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Perturbation equations for the H(1s)-H* long-range interaction are solved directly
in momentum space up to the fourth order with respect to the reciprocal of the
internuclear distance. As in the hydrogen atom problem, the Fock transformation is
used which projects the momentum vector of an electron from the three-dimensional
hyperplane onto the four-dimensional hypersphere. Solutions are given as linear
combinations of several four-dimensional -spherical harmonics. The present results
add an example to the momentum-space solution of the nonspherical potential

problem.

I. INTRODUCTION

In a recent paper,! the long-range interaction between
the ground-state hydrogen atom and the proton has been
studied from the momentum-space viewpoint, and it has
been shown that the origin of the stabilization AE
= —(9/4)R™* + O(R®) of this system is interpretable as
the contractive reorganization of the momentum density.
In that study, the required perturbation wave function in
the momentum representation has been derived by the
Dirac-Fourier transformation of the corresponding wave

function in the position representation, which is analyti-

cally known as a power series of the reciprocal of the
internuclear distance R by the long-range perturbation
theory.? :

In this paper, we show that the perturbation equation
for the H(1s)-H* long-range interaction problem can be
directly solved in momentum space. The kernel of the
integral equation is expanded by the four-dimensional
spherical harmonics after the Fock transformation®- which
projects the momentum vector of an electron from the
three-dimensional hyperplane onto the four-dimensional
hypersphere. Then the integral perturbation. equation in
momentum space is solved up to the fourth order (with
respect to R™') based on the orthonormal property of the
four-dimensional spherical harmonics. Solutions are given
as linear combinations of these harmonics,-and are iden-
tical with the previous results! obtained by the Dirac-
Fourier transformation of the solutions of the position-
space perturbation equation? when the inverse Fock trans-
formation is carried out. The present results add an
example to the exact solution of momentum-space Schro-
dinger equations. Atomic units are used.throughout this

paper.

Il. THEORETICAL GROUND
A. Perturbation equation in momentum space

The momentum-space Schrodinger equation for a
one-electron system is given by
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[p?*/2 — E1¥(p) + f U@)¥(p — q)dq = 0, (1a)

U(g) = (27)7° f exp(—iqr) V(r)dr, (1b)

where V(r) is the potential energy operator in the position
representation. For the present system of H(1s)-H" long-
range interaction, W(r) is

r) = Vi(r) + V(r), (2a)

Vor) = —r7, r=|r|, (2b)

Viry=—r"'+ R = % ROy (1), (2¢)
: n=1

V,(x) = —r"P,(cos 6,). (2d)

Equations (2¢) and (2d) follow from the Legendre expan-
sion of the reciprocal of the electron—proton distance r/,
and 6, denotes the angle of r measured from the inter-
nuclear axis. Then the momentum-space counterparts

U@ = Ugq) + 2 R DULq), (3a)

n=1

Unlq) = (2m)7° f exp(—iqr)V,(r)dr,

n=0,1,2, - (3b)

are found to be |
U@) = -2 7', g=ldl, (3¢)
Ui(q) = (—)5**q), (3d)

Ux(@) = ~(1/2[6%°%@) + 6°2%q) — 26°*>@)],  (3e)
Us(a) = ~(i/2[352°%(@) + 36°2q) — 2°°(@)],  (3D)

and so on, where 6")(q) represents the product [d'8(qy)/
dq')[d™8(qy)/da}|[d"6(q.)/dq7).
If we assume the expansions

E= > R™E,, (4a)

n=0
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¥(p) = 2 R™"u(p), (4b)

n=0

and equate to zero the coeflicients of the individual
powers of R™! of Eq. (1a), we obtain perturbation equa-
tions to be solved:

- zeroth:
[p%/2 — Eoldo(p) + f Uo@¥o(p — @)dq =0,  (5a)
first: . ' |
[p*/2 — Eoli(p) — Entho(p) + f Uo@¥(p — q)dq = 0,
(5b)
second:

[p%/2 — Eola(p) — Evti(p) — Exbio(p)

+ f [Uo(@¥2(p — @) + Ui(@¥o(p — q)ldg = 0, (5c)
and generally for n = 2, '
nth: ‘

[P?/2 = Ecl¥n(®) = 2 En-i(p)

k=1

+ [ wane -0
n—1 .

+ 3 Ud@¥nrii(p — @)}dq = 0. O (5d)

k=1

The zeroth order‘equation (5a) is the Schrédinger equation
for the hydrogen atom, and its solutions have been
already known.>>~7 For the ground state, the result is

Ey=—1/2, (6a)
Yop) = V2/m)(p* + 1)2, p=pl. (6b)

B. Fock transformation of momentum vector

We may project the three-dimensional momentum
space onto the four-dimensional sphere with the origin at
p = 0 and the radius py.>-> The projective origin is taken
at the point (0, 0, 0, —p,). Then a momentum vector p
= (p, 8, ¢) [or =(Dx, Dy, D-) in the Cartesian coordinates]
in the hyperplane is transformed to a point on the
hypersphere, which is specified by the three angles («, 0,
¢). The transformation is

D =potan(e/2), 0=10, ¢=¢; (72)

namely the two angles 6 and ¢ have usual physical
meaning, while the angle a (0 < a < 7) represents p. The
resultant relations are

sin « = 2ppo/(p* + pd), (7b)
cosa=(pd=p(P*+pd. (0
dp = [(p* + p3)/2pol’dQ, - (7d)
dQ = sin? « sin 0 da df de, ‘ (7e)

where  means the collection of the new variables «, 6,

2023
and ¢. In Eq. (7d) and hereafter, p is conveniently used
to represent p, tan(c/2) even after the Fock transformation
is performed. ‘

An important property, which motivates the intro-
duction of the Fock transformation, is

Ip — P72 = 4pg[4 sin*(«/2)(P* + PP + PO, (8)

where  is the angle spanned between the two points («,
0, ¢) and (o, ¢, ¢'), which are, respectively, the projections
of the vectors p and p’, on the surface of the hypersphere.*
Furthermore, [4 sin®(w/2)]”! can be expanded as’

[4 sin(e/2)] ! = 20 3 17 YA Q) YD) ©)

nlm

 Yum(Q) is the four-dimensional spherical harmonic defined

by’ ‘
Yo Q) = (i) Cpi(@) Y10, ¢), (10a)

where Y,,(0, ¢) is the usual (three-dimenSional) spherical
harmonic and ‘

Cuil@) = {2n(n — 1 — DYY[x(n + D]} sin’ @
X [dlcl-—l(ﬂ)/ dﬂI];Fcos a

(10b)

* in which C ¥(u) denotes the Gegenbauer polynomials. The
- Y are orthonormal in that

f Yz'l’m’(Q)Ynlm(Q)dQ = 5nn'all’amm’ (IOC)
and satisfy
Yam(Q) = (=1 Y (D). - (10d)

By the Fock transformation, the hydrogen 1s wave
function yo(p) [Eq. (6b)] is expressed as

Yo(@) = 4(p* + 1)V 100() (11a)
= (P> + D7'[2Y100(2) + YD), (11b).

where we have chosen p, = V—2FE, = 1 from the form of
Yo(p). Since a perturbation equation refers the results of -
all the lower orders and the lowest order solution (%)
is simply expressed by the four-dimensional spherical
harmonics when the radius p, is unity, it seems to be
most natural and convenient to discuss the perturbation

~ wave functions using this value of po. Indeed, we see that

only when p, = 1, solutions of the momentum-space
perturbation equations are easily found in closed forms.
For the sake of simplicity, we set po = 1 in the following
discussion, but we note that this value comes from the
consideration of the structure of the equations to be
solved. ) :

Il. SOLUTION
A. First order

From Egs. (5b) and (6a), the first order energy E, is

£ =5 [ vsoxo® + 1w

C+ f %‘(D)I: f Uo(@)y:(p — Q)dq]dp ‘
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~2 [ v + vswa

+ [ v [ vt +q)dq]dp. (122)

. However, the complex conjugate form of Eq. (5a) is

3(0* + ) + f Us@W(® + a)da = 0, (13)
)
since U§(q) = Uo(—q). Then we see ’ '
E, =0, (12b)

and hence the first order perfurbation equation takes the
same form as the zeroth order one. It follows that ¥,(p)
is a multiple of Yo(p), and we may put

Yi(p) = 0, - (14)

for the sake of simplicity.?

B. Second order

From Eq. (5c), the second order energy EZ is

G U@lp ~ da b,

where we have used Egs. (12b), (13), and (14) Using Eqgs.
(3d) and (6b), we find

f Un(awole ~ Q)dq = i8<2/m)p(p? + 1) Py(cos 6)
= —(p? + 1) [2Y210(®) + (V6/3)Y310(D)], (16)

from which E, is calculated to be [see also Egs. (7d) :

(10c), and (11a)]

_fY’foo(Q)[Yzlo(Q) + (Vg/6)Y310(9)]dQ =0. ( lSl‘J) '

Since E, = E, = ¢, = 0, the second order perturbation
equation (5c¢) now takes a form

0% + D0a0) + 2 [ Ulp — pWatw)ds’ — 200 + 1)
X [2Y210(R) + (V6/3)Y310(R)] = 0,

wherev we have changed the dummy variable q with
p — P in the integral. When Egs. (3¢) and (8) are applied,
Eq. (17a) becomes

0+ 1@ — @i+ 1)

X f [4 sin2(w/2)]"'(p? + 1)2o(X)dY

— 2p? + 1) [2Y2o(@) + (V6/3)¥310(®)] = 0
: (17b)

Using the expansion (9) and substituting

Q) = (p7 + 1) (D), (18a)

(15a) :

(17a) -

we see Eq. (17b) is simplified to

Xz(Q) 2 1 V() f Y ) xo(X)dY

nim

— 2[2Y210(9) + (V6/3)Y310(2)] = 0 (17¢)

- From the orthonormality of Y,um() [Eq. (10c)}, a solution

is found to be _

X(2) = 8Y210(®) + V6Y310(9), (19)
and therefore the second order wave function is
¥a(@) = (p7 + 1)78Y210(2) + V6Y310(Q)]

= —1(4V_/7r)17[(17 + 1)+ 6(p* + 1)™1Pi(cos 0),
(18b)

which is identical with the Dirac-Fourier transform' of
the position-space solution.

C. Third order

Since El = E2 = ll/l = (0 and

f Un@o(d — )da = (4853/m)pX(p* + 1)*Px(cos )
(4 BV (@) + BDYer@]  (20)

from Egs. (3e) and (6b), the third order energy E; is

[from Eq. (5d) with n = 3]
£ = [ w30 [ vsawoto - da Jap

1
= =3 ] Yo D3V2Y30(Q) + (3/2) Yao(D)]dD
= 0. 21
Therefore the third order perturbatlon equation to be
solved is ' :
(07 + 00w+ 2 | Uuatatp — s — 205° + 1
X [3v2Y320() + (3/2)Yare(@)] = 0. (222)
As the second order case, the Fock transformation sim-

plifies this equation to

X3(Q) — 2 17 Q) f Y om( ) xa ()Y

nlm

— [6v2Y320(Q) + 3Y420(R)] = 0, (22b)
where x3(Q) is defined by ‘

¥a(Q) = (p* + 1) 2x3(9). (23a)
Equation (22b) has a solution

X3(@) = W2V 520(Q) + 4Yax(©), (23b)
and hence the third order wave function is

Vi) = (0 + DNVl @) + 47 ()]

= —(8v2/mp(p* + 1)
+ 16(p? + 1)73]Py(cos 0).. (23c¢)
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D. Fourth order
Since E, = E, = E; = ¢, = 0, the explicit form of
the fourth order perturbation equation is

3(p? + 1) — Eqdio(p) + f [Uo(@¥a(p — q)

+ Uilgi¥a(p — @) + Us(@o(p — @)ldp = 0

from Eq. (5d). Using Egs. (3d), (3f), (6b), and (18b), the
two integrals appearing in the above equation are evaluated
to be

(24a)

f Ui(@)2(p — @)dq
= (V2/m){[(p* + 1) + 8(p> + 1)
— 16(p2 + 1)"51Py(cos 6)
+[4P*+ 1)+ 28(p% + 1)
— 32(p? + 1)7%]Py(cos 0)}

= [2(p* + DI"'[4(Q) + BQ)], (25a)
f Us@o(p — 9)dq
= (—)(3842/m)p*(p* + 1)*Py(cos 0)
=[2(p* + 1)]‘~‘C(9),4 (25b)
where
A(Q) = —9Y100(2) — 16Y200(R)
— 14Y300(®) — 6Ya0o(@) — Ysoo(®),  (250)
B(Q) = —11v2Y350(2) — 9¥420()
— V14/5Y50(9), (25d)
C(Q) = —12V5Y450(Q) — 652 Y53(2). (25¢)

Then the fourth order energy E; is

E,= f%*(p){f [Ui@ya(p — @) + Us(@o(p — q)]dq}dp

= (1/4) f YToo(Q)[A4'(Q) + B(Q) + C(2)]1d2
=—9/a, / (26)

Only the first term [—9Y00(Q)] of 4'(?) contributes to E,
owing to the orthonomality of Y,;,(Q). Using the Fock
transformation followed by the substitution

Ya(Q) = (p* + 1) 2x4(Q), (27)
we have the simplified fourth order equation .
X® = 2 1Y@ [ Vi@
nlm '
+ AQ) + BQ) + Q) = (24b)

2025
where
A(Q) = —2E4(p* + D(Q) + 4(Q)
= —(23/2)Y200(2) — 14Y300(2)
= 6Y400(2) — Ys00(D). (24¢)

Since 4(2), B(2), and C(Q) have different / dependences,
the solution x4(Q) of Eq. (24b) is decomposed into the

three parts;

v x4(Q) = x4 0(9) + X5A(Q) + x(Q).
The individual parts are found to be
xXi(Q) = —(89/4)Y100(2) + 23Y200(2) + 21Y300(£2)
+ 8Y400(2) + (5/4) Y 500(£2)
= —(2v2/m)[(31/4) + 6(p> + 1)
+3(p2+ )2+ 32(p2+ 1)
— 80(p? + 1) ™]Py(cos 0), (28b)
X AQ) = (33v2/2) Yano(@) + 12Yao(R) + (V70/4) Ys2()
= —QV2/mp’[5(p* + )2+ 32(p* + 1)7?
+ 160(p? + 1)"*]Py(cos 0), \
X5HQ) = 16V5Ya30(Q) + (15v2/2)Ys30(R)
= i(32v2/m)p*[(p? + 1) + 30(p2 + 1)
X Pj(cos 6). (28d)

For the xi°(Q) part, the coefficient [—89/4] of Y00(Q)
cannot be determined only from the perturbation equation
(24b). We have determined it by the fourth order nor-
malization condition given by

(28a)

(28c)

f ¥(p)Pdp + f WS 4p) + E(Wo(p)dp = 0, (29)

which follows from the normalization of both the total
and zeroth order wave functions, ¥(p) and y¥(p), to
unity. [Note that y,(p) = O in the present case.] The final
result for the fourth order wave function y,(Q) is obtained
by inserting Eqgs. (28a)—(28d) into Eq. (27), which also
agrees with the Dirac-Fourier transform of the position-
space solution after the inverse Fock transformation.
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