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In a very recent paper,' it has been shown that there
exists a set of relations between position moments linearly
averaged over the wave function. These relations constitute
a necessary condition for the true wave function and they
provide a sensitive and convenient criterion to assess the ac-
curacy of approximate wave functions. The zero momentum
energy formula™ or its modification® follows from the sim-
plest case of the relations.
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In the present note, we further generalize the above dis-
cussion and show that there also exists a set of relations be-
tween position moments linearly averaged over the wave
function in a finite domain. The present results will be help-
ful to understand the structure of the Schrodinger equation
in a nontrivial manner. The simplest case may be applied as a
regional form of the zero momentum energy expression
which measures the regional accuracy of wave functions.
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Let us consider the 3N-dimensional (exponential)
Fourier transformation of the N-electron position—-space
Schrodinger equation in a finite domain D. After integration
by parts of the kinetic energy term, we obtain the following
equation:
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which are linear averages over the position wave function
W (r) inthedomain D. In Eq. (1), Eis the total energy, V(r)
the potential energy operator, and r={r,} = (7,,72....7sn )
and p={p;} = ( p,,P2r---P3n ) Tepresent the 3N Cartesian
coordinates of the position and momentum vectors for the N
electrons. p?/2 = 3'Y, ( pi/2) is the kinetic energy opera-
tor. (Atomic units are used throughout.) In Eq. (2b),
primes denote the omission of the 7; term, and the domain D
is assumed to be specified by the l()wer (a;) and upper (b;)
limits for the individual Cartesian component r;, i.c.,
a;<r;<b, or D= [a,b] wherca={q;} and b =={b,}. If we
set D= ( — o, + o0 ), then cach term of the summation on
the right-hand side of Eq. (1) vanishes and Eq. (1) resultsin
the Schrodinger equation in momentum space.

Now expanding all the 3N exponential functions ap-
pearing in Eq. (1) and comparing the coefficients of the term
1Y, /),L,”, we obtain a sct of relations:
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Equation (3) represents general relations existing among
the position moments linearly averaged over the wave func-
tion i the domain D. The upper bound K, for the exponent
k,, may or may not be finite depending on the linear integra-
bility"* of the position wave function W(r). The true wave
function must satisfy all of these relations and hence Eq. (3)
can be used as a criterion for assessing the accuracy of ap-
proximate wave functions. High sensitivity of the criterion
of this kind (which is lincar in the wave function error) has
been already demonstrated.'™**™* For a special case of
D= ( — o, + w), the last term on the right-hand side of
Eq. (3) vanishes and the known results for an infinite do-
main' are reproduced.

If we put k, =0and (¢,,b,) =(— »,+ «) in Eq.
(3) except for k, and (a,,b,), we obtain a set of single com-
ponent relations:
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or,
(k, =0,1,2,...
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where r, can be replaced with any other component of the
3N-dimensional vector r. Equation (4) also constitutes a
necessary condition for the true wave function. For the sim-
plest case of k, = 0, Eq. (4) reduces to

E[l],,:[V(r)l,,—(l/z)[‘—’] , (5a2)
dr,

from which we obtain
(ap,b)=F,, (D)
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where a, and b, are so chosen that [ 1], #0. Equation (5b)
is a regional form of the zero momentum energy (ZME)
formula. The original ZME expression assumes the integra-
tion over an infinite domain and the second term of the nu-
merator of Eq. (5b) does not appear.'* From this choice of
the domain, however, the original ZME formula suffers a
restriction to its applicability that the wave function should
be spatially totally symmetric,”™ since otherwise the formu-
la always results in an indeterminate 0/0 form. The proposed
modification® avoids this difficulty by considering a higher
moment linearly averaged over the wave function.

On the other hand, the present regional form of the
ZME expression | Eq. (5b) ] removes the indeterminate case
by an appropriate choice of the integral domain D. More
significantly, Eq. (5b) enables us to measure the accuracy of
wave functions in some specific region of interest. The gradi-
ent term in Eqs. (5) accounts for the kinetic energy contri-
bution at the boundary surface of the domain.

Usc of Eq. (3) or (4), instead of Eq. (5a), allows us to
derive a generalized form of the regional ZME formula, but
its practical applications seem rather involved. For a partic-
ular case of D—0 or b—a, all of these regional formulas
reduce apparently to pointwise formulas. However, they are
nothing but the original Schrodinger equation and the well-
known local encrgy formula™' in position—space. In this
sense, the present regional ZME expressions give a bridge
between the local energy and zero momentum energy formu-
las, which measure the pointwise and average accuracies,
respectively.

A simple example to illustrate the use of the regional
ZME formula [ Eq. (5b) ] will be an examination of a single
s-type Gaussian approximation to the ground-state hydro-
gen atom. For the optimum exponent @ = 8/97, the regional
ZMEs are evaluated to be — 0.502941, — 0.536496,
—0.986 802, — 1.787 996, and — 2.916 926, respectively,
for the regions (a,b,) = (0,1), (1,2), (2,3), (3,4), and
(4,5), while the ZME (for an infinitc region) is
— 0.600 211. Comparison of these values together with the
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average and exact energies suggests that the regional ZME
may be rather more sensitive to the asymptotic behavior
than to the cusp behavior of wave functions.
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