p)= (2.J2/π)(p2 + 1)-2， p = Ipl. 

B. . Fock transformation of momentum vector 

(6a) 

{6b) 

We may project the three-dimensional momentum 
space onto the four-dimensional sphere with the origin at 
P = 0 and the radius Po・3-5The projective origin is taken 
at the point (0， 0， 0， -Po). Then a momentum vector P 
= (p， 8，φ) [or =(Px， Py， pz) in the Cartesian coordinates] 
in the hyperplane is transformed to a point on the 
hypersphere， which is specified. by the. three ang1es (α，8， 
φ). .The transformation is 

p = Po tan(α/2)， 8 = 8，φ=φ(7a)  

namely the two ang1es 8 and φhave usual physical 
meaning， whi1e the ang1e α(0 :::;;α<π) represents p. The 
resultant relations are 

sin α= 2PPO/(p2 + PO)， (7b) 

cos α= (PO -p2)/(p2 + PO)， • (7c) 

dp = [(p2 + PO)f2PO]3dO， (7d) 

dO = sin2αsin8 d，αd8d，ゆ， (7e) 

where 0 means the collection of the new variablesα，8， 

and φ. In Eq.(7d) and hereafter， P is convenient1yused 
to represent PO ~n(α/2) even after the Fock transformation ' 
is performed. 
An important property， which motivates the intro-

duction of the Fock transformation， is 

Ipーが1-2土 4PO[4sin2(ω/2)(p2 + pO)(p，2 + PO)]-l， (8) 

where ωis the ang1e spanned between the two points (α， 
8，φ) and (a'， 8'，φ')， which are， respectively， the projections 
ofthe v，∞tors p and p'， on the surface ofthe hypersphere戸
Furthermore， [4 sin2(ω/2>r1 can be expanded as5 

[4 sin2(ω/2)]一1= 47r2 L n-1 Pn'lm(O')九ImW). (9) 
nlm 

Ynlm(O) is血efour-dimensional spherical harmonic defined 
by5 

Yn1nμ2) = (ーがCn，l(α)Y1m(8，φ)， (10a) 

where Y1m(8，φ) is the usual (three-dimensional) spherical 
harmonic and 

CnAα) = {2n(n -1-1)!/[π(n + 1)!]P/2 sinlα (10b) 

X [dIC~-I(μ)/~μ1]μ=∞sα 

in which C~(μ) denotes the Gegenbauer polynomials. The 
Yn1m are orthonormal in that 

JμYηη~'/'m{O伽叫I加川岬m川川{O刷馴= 九ωn.ollδゐゐ仙11
and sa剖ti泊sf町シ

Y~lm(Q) = (-1)I-myn1_m(0). (lOd) 

By the Fock transformation， the hydrogen 1s wave 
function 1fo(p) [Eq. (6b)] is expressed as 

妙。(0)= 4(p2 + 1)-2Y1∞(0) 

= (p2 + 1)一1[2Y1∞(0)+九ω(Q)]，

(l1a) 

(l1b) 

where we have伽 senpo=H瓦=1仕om曲eform of 
1fo(p)， Since a perturbation equation refers the resu1ts of 
all the lower orders and the lowest order solution ψ。(0)
is simply expressed by the four-dimensional spherical 
harmonics when the radius Po is unity， it seems to be 
most natural and convenient to discuss the perturbation 
wave functions using this value of Po・Indeed，we see that 
only when Po¥1， solutions of themomentum-space 
perturbation equations are easi1y found in closed forms. 
For the sake of simplicity， we set Po = 1 in the following 
discussion， but we note that this value comes from the 
consideration of the structure of the equations to be 
solved. 

111. SOLUTION 

A. First order 

From Eqs. (5b) and (6a)， the first order energy El is 

El =引2

+Iμ砂附t州仇(句w帆州q)1t枇州沖眺刷l(句p一例]φ
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=;μ(p)(p2 + 1削 dp
+レ1州 UO(仰+q)ぬ]勾 (12a) 

However， the complex conjugate form of Eq. (5a) is 

!(p2 + 1)榊)+ J Uo(q)体(p+ q)dq = 0， (13) 
since U~(q) = Uo(-q). Then we see 

E1 = 0， (12b) 

and hence the first order perturbation equation takes the 
same form as the zeroth. order one. It fol1ows that仇(p)
is a multiple of lfo(p)， and we may put 

we see Eq. (17b) is simplified to 

b( Q ) -z n 1 九ημl伽刷m
一2[2Y:九ZlO(Q町)+ 0'而=/3均)Y九T31O(Q町叫)]= O. (17c) 

From the orthonorma1ity of Ynlm(Q) [Eq. (lOc)]， a solution 
is found to be 

χ2(Q) = 8Y21O(Q) +偏Y31O(Q)， (19) 

and therefore the second order wave function is 

lf2(Q) = (p2 + 1)-2[8 Y21O(Q)十両Y31O(Q)]

= -i(4Y2/π)p[(p2 + 1)-3 + 6(p2 + 1)-4]P1(COS 8)， 
(18b) 

ψI(P) = 0， 
which is identica1 with the Dirae-Fourier transform 1 of 

(14) . the position-space solution. 

for the sake ofsimplicity.2 

B. Second order 

From Eq. (5c)， the second order energy E2 is 

ι =Jμ妙材t杭拘叫(ωp
where we have used Eqs. (12b)， (13)， and(14). Using Eqs. 
(3d) and'(6b)， we find 

J U1(山一例=叫的2+け ω)
=一(p2+ 1)一1[2Y21O(Q)+ (偏/3)Y31O(Q)]， (16) 

from which E2 is ca1cu1ated to be [see a1so Eqs. (7d)， 
(lOc)， and (11a)] 

E2 = -J Ytoo(Q)川町偏/6)印)凶=0.' (附

Sin田 E1=E2=ψ1 =;= 0， the鉛condorder perturbation. 
equation (5c) now takes a form 

小脳p)+ 2 J Uo(p一蹴附-2小 1)一l
X [2Y21O(Q) + (両/3)Y31O(Q)] = 0， (17a) 

where we have changed the dummy variable q with 
p -p' in the integral. When Eqs. (3c) and (8) are applied， 
Eq. (17a) becomes 

(p2 + 1)わ(Q)一(2π2)一l(p2+ 1)-1 

×イj附
一2攻(p〆2+ 1げ)-→1[2l'九'21O(但仰Q町)+ (V而6/β3)庁Y31O(ば(仰側Q町叫)]= o. 

Using the expansion (9) and substituting 

、わ(Q)= (p2 + 1)-2χ2(Q)， 

(17b) 

(18司

c. Third order 

Since E1 = E2 =ψI=Oand 

Jo:ιω馳Z(湘(ω州q
= 一べ(p〆2+ 1)γ一1[3v2Y九32叩2却20(“(Q町)+ (3訂/2幻)Y九4ω2却20(ば(Q町)] (ο20的) 

t仕旨凶omEq申s.(3e) and (6b)， the third order ene唱YE3 is 
[from Eq. (5d) with n = 3] 

E3 = J附州ι(q)れい)内]命
= -~J noo(Q)[3v2Y320(Q) +問九20(Q)]

= o. (21) 

Therefore the third orde，r perturbation equation to be 
solved is 

(p2 +川)+ 2 J Uo(q)恥(p-q)dq-2小 γ
X [3v2Y320(Q) +.(3/2)Y420(Q)] = O. (22a) 

As the second order case. the Fock transformation sim-
plifi自由isequation to 

χ 3(Q) ーzrFn1 1I伽伽以'm(必訓，(μω(“ω【QりI
一[恒6.J2、d厄Y九F322却刈o(ρQ町)+3九20(Q町町)]= 0， (22b) 

where χ3(Q) is defiped by 

ψ3(Q) = (p2 + 1)-2χ3(Q). 

Equation (22b) has a solution 

χ3(Q) = 9v2Y320(Q) + 4Y420(Q)， 
and hence the third order wave function is 

わ(Q)= (p2 + 1)~2[9v2 Y320(Q) + 4九20(Q)]

=一(8v2/7r)p2[(p2+ 1)-4 

+ 16(p2 + 1 r5]P2(∞s 8). 

(23a) 

(23b) 

(23c) 
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D. Fourth order 

Since EI = E2 = E3 =ψ1 = 0， theexplicit form of 
the fourth order perturbation equation is 

女p2+ 1山一 E41/!附 J[Uo(山-q) 
+ U1(q)れ(p-q) + U3(q)妙。(p-q)]dp = 0 (24a) 

from Eq. (5d). Using Eqs. (3d)， (3f)， (6b)， and (l8b)， the 
two integrals appearing in the above equation are evaluated 

to be 

J U1(q州一帆
= (4v2/π){[(p2十1)-3+ 8(p2 + 1)-4 

-16(p2 + 1)-S]Po(cos s) 

十[4(p2+ 1)-3 + 28(p2 + 1)-4 

-32(p2 + 1)-S]P2( cos s)} 

where 

A(Q) = -2E4Cp2十1)妙。(Q)+ A'(Q) 

=一(23/2)Y2∞(Q)-14Y3oo(Q) 

-6Y400(Q) -Ysoo(Q). (24c) 

Since A(Q)， B(Q)， and C(Q) have di宜erent1 dependences， 
the solution χ4(Q) of Eq. (24b) is decomposed into the 

three parts; 

χ4CQ)=χ土。(Q)+χ土2(Q)+χ~~3(Q). (28a) 

The individual parts are found tobe 

χi~o(Q) = -(89/4)YlOO(Q) + 23Y200(Q)十 21Y3∞(Q)

+ 8Y400(Q) + (5/4)五∞(Q)

=ー(2Ji;π)[(31/4)+ 6(p2十1)-1

+ 3(p2 + 1)-2 + 32(p2十1)-3

-80(p2 + 1)-4]PO(cos s)， (28b) 

χi~2(Q) = (33v2/2)Y320(Q) + 12Y42o(Q) + (両面/4)YS20(Q)
= [2(p2 + 1)]一I[A'(Q)+ B(Q)]， (25a) 一(2v2/π)p2[5(p2+ 1)-2 + 32(p2 + 1)-3 

JU3(山一ω
=(←一1)(σ38糾4v2空2/片π}加ip3刊(p〆2+ 1リ)-Sp:円3(いC∞O凶ssの) 
= [似2(p〆2+ 1叫WIC(仰Q叫)，

where 

A'(Q) = -9 YlOO(Q)一 16Y2oo(Q)

-14】ぐ300(Q)-6Y400(Q) -Ysoo(Q)， 

B(Q) = -11 v2 Y320(Q) -9 Y420(Q) 

(25b) 

(25c) 

-VI4/5Ys2o(Q)， (25d) 

C(Q) = -12VsY43o(Q) -6v2YS30(Q). (25e) 

Then the fourth order energy E4 is 

ι =J 附榊州(ゆωp肘吋)

=(刊JYToo(Q)[A'(Q)十郎)+ω)]d

十 160(p2+ 1)-4]Picos s)， (28c) 

χ土3(Q)=16 vs Y430(Q) + (l5v2/2) YS30(Q) 
= i(32v2/π)p3[(p2 +1)-3 + 30(p2 + 1)-4] 

X P3(COS s). (28d) 

For the χi~O(Q) part， the coefficient [-89/4] of YlOO(Q) 
cannot be determined only from the perturbation equation 

(24b). We have determined it by the fourth order nor-

malization condition given by 

JIψ2酬 II+J附れ(p)+り(p)1/!o(p)]dp= 0，ρ 

which follows from thenormalization of both the total 
and zeroth order wave functions， 'lt(p) and妙。(p)，to 
unity. [Note that 1/!1(P) = 0 in the present case.] The final 
result for the fourth order wave function ψ4(Q) is obtained 
by inserting Eqs. (28a)一(28d)into Eq. (27)， which also 
agrees with the Dirac-Fourier transform of the position-

space solution after the inverse Fock transformation. 
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Only the firs坑tterm [一9Y1ωoo(Q)]of A司Q)contributes to E4 
owing to the or此thonomalit匂yof Ynlf1 
transformation followed by the substitution 

れ(Q)= (p2 + 1)-2χ4(Q)， (27) 

we have the simplified fourth order equation 

川 ) -z n l YR九h恥恥Yn1m(山伽川川11，伽伽刈l仇伽以'm(吋【Q
+ A(Q) + B(Q) + C(Q) = 0， (24b) 
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