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For one-electron diatomic systems, an iterative solution of the momentum-space Schrodinger

- equation is examined using the Fock transformation which enables us to expand the kernel of the
integral equation by the four-dimensional spherical harmonics. Starting from the united atom
(UA) and simple LCAO approximations, first iterated solutions are derived and their properties
are analyzed. The corresponding approximate energy eigenvalues are also obtained as a function
of the internuclear distance R. The result from the LCAO starting function is found to be reliable
semiquantitatively: in the range of 0<R <20, the maximum errors of the ground-state electronic

energy are 4.7% and 1.7%, respectively, for the H,*

the exact values.

I. INTRODUCTION

In recent papers,””” momentum-space perturbation
equations for the H(1s)-H™* and H(1s)-H(1s) long-range in-
teractions have been exactly solved in their Schrodinger
forms. The approach used there for the solution of integral
equations in momentum space consists of two steps: the mo-
mentum vector p of an electron is first transformed from the
three-dimensional hyperplane onto-the four-dimensional
hypersphere (Fock transformation).>” Then the kernel of
the integral equation is expanded by the four-dimensional
spherical harmonics {Y,,,,, }. Due to the orthonormal prop-
erty of {Y,,,,}, the integral equation is finally reduced to a
linear equation which exactly determines the perturbation
wave function.

In the present paper, we apply the same method to one-
electron diatomic systems such as H;" and HeH?™ in their
ground states and examine an iterative solution. The mo-
mentum-space solution of the H," molecule was first investi-
gated by McWeeny.® He concludéd that the iterative method
is not very convenient because the required integrations are
quite complicated. Introducing the method of Fock trans-
formation, however, Shibuya and Wulfman* showed that
these integrations are possible even when one starts from the
LCAO approximation for the iteration, and estimated the
ground-state electronic energy of H," system at a small in-
ternuclear distance R. We therefore proceed with our study
along the line developed by Shibuya and Wulfman, but we
devise a new method to determine approximate wave func-
tions and eigenvalues for a wide range of R. We also analyze
the property of first iterated solutions in detail, which was
not given in the work of Shibuya and Wulfman. In the next
section, we outline the Fock transformation and define the
four-dimensional spherical harmonics {Y,,,, }. In addition,
two functions S "7, (R) and W " .(R) are discussed, which
are useful for the many-center problem in Fock space.
Though these functions were originally introduced by Shi-
buya and Wulfman,* we here clarify various important prop-
erties and relations. In Sec. III, first iterated solutions are
derived starting from the united atom (UA) and LCAO wave

1,2
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and HeH?* systems, when compared with

functions and their implication is discussed. Asymptotic be-
haviors of the solutions are also examined for small and large
internuclear distances. The numerical results for the H;"
and HeH?", together with the analysis of the asymptotic
behavior, show that the iterative solution for one-electron
diatomics is promising particularly when one adopts the
LCAO starting function. Atomic units are used throughout
this paper.

Il. FOUR-DIMENSIONAL SPHERICAL HARMONICS AND
RELATED FUNCTIONS

A. Four-dimensional spherical harmonics Y, (2)

We project the three-dimensional momentum space
onto the four-dimensional sphere centered at the momen-
tum space origin with the radius p,. As we will see later, the
value of p, is directly related to the energy eigenvalue of the
system under consideration and is determined at the final
stage of the solution. The projective origin is taken at the
point (0,0,0, — p,) in the four-dimensional (Fock) space.
Then a momentum vector p [ = ( p,6,4 ) in the polar coordi-
nates] in the hyperplane is transformed to a point on the
hypersphere, which is specified by the three angles (,8,¢ ).
The two angles € and ¢ have usual meaning, while the new
angle a (0<a < ) represents the radius p (0<p < ). The
transformation is*~’

P =D, tan(a/2), (1a)
dp = [(p* + p3)/2p,] a2, (1b)
d = sin” a sin 6 da dO dé, (1c)

where (2 means the collection of the angles @, 8, and ¢. In Eq.
(1b) and hereafter, we conveniently continue using p to repre-
sent p, tan(a/2) even after the Fock transformation is car-
ried out.

In Fock space, we can expand |p — p’| ~* (which appears
as a kernel of the momentum-space Schrodmger equation)

as3—5

Ip—p'|7 % = 4pi [4 sin®(w/2)( p* + p5) (P +p3)]
(2a)

© 1985 American Institute of Physics



Toshikatsu Koga: One-electron diatomics in momentum space. | 2329

[4sin*(0/2)] "' =21 n Y %, (2)Y,,,(2),  (2b)

nlm
wherew is the angle spanned between the two points £2 ( = p)
and 2' (=p'). {¥,,,(£2)} are four-dimensional spherical
harmonics defined by’

Y,m(@2) = (—IC, ()Y, (6:6), (3a)
C,.(@) = {2n(n — I — 1)/ [m(n + 1)1} ?sin’ «
X[dIC:t—l(:u)/d.u’l]y=cosa’ : (3b)

where { Y, (6,0 )} are usual three-dimensional spherical har-
monics and C,( 1) denotes the Gegenbauer polynomial. The
{ Y, } satisfy

f 5 (2)Y o ()02 = 8,85 (3c)

Yin@2)=(=1""Y, () : (3d)

The momentum-space hydrogenic wave function @,,,, is ex-
pressed as

Py =495 (P* +P3) Yo (2), (3e)

where p, plays a role of the exponent Z /n, and the integers n,
I, m the three quantum numbers.

B. Functions S 7. (R) and W7} (R)

nilm

Let us define a function S,.}", (R) by

Sl (R) = JCXP(iP’R) nim (2 )Y 3op e (42 )A02. (4)
Then we see* '

[Swm (R)]* =S 70" (—R), (5a)

S vl (0) = 8, 818w » (5b)
and

exp(+ ip'R)Y,;, (2) = If"m (R)Y e (2),  (6)

n'l'm"
Yiom (2).
(6b)

exp( — p'R)Y,, (12) = >0 sz,.'"(R)]*

n'l'm'

Using the abbreviation N = (n/m), we find from Eq. (6a) that
exp[ip(R; + R,)]1Y,,;,,(£2 ) can be expanded in two different
ways:

exp[ipR; + Ry)] Yy(12)

>SN (R +Ry)Yy.(2),
&
: (7a)

> > SN(R)SN: (Ry) Yy (2).

N’ N"
Comparison of the right-hand sides of Eq. (7a) gives a sum
rule
S¥% (R, +R) —ZS% (RI)SN (Ry) ~ZSN IS N+ (Ry),

(7b)

which can be generalized to

RS (R,)--S V(R

ZZS

SN(R,+ - +R))

(7¢)
if we consider different expansions ~ of '
?Xp[ip'(Rl + -+ R;)]Yy(2)

. Integrating the product of Eq. (6a) and its complex con-
jugate over {2, we have
> S RI[STI(R)T*
vAp
and especially for (nim) =

=8, 01O s (8a)
(n'l'm’),

,,'IZ,,.?IS wim (R)? =1, (8b)
from which it follows that

oS  (R)|<1. (8¢)

n'l'm
A position-space picture of the function S "/7? . (R)is given in
the Appendix.
We next define a function W7 .(R) as

win (R)= 3 v iS 7 (R) f Y, (2)

vAu
X [explipR)Y i1 (2)]*d02
= TV SULRS LR 9)

vAp vAp

Then the following relations hold:

[Vl (R)]* = Wi (R), | (10a)
Wnl;nm (0) - n—16nn'6ll’6mm’! (IOb)
; 1S S (R) Y g (2)

= > Wil (R)[exp(lp R) wirm (2] (10c)

n'l'm’'
Similar to the function S 77", (R), we can derive several
sum rules for W™ .(R). For example,

> Wi (R)Sﬁ}f.'."'(R)—n"’S """(R),

n'l'm nlm

(11a)

n'l’'m

SVvTSULRISTIR]* =Y WL RI[ W R,
vAp

vAiu

(11b)
and a special case of Eq. (11b) for (nlm) = (n'l'm’) is
;,, | W e (R)]? = Z 'S i (R)]?
<3 ISR =1 (11¢)
We therefore find
o<|wrn (R)|<1. (11d)

The function W74 .(R) can also be shown to have intimate

relations with some familiar position-space quantities (see
the Appendix).

J. Chem. Phys., Vol. 83, No. 5, 1 September 1985



2330

lll. FIRST ITERATED SOLUTIONS

The momentum-space Schrédinger equation for a one-
electron diatomic system is given by*>*’

(P/2 — E)¥(p) = Wr‘fip _p|?

X{Z, exp[ —i(p—P')R,]

+Z, exp[ —i(p—P)R, ]} ¥(p)dp,
(12a)

where R, and R, are position vectors of two nuclei whose
charges are Z, and Z,. The nuclear repulsion term has been

omitted and E represents the electronic energy. We discuss
only the case of £<0 and set

Po=+ —2E. (13a)
We also assume that the momentum wave function is ex-
pressed as

¥ (p) = 4p"%(P* + p3) T*YH(2). (13b)
Then the Fock transformation [Egs. (1) and (2)] allows us to
rewrite Eq. (12a) as )

P2))2) = pehi£2),
where

(12b)

P2)2)= (27" j 4 sin%(w/2)] !
X{Z, exp[ —i(p—p')R, ]
+Z, exp[ —i(p—p)R, ] }¥2")d2’

= z n_l{_Za eXp( - ip'Ra)YnIm(‘Q)

nlm

X f [exp( — iR, )Y, (2)] *42 )02
+ Z, exp( — ip'R,) Y, (2)

X [ Lenpl — iRy T, 62')] 2 12 .
(12¢)

The first iterated solution ¥V for the initial guess
(which may include some parameters to be determined) is
defined by - '

P(2) =P (2))%2). (14)

In order to obtain approximate eigenvalue p{' and wave
function V(42 ) at the stage of the first iteration, we intro-
duce a set of reference functions {y;} (i = 1,2,..., f) and con- -
sider the y; component (or the projection onto the y; axis in
the-functional space) of ¥°(2 ) and ¢”(2 ). From Eq. (12b),

* we then have

A = [xrawiaas [apoaie, i=12...
1s)

Equation (15) constitutes a set of equations from which we

Toshikatsu Koga: One-electron diatomics in momentum space. |

can determine pl’ and parameters embedded in ¥'V(2). fis
therefore governed by the number of unknown parameters.
The reference functions {y;} are chosen by an appropriate
physical insight on the system under consideration. Strictly
speaking, there remains ambiguity for this choice, but we
note that if ¥'%(£2) is already a correct solution, then the
result of Eq. (15) is independent of {y;}.

A. UA approximation

As a starting function ¥'%, we may assume a hydrogenic
1s function located at the origin of coordinates [see Egs. (3e)
and (13b)],

Y2) = Y100(2)- (16)

From Egs. (12c) and (14), the first iterated solution is found
to be

P2) =Y {chm [exp(— iPR,)Y,,,(2)]

nlm

+ coim [€XP( — ip°R,) Y1, (2)] (17a)

where
Coim = (Z,/1)S 100 (R,),

nilm nlm

(17v)
Czlm =(Z,/n)S :,(1)31 (Ry).

Since [exp( — ip*R,)Y,,, ({2 )] represents a hydrogenic func-
tion @, centered at R,, Eq. (17a) implies:

(i) ¥ is a mixing of an infinite number of hydrogenic
functions centered at R, and R,. Namely, the first iterated
solution from the UA starting function is an LCAO func-
tion. It is interesting to observe that the concept of LCAO
emerges in a purely mathematical manner without invoking
any physical intuition.

(ii) Mixing coefficients are inversely proportional to the
principal quantum number n. The ratio of mixing coeffi-
cients of the (n,/,m) functions on different centers is

Coim/ Cim =2/ Z,)[S i (R, /S i (R, )], (17¢)

which shows that this ratio is proportional to that of nuclear
charges and is dependent on the coordinate system through
the function S 190 , :

In the present UA approximation, f=1 and hence
X102 ) = Y,00(£2 ) seems to be a most natural choice. We then

have

Y =Z,WinR,)+Z,WiR(R,) (18a)
where
WieR) =[1—(1+t)exp(—2t)1/t, t=py|R|,
(18b)

and p)’ depends on the coordinate system. Note that p{}’ also
enters into the right-hand side of Eq. (18a).

For a small internuclear separation R, Eq. (18a) can be
explicitly solved as a function of R:

' =Z,—23)[Z.k*+Z,(1-k)P)Z R
+(2/3)[Z,k*+Z,(1 —kP]Z,R"
+O(R"),

where we have used

(19a)

J. Chem. Phys., Vol. 83, No. 5, 1 September 1985
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Zu =Za +Zb’ R=|Rb - al’

(19b)

R, =‘~Ra|=kR’ R, =|Rb| =(1—k)R.

When we employ the center-of-the-charges-of-the-nuclei
(CCN) coordinates, k = Z,/Z, and we obtain

p'=2,-2/32,2,Z,R*

+(2/3)Z2,Z,(Z2 + Z%)R*+ O(R?), (20a)
EO— _ [pg)]z/z
= —(1/2)Z% + (2/3)Z,Z,Z%R?
—(2/3)Z,Z,Z,(Z* +Z2)R*>+ O(R?). (20b)

Since the correct short-range behavior is known to be'®
E= —(1/2Z% + (2/3)Z,Z,Z,R* — (2/3)Z,Z,Z R *

+(2/5)Z,Z,[1 — (64/27)(Z,Z,/Z2)|Z*R* + O (R?),
(20¢)

the first iterated energy E ‘" is correct up to the order of R %, |
However, this is not true for coordinate systems other than

the CCN one, and the use of the CCN coordinates is suggest-
ed for the UA approximation. '
On the other hand, we find for a very large R that

pP—0 and EY—0 as R— o, (21)

if we use the CCN coordinates. This is obviously incorrect
and the results of Egs. (20b) and (21) mean that the simple
UA approximation is valid only for a relatively small inter-
nuclear distance.

B. LCAO approximation

We now assume a simple (unnormalized) LCAO func-
tion as the starting function,
PO) = [c. exp( —ipR,) + ¢, exp( — ip'R, )] Yi00l42),

(22)

which corresponds to c,(ls), + ¢,(1s),. Since the above
LCAO function is the initial and predominant term of the
first iterated solution of the UA approximation [see Eq.
(17a)], we expect a considerable improvement of the result.

Inserting Eq. (22) into Eq. (14), we obtain the first iterat-
ed function

¢(1)('{2) = ‘[Zacu Cxp( - ip.Ra)

+Zyc, eva( —ip'R,)] Y100(42)

+yn!

nlm

Z aCp nlm( - R)exp( — ip.Ra)

+Z,0S nim nim (R)EXP( — IP'Ry )] Yo (2); - (23)
which is again an LCAO function composed of various hy-
drogenic functions centered at R, and R, .

Since the ratio ¢, /c, is meaningful, f = 2 for the present
LCAO approximation. For the two reference functions,
we  choose . y, =exp(— ip'R,)Y0({2) and y,

= exp( — ip'R, )Y 00({2 ) which correspond to (1s), and (1s),,
respectively. The projections of #” and ¢¥ onto these refer-
ence functions are found to be

(1s), component:

f V04 =, + [S'QR)]*e,, (242)

j YA = [Z, + Z, W3R e, + Z. [S DR e,

(24b)
(1s), component:
[rvode = (s Re +con (24c)
JX *lﬁ(l)dﬂ Z [S ] -,
F{Z[WDR)]* + Z, }c,, (24d)
where R =R, — R, W% (R) s given in Eq. (18b), and
Si%R)=(1+¢t)exp(—1t), t=p{'|R]. (24e)

From Egq. (15), we then have the following equation for the
determination of p“’ and c,/c,:

(p‘”—Z -Z,Wix (P —Z)[Si%]* ‘)(ca)
(P —Z)S% Py —Z [ Wi ]*—Z,/\es

= (g). | (25)

Note that Eq. (25) is linear with respect to ¢, and ¢, but is
nonlinear with respect to p{}) because of the functions W |3
and S'!®. Different from the UA approximation, p’ is inde-
pendent of the coordinate system employed. ’

Asin the UA approximation, the explicit solution of Eq.
(25) is possible for a small internuclear separation R. The
results for p{!' and E " are

W=z, —(2/32,2,Z,R*+(2/3)Z,Z,Z:R*
—(2/5)2,Z,[1~(5/9)Z, Z,,/Z ]Z:R*+O(R7),
(26a)
EV= —(1/2Z2 + (2/3)ZaZ,,ZﬁR - (2/3)2,Z2,Z R’

+(2/5Z,Z,[1 — (10/9Z,Z,/Z2 | Z4R*
O(R). ‘ (26b)
E " agrees completely with the correct result [Eq. (20c)] up to

the order of R 3. The coefficient of R *in E " is partly correct.
The asymptotic behavior for a very large R is

po—~[Z, + 12, - Z,]]/2

EVo _[Z, 4|2, —2Z,|1%/8
and correctly converges to the atom with larger nuclear
charge. As expected, the LCAO approximation has good
asymptotic behaviors both at R—0 and R— 0, and supports
the adequacy of the choice of the reference functions (1s),
and (1s), . However, numerical analysis for some specific sys-

tems is required to see the validity in the intermediate range
of R.

}as R— 0, (27)

C. Numerical results for H;” and HeH2™"

We have calculated the first iterated energy E " based on
Eq. (18a) (UA approximation with the CCN coordinates)

-~ J. Chem. Phys., Vol. 83, No. 5, 1 September 1985
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TABLE 1. Negatives of electronic energies (a.u.) for the ground state of the

H," system. Values in parentheses are percent errors.

First iterated
R Variational Exact®
UA LCAO LCAO
0.0 2.00000( 0:0) 2.000 00 (0.0) 2.000 00 (0.0) 2.000 00
0.1 197619( 0.1) 1.978 17 (0.0) 1.978 21 (0:0) 1.978 24
0.2 1.91653( 0.6) 1.927 99 (0.0) 1.928 33 (0.0) 1.928 62
0.3 1.83676( 1.6) 1.864 81 (0.1) 1.865 79 (0.0) 1.866 70
04 1.74826( 2.9) 1.796 93 (0.2) 1.798 84 (0.1) 1.800 75
0.5 1.65812( 4.4) 1.728 67 (0.4) 1.73176 (0.2) 1.734 99
0.6 1.57036( 6.0) 1.662 25 (0.6) 1.666 75 (0.3) 1.671 48
0.8 1.40908( 9.4) 1.538 72 (1.0) 1.546 57 (0.5) 1.554 48
1.0 . 1.269 82 (12.5) 1.429 34 (1.5) 1.441 00 (0.7) 1.45179
1.5 '1.00540(19.5) 1.212 84 (2.9) 1.23379(1.2) 1.248 99
2.0 0.82498(25.2) 1.059 18 (3.9) 1.086 51 (1.5) 1.102 63
2.5 0.696 40 (29.9) 0.948 69 (4.5) 0.978 76 (1.5) 0.993 82
3.0° 0.60091 (34.0) 0.867 87 (4.7) 0.897 78 (1.4) 0.910 90
4.0 0.469 55 (41.0) 0.762 50 (4.2) 0.787 33 (1.1) 0.796 08
5.0 0.38405(47.0) 0.701 00 (3.2) 0.71921(0.7) 0.724 42
6.0 0.32426(52.2) 0.662 92 (2.3) 0.675 75 (0.4) 0.678 64
8.0 0.246 54 (60.7) 0.61989(1.2) 0.626 73 (0.1) 0.627 57
10.0 0.198 48 (67.0) 0.596 00 (0.8) 0.600 30 (0.0) 0.600 58
15.0. 0.133 05 (76.5) 0.564 70 (0.4) 0.566 67 (0.0) 0.566 72
20.0 0.099 93 (81.8) 0.548 86 (0.2) 0.550 00 (0.0)

0.550 01

2References 11 and 12.

and Eq. (25) (LCAO approximation), and compared the re-
sults with the corresponding variational LCAO and exact
values for a wide range of R. The results are summarized in
Tables I and II for the H," and HeH?* systems, respective-
ly. ‘ '

- In both systems, the general feature of the UA and
LCAO approximations is consistent with the analysis given
in the previous subsections. The UA approximation is valid
only for very small values of R. The error increases mono-
tonically as R increases. On the other hand, the results of the

TABLE II. Negatives of electronic energies (a.u.) for the ground state of the
HeH?* system. Values in parentheses are percent errors.

First iterated
R ' Variational Exact®
UA -LCAO LCAO

0.0 4.50000( 0.0) 4.500 00 (0.0) 4.500 00 (0.0) 4.500 00
"0.1 4.40064( 0.2) 4.410 83 (0.0) 4.411 10(0.0) 441132
0.2 4.17792( 1.3) 4.22934(0.1) 4.231 07 (0.0) 4.23270
0.3 3.91289( 3.0) 4.02532(0.2) 4.029 67 (0.1) 4.034 14
04 3.64678( 5.1) 3.826 02 (0.4) 3.83388(0.2) 3.842 06
0.5 3.39690( 7.3) 3.641 53 (0.7) 3.653 54 (0.3) 3.665 55
0.6 3.16899( 9.6) 3.475 04 (0.9) 3.491 53 (0.4) 3.506 89
0.8 2.779 46 (14.2) 3.196 26 (1.4) 3.22127(0.6) 3.240 84
1.0 2.465 84 (18.7) 2.98194(1.7) 3.012 96 (0.7) 3.033 36
1.5 1.91034(29.1) 2.648 94 (1.7) 2.680 88 (0.5) 2.695 46
2.0 1.55224(38.2) 2.480 64 (1.3) . 2.504 35(0.3) 2.51220
2.5 1.304 15 (45.8) 2.384 41(0.9) 2.401 00 (0.2) 2.404 89
3.0 1.12274(51.9) 2.321 59 (0.6) 2.33354(0.1) 2.33549
40 0.87598(61.1) 2.243 04 (0.3) 2.250 01 (0.0) 2.250 61
5.0 . 0.716 51 (67.4) 2.19545(0.2) 2.200 00 (0.0) 2.200 24
6.0 0.60527 (72.1) 2.163 46 (0.2) 2.166 67 (0.0) 2.166 78
8.0 0.46075(78.3) 2.123 16 (0.1) 2.12500 (0.0) 2.12504
10.0 0.37128(82.3) 2.098 81 (0.1) 2.100 00 (0.0) 2.100 02
15.0 0.24922(87.9) 2.066 13 (0.0) 2.066 67 (0.0) 2.066 67
2.049 70 (0.0) 2.050 00 (0.0) 2.050 00

20.0 0.18728(90.9)

2References 13 and 14.

LCAO approximation are acceptable not only for the small
and large R regions but also for the intermediate region. The
maximum errors relative to the exact values are found to be
4.7% at R = 3.0 (H,") and 1.7% at R = 1.0-1.5 (HeH*™).
The LCAO approximation is reliable semiquantitatively,
and the iterative solution with this method seems to be prom-
ising.

When compared with the corresponding variational
LCAO calculation, however, the error of the first iterated
LCAO is about three times larger in the intermediate R re-
gion, and the first iterated LCAO solution is still open to
further improvement. Second and more iterations are possi-
ble methods for this purpose. Another direction of improve-
ment is the use of an extended LCAO starting function
which includes some additional AO’s such as 2po AO.

However, the primary merit of the momentum space
approach will not be to obtain accurate numerical values,
since the usual variational method and its sophisticated ver-
sion in position space are obviously more direct and power-
ful for this purpose as long as the problem of electronic struc-
tures of atoms and molecules is concerned. Rather, the
momentum space approach can be regarded as a hopeful tool
which permits us to explore new (or complementary, at least)
concepts and pictures that are “hidden” in the ordinary posi-
tion space but useful to grope for a new development in the
electronic structure theory. Nonvariational calculation and
the resultant analysis of short-range interactions, presented
in this study, may be located along this line, in which we have
seen that fewer kinds of integrals are sufficient than those
required in the variational calculations.
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APPENDIX

The following position-space interpretation is possible

for the functions S mm (R)and W2 . (R)introduced in Sec.
II. '

Let u,,,, (r) be the hydrogenic wave function in position
space. Then the following correspondence holds through the
Fourier transformatlon (FT):

Ui (T — R)«*exp(—lp R)®,;,.(p), (A1)

N FT
R [ R WP /

= [205"%/( P +po)]
Therefore we obtain

f@mv—nmrmmmw

nim (42)- (A2)

= f[exp( —ipR)D,,., (P)]*

X [205/(P* +po)] i (42 )dD
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—pJexp( iDR)Y %0 (2) Y (2 )02

= PoS 1i7'm (R), (A3)

nlm

which implies that the function S'/}",. (R) is proportional to
the nuclear attraction integral in position space over the hy-
drogenic functions. As a result,

Smm (R}>0 as |R|—co. (A4)

Alternative correspondence was given by Shibuya and Walf-
man* (see also Refs. 5 and 9). The result is

S i (R) = (1/2) Z (2m/po)*’ ZVZ%',MF viu(R)s (A5)

Vi e = ) f [2Y100(2) + Yoool2)] ¥ (2)

XY (-Q)YM,,(!? Jde2, (A6)

and S . (R) is expressible by a linear combination of a fin-
ite number of position-space hydrogenic functions.
Similarly, considering another correspondence

FT
£ = R o2 [Ip = | expl ~ i(p— )
‘R]D,,,.(p')dp’
= [2p3*/( P + p§)] exp( — ipR).
X Zv“SZﬁ"},(R)Y aul(2), (A7)

vAu
we have

J o B — BRI, )

—nf|SrsEmTL@)]

VA 1
X [eXpliDR)Y 11100 (2)] %402
=poW ii'm R). ' (A8)

Thus the function W " .(R) is proportionat to another kind
of nuclear attraction integral in position space, and

wrn (R)—0 as |R|—c. (A9)

We note that in the above equations, all the exponents of
{#,,»(r)} should be taken to be p,,.
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