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A zero potential energy expression, which is a possible partner to the zero momentum energy
expression presented previously, is proposed and discussed as a criterion for assessing the
accuracy of approximate wave functions. Applicability of these criteria is illustrated and
compared for several approximate wave functions for the 1so, and 2po, states of the H;*

molecule.

As a sensitive criterion for assessing the accuracy of ap-
proximate wave functions, Armstrong' and Thakkar and
Smith? proposed and examined the zero momentum energy
expression. The expression was derived by considering the
local energy formula in momentum space instead of the ordi-
. nary one in position space,® and by taking the local energy at
one particular point, i.e., the origin of coordinates in mo-
mentum space where the electron momenta vanish. Since
zero momenta directly imply zero kinetic energy, the zero
momentum energy formula is a special form of the local en-
ergy formula with vanishing kinetic energy contribution.
- Then there will be a counterpart special form of the local
energy formula with vanishing potential energy contribu-
tion—which is investigated in this study. ‘

The N-electron Schréodinger equations in position and
momentum spaces are written in their local energy forms as

[z(—lA)\I’(r]/‘I/(r)—i- Vi,  (1a)

1—1

E= ;1(1/2!p, %) + Udp Wip— p)‘l>(p)] /‘D(p),
(1b)

where r = (r;) and p = (p;) are position and momentum vec-
tors of the electrons, respectively. (Atomic units are used
throughout this paper.) The wave functions ¥(r) and ®(p)
and the potential energy operators ¥ (r) and W (p) in the posi-
tion and momentum representations are related through the
Fourier transformation '

@(p) = (2m) > [ i Wilexpl it - (2a)
¥ir) = (27) =7 [ dp Slplexp(-+ r p) (2b)
W) = 27) > [ dr ¥ elespl it -, (3a)
Vie)= | do W plexp(+ i bl (3b)

where r - p means ZV_,r; < ;.

If weset p = (p;) = (0) in Eq. (1b), the kinetic energy part
vanishes and we have the zero momentum (zm) energy
expression?

= U dp' W(— p’)‘ﬁ(p’)] / (0) | (4a)

= [ f dr V(r)\ll(r)] / U dr ‘I/(r)]. (4b) .
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Equation (4b) can be obtained by substituting the relations
(2a) and (3a) into Eq. (4a).

A corresponding expression with zero potential (zp) en-
ergy contribution may be obtained from Eq. (1a) as

E,, = hm 2 (— 1/2A,-)\I’(r)]/‘l’(r) (5a)

i=1

dp(1/2]p; )@ (plexp( + ir p)] /

= llm[z

i=1

[ &0 opesst +ix-m)]. (5b)

where lim,, , means that (r;) are so varied that the potential
energy V (r) approaches zero. Equation (5b) can be derived
from Eq. (5a) by using the relation (2b). Differently from

E, .., the expression for E,, depends on the explicit form of
V(r). When V—0 results from r—0 (e.g., harmonic oscilla-
tor), Eq. (5b) takes a simple form,

E, = [g [ dy(1/2|p.-|2)<1>(p)] [[[on] s

which is very similar to Eq. (4b). However, for atoms and
molecules of our interest, we must consider a point infinitely
apart from the nuclei where Coulombic interactions disap-
pear. Therefore, E,, measures the quality of wave functions
at their long-range tails. [In this case, we omit the nuclear
repulsion term from V'(r) and E,, represents the electronic
energy for the sake of simplicity.]

Now we assume that ¥(r) and ®(p) are normalized ap-
proximate wave functions and define the average (av) energy
E, b

E, =Jdr \I/*(r)[ S (—1A)+ V(r)]\ll(r) (6)

i=1

~ [ o @4p)] 3 (1/20m 1000)

+ J dp' W(p— p;)<1>(p’)}- (6b)

By the variational principle, E,, is then an upper bound to
the true energy E. On the other hand, E,, is not bounded
and E,,, = E is a necessary but not sufficient condition for
the “approximate” wave function to be the true wave func-
tion.” The same discussion holds for the present zero poten-
tial energy expression E,, . From Egs. (4b) and (5a), however,
we have the following dlfferences between the criteria E,,
and E, |
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(1) E,, is easier to calculate than E,,, since the former
includes only differentiations.

(2) However, the limiting process ¥—0 needs human
analysis for each different type of wave function. Moreover,

'E,, may not always exist; for example, E,, for the single 1s

Gaussian approximation to the ground-state hydrogen atom
is divergent. '
(3) The criterion E, applies only to spatially totally

symmetric singlet states,” because otherwise both of the de- -

nominator and numerator in Egs. (4a) and (4b) vanish. On
the other hand, E,, does not suffer such restriction. '

(4) Some parallelism between E,, and E,,, is expected
for atoms and molecules. For the Coulombic interaction, it is
clear from Eq. (5a) that a diffuse component of ¥(r) gives a
major contribution to E,,. At the same time, this diffuse
component will be dominant in the vicinity of the origin in
momentum space, since the position and momentum repre-
sentations emphasize inverse regions of the respective
spaces. _

As an illustration, we have calculated the three energies
E,,, E,,, and E,, for the 1so, and 2po, states of the H,"
molecule ion. Because of its prototypical bonding and anti-
bonding characters, several approximate wave functions
with different levels of accuracy are known for this molecule.
The functions examined here are summarized in Table 1.
(The internuclear distance is fixed to 2 in all cases. Param-

TABLE I. Summary of the H," wave functions examined.

eters are optimum values except for the Pauling and exact
functions. For the explicit functional forms and the meaning
of parameters, see references cited.)

The results are compared in Table II for the 1so, state
and in Table III for the 2po, state. The entries of the tables
are arranged in the order of improving variational energies.
In the 1so, state, we see that E,,, is more sensitive than E,,
and E,, is much more sensitive than E,,, to the accuracy of |
wave functions. In the crudest approximation of single
IsAO, e.g., E,, assigns 88% accuracy, but E,,, and E,, as-
sign, respectively, 75% and only 38 % accuracies relative to
the exact value. The expected parallelism between
E,, and E, is also clear. For the wave functions examined
in TableII, not only E,, butalso E,,, and E,, are accidental-
ly bounded by the exact energy, and all three of these criteria
suggest almost the same order of accuracies of the wave
functions. The inversion of the order of James and Guille-
min-Zener functions is insignificant, but the inversion

" between Dickinson-a and Dickinson-b functions seems to be

meaningful: According to the criteria E,,,, and E,,, the im-
provement of E,, by the double { variation slightly deterio-
rates the long-range behavior of the wave functions. (For the
correct long-range behavior of one-electron molecular wave
functions, see Refs. 16 and 17.) The sensitive nature of £, is
also found for the 2po, state to which E,, is not applicable

(Table III). In this case, however, the assessed orders of ac-

Parameters

Wave function Lso, state

2po, state

Single hydrogenic 1s with £ =0.911 76 2po with & = 1.096 58
AO at midpoint
Pauling (Ref. 4) &{=1.0 $=10
Finkelstein-Horowitz {=1.23870 £ =10.900 45
(Ref. 5)
Scaled floating £=124230 £ =0.906 55
(Refs. 6 and 7) x =0.093 25 x= —0.019 06

Dickinson (Refs. 8-10)

. Ei=6=125477 £ =&, =0.90570
Casels) |
35¢(@) . /e, =0.160 53 /e, = — 0.004 83
= 1.2459, &, — 1.4826 £, = 0.8356, £, = 0.6325
Case (b [ 1 2
3se®) | /e, =0.1379 /e, = —0.0503
5=135395 5=0.900 35
James (Refs. 11 and 12
ames (Refs. 11 and 12) ¢ =0.44799 ¢ =0.142 69
Guillemin—Zener a=1.3539 a=0.900 3
(Refs. 13 and 14) b=09191 b=0.9042

Exact (Ref. 15)
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TABLE II. Zero momentum and zero potential energy tests of several wave
functions for the 1so, state of H," .

Wave function E,, E,. E,

. Single 1s —0.967 01 —0.83000 —0.415 65
Pauling —1.05377 —0.864 66 — 0.500 00
Finkelstein—Horo-
witz —1.086 51 -—1.02537 —0.767 19
Scaled floating — 1.094 15 —1.03707 —0.771 65
Dickinson-a —1.099 80 —1.073 85 —0.78722
Dickinson-b — 1.100 36 — 1.058 74 —0.776 13
James —1.102 39 . — 1.086 55 —0.916 59
Guillemin—Zener —1.102 44 — 1.086 56 —0.916 52
Exact — 1.102 62 —1.102 62 —1.102 62

curacies are quite different and almost opposite depending
on the criteria E,, and E,,. Particularly, E,, suggests the
considerably wrong behavior of Dickinson-b function in its

long-range region, so long as the parameters reported in the

literature'® are employed. In contrast to the lso, state,
where we can regard the James and Guillemin—Zener func-
tions as fairly accomplished approximations, none of seven
approximate wave functions simultaneously give satisfac-
tory results for E,, and E,,, in the 2po, state.

TABLE III. Zero potential energy test of several wave functions for the
2po, state of H,t. )

Wave Function ' E,, E,

Single 2po —0.604 14 —0.601 24
Pauling — 0.660 85 — 0.500 00
Guillemin—Zener — 0.665 81 — 0.405 27
James —0.665 81 —0.405 32
Finkelstein~-Horowitz — 0.665 81 —0.405 41
Dickinson-a — 0.665 81 —0.410 15
Scaled floating —0.666 10 —0.41092
Dickinson-b — 0.666 60 — 0.200 03
Exact —0.667 53 —0.667 53

In summary, the zero potential energy criterion £, in-
troduced in this work is simply the Bartlett-Frost—Kellog
local energy? evaluated at those points in position space at
which the potential energy operator vanishes, but it is a sim-
ple and convenient criterion to check the accuracy of wave
functions, especially their long-range tails. In some cases, it
may happen that different E,,’s are found depending on dif-
ferent processes of lim,._, but the occurrence of such situa-
tions itself can be said to be an indication of the inaccuracy of
wave functions, when we invoke the spirit of the local energy
formula.

ACKNOWLEDGMENTS

I acknowledge the referee for his valuable comments.
Part of this study has been supported by a Grant-in-Aid for
Scientific Research from the Ministry of Education of Japan.

'B. H. Armstrong, Bull. Am. Phys. Soc. 9, 401 (1964).

2A. J. Thakkar and V. H. Smith, Jr., Phys. Rev. A 18, 841 (1978). .

3J. H. Bartlett, Phys. Rev. 51, 661 (1937); A. A. Frost, J. Chem. Phys. 10,
240 (1942); A. A. Frost, R. E. Kellog, and E. C. Curtis, Rev. Mod. Phys.
32, 313 (1960).

“L. Pauling, Chem. Rev. 5, 173 (1928).

5B. N. Finkelstein and G. E. Horowitz, Z. Phys. 48, 118 (1928).

SA. C. Hurley, Proc. R. Soc. London Ser. A 226, 170 (1954).

"H. Shull and D. D. Ebbing, J. Chem. Phys. 28, 866 (1958).

®B. N. Dickinson, J. Chem. Phys. 1, 317 (1933).

°R. L. Miller and P. G. Lykos, J. Chem. Phys. 37, 993 (1962).

19F, Weinhold, J. Chem. Phys. 54, 530 (1971).

'"H. M. James, J. Chem. Phys. 3, 9 (1935).

. 12J. Patel, J. Chem. Phys. 47, 770 (1967).

13V. Guillemin, Jr. and C. Zener, Proc. Natl. Acad. Sci. U.S.A. 15, 314
(1929). ,

48, Kim, T. Y. Chang, and J. O. Hirschfelder, J. Chem. Phys. 43, 1092
(1965). ’

5D, R. Bates, K. Ledsham, and A. L. Stewart, Philos. Trans. R. Soc. Lon-
don Ser. A 246, 215 (1953).

16R. Ahlrichs, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and J. D.
Morgan III, Phys. Rev. A 23, 2106 (1981).

"W. Kutzelnigg and W. H. E. Schwarz, Phys. Rev. A 26, 2361 (1982).

J. Chem. Phys., Vol. 83, No. 12, 15 December 1985



