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Linearly averaged position moment (LAPM) [R ~'R ~2 ・..R ~::] is defined as the linear (not 
quadratic) average of the position moment operator R ~'R ~，・ --R?yovertheN-electronwave 
function 1{1({Rj})， where {R) are 3N Carte温iancoordinates of electrons and {ち}are non-
negative integers. When all the LAPM's are well defined， it is shown that the Schrodinger 
equation is equivalent to a set of an infinite number of equations between LAPM's involving 
the potential-energy opera旬r.The kinetic energy operator does not app伺 r.The spherical 
polar representation of the LAPM equation is also presented. IIlustrations are given for simple 
one-and two-electron atoms， where the LAPM equation is applied to the determination of 
approximate wave functions and associated energies. 

1. INTRODUCTION 

Previously， the zero momentum energy expression has 
been proposed 1-3 and applied 1-5 as a sensitive criterion to 

assess the accuracy of approximate wave functions. The 
expression has been derived by the application of the local 
energy concept6•7 to the momentum-space Schrodinger 
equation: The equation to be satisfied at the momentum-
spa田 originis considered and is inversely transformed into 
position spa回. The resultant zero momentum energy 
expression includes rather strange integrals， 

[j柱叶三f(但4刈町粕町1{1(r)d吋r)d申r (1a) 

[(低B主1貯刈)附削叶)]==f三イf(低4刈阿印附r吋川) (1b) 

whicha問 linearaverages ofthe Ca巾 slanmo附 1tI1121R?
and potential-energy V(r) operators over the position wave 
function 1{1 (r) (see also Ref. 8). {kj} are non-negative inte-
gers. 
Stimulated by these studies， we have recentIy shown9 
that there exists a set of relations between position moments 
linearly averaged over the wave function. These relations 
constitute a necessary condition for the true wave function， 
and the zero momentum energy formula 1-3 follows from the 
simplest case ofthe relations. A further generalization is pro-
posed]() for the linear average over the wave function in a 
finite domain， whose results can be used as a measure for the 
regional accuracy ofwave functions. These studies have add-
ed nontrivial information to the structure ofthe Schrodinger 
equation. 
In the present paper， we show that the set of relations 
between linearly averaged position moments (LAPM's) has 
a determ;n;sl;c property. When all the LAPM's are well de・3
fined， the Schrodinger equation is equivalent to a set of an 
infinitenumber of equations between LAPM's involving the 
potential-energy operator V( r). The kinetic energy operator 
b也omesimplicit. In the next section， the formalism is pre-
sented. Some illustrative applications are given in Sec. 111 for 
the determination of approximate wave functions and asso・
ciated energies from the LAPM equation. Hartree atomic 
units are used throughout this paper. 

11. FORMALlSM 

The N-electron Schrるdingerequations in position and 
momentum spaces are written as 

( -A/2 + V(r) -E)¥fI(r) = 0， (2a) 

(向-E)<T仙

wherer三 {rj}and P == {Pj} are position and momentum vec-

tors of the electrons， resp配 tively，and Á==~J'= 1企'j and 
p2==~jN~ 1 Ipj 12• The wave functions l{1(r) andφ(p) and the 
potential-energy operators V(r) and W(p) are， respectively， 
pairs of the Fourier transforms: 

φ(p) =側一fexp(一山(r)dr， 山
町r)= (21T)-3づ州十台p)φ(p)命リ3劫b削) 

W附町(句刷p肘)= (ο21T) -3 十

門印r←J卜μ目叫xp判(+ ir町p肘川p)W(附(句ω(p)dp肘p)dp川鴻d命p， 件b)

where r'p means ~J'=-I 庁防
Combining Eqs. (2)一(4)， we obtain the Schrodinger 
equation in an intermediate representation: 

(p2/2-E)[exp( -ir'p)] + [exp(ー ir'p)V(r)] = 0， (5) 

where the square brackets stand for 

[j(r)]== f川町r)dr， (6) 

which is a linear average of f(r) over the position wave 
functionψ(r). We implicitly assume that the two integrals 
appearing in Eq. (5) do exist. 

4774 J. Chem. Phys. 91 (8).15 October 1989 0021-9606/89/204774・05$02.10 (c) 1989 American Institute of Physics 



Toshikatsu Koga: Schrodinger equation in moments 4775 

A. Carteslan representatlon 

Now we expand the exponential function exp( -ir'p) in an absolutely convergent series: 

3N ∞ 

exp( -ir・p)= 11三(ーiRjPj)K'/kj! 

=λ(一i)ZJKJ(Rrift(RwPw)kvkl! 川 (7)

where {Rj} and {円}(j=1，2，…，3N)represent the 3N Cartesian coordinates ofthe position and momentum vectors ofthe N 

electrons. We assume al1 the LAPM's [11;;;: 1 R ;'1 and [( IIJ';;: 1 R ;') V(r)] exist and their linear combinations are welI 
defined. Then we can exchange the integration and the summation when Eq. (7) is substituted into Eq. (5)， and we have 
∞ r ， 3N 

:~o (ーペ沼 km(kmー1)IRf RKJRY2RKJ州]+ E [R 7'...R ~;] -[川州)V(r) ] } 
X (P~''''P~;;)/(k ，!吋JN!) = 0， (8) 

as an alternative form ofEq. (5). For Eq. (8) to hold for any values of {Pj}， alI the coefficients of P7''''P~;; appearing on the 
left-hand side of Eq. (8) must vanish; 

電 3N JN r JN r / JN 、 1

÷zkm(kmー1)IR;-211ぐいEI 11 R;' I -I ( 11 R;') V(川=~ (9) 

where kj = 0，1，2，・... Equation (9) rep問 sentsa set of an infinite number of equations， and is叫uivalentto the Schrりdinger
equation provided that all the LAPM's and their Iinear combinations are well defined. It may be interesting to observe that in 
Eq. (9) the kinetic energy operator do回 notappear and its contribution is represented by the first term. 
Ifwe set k2 = k3 = ・・・= k JN = 0 in Eq. (9)， we obtain a special form: 

!k， (k， -1) [R~' -2] + E [R 7'] -[R~' V(r)] = 0， (10) 

which is a set of single-component equations and constitutes a subset of Eq. (9). 

B. Spherlcal polar representatlon 

When the system under consideration has a spherical symmetry， the use ofthe spherical polar coordinates is naturaJ. The 
relation to be satisfied between the LAPM's in the spherical polar coordinates can be derived as follows. 

We first invoke the plane-wave expansion 11 

exp(一ipj・rj)= 41T L エ(-t)114(Pfrj)YIJIlj)YtMJ(叫)， )
 
1
 
1
 
(
 

where (pI，Hj) and (Yj，(J)j) arc thc spherica! polar coordinates of thc vectors Pj and rj， rcspectively. Y，川 isthc usual spherical 

harmonic" and}， (z) is the spherical Hesscl function ofthc first kind.12 Substituting Eq. (11) into thc parcnt cquation (5) and 
gathering the coefficients of the !incarly indcpendent tcrm II，N= I Y，川 (H，)， wc obtain 
・〆 N 、rN 市 rN N 

す1ZYMEJ4(附 )Y私(叫)J -EU!/'，(附 )Yちり(叫)J + l V(r)}]/，，(附 )Y~m/叫) 1 = O. (12) 

Substitution of the expansion 12 for}， (z) 

}，(z) = (2z)' L {(ー 1) k (1 + k)!/ k ! (21 + 2k + 1)!} Z2¥ ( 13 ) 

into Eq. (け12幻)followe吋db句yc∞omp仰lar附 n oft出hecωO侃e侃臥恥ci況加;ien陀悶m刷e引叩捌n川山】lt
N N 司 rN 可，. N 】

之1 丸州叩(ο2叫1，+ 払 +1り)I Y，κrκY;-一4zH l イtrrJ庁刑+判2K，y

where k九，=0，1し，2，.….日ぺ.;1; = 0，1，2，.….日ベ.;m; 一1;， 一1; + 1，.一….日叶.叶，+ 1; for i = 1 ム.….日叶.円，N.Equa川tiωon(け14仰)is a set of LAPM equations in 
the spherical polar coordinates. 
A special case of Eq. (14) for 1; = m; = 0 (i = 1，2，・..，N)reads 
N N rN.1  r/N 、、 1

L k，(2k， + 1)1，，-211イk'l+ E 111イk'I_I(nイh'}V(r)1= 0， 
tζ .1=-1 Lj=1ι ¥j =1 / J 

(15) 

since 1':仰(的) = (41T)ー1!2.lfwesetk2 = k¥ = ・・・ = k N = 0， Eq. ( 15) further reduces to a set of single-component equations 

k，(2k， + 1) [パム-2] + E [ペ汁-[ペk，V(r)] = 0， (16) 

which may compare with Eq. (10) in the Cartesian representation. 
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C. Discussion 

Equation (9) may be considered as a projection ofthe position-space Schrるdingerequation onto momentum space with 

the discrete Cartesian bases IIJ~ 1 p;J defined by a制 ofnon-negative integers {kj}. Similarly， Eq. (14) is regarded踊 a
pr叩ctiononto the spherical polar bases IIr= 1 /j ~ 2句i川 (!lj)defined by the integers {kj ，Ij ，mj}' We can then use Eq. (9) or 
( 14) for the determination of an approximate wave function and the associated energy. When a trial function includes M 
parameters， M + 1 equations from the set (9) or (14) [or the subset (10)， (15)， or (16)] determine the values of these 
parameters as welI as the approximate energy E. In this approach， no existing approximation theories are invoked such as the 
variation method and the perturbation theory. 
Then a problem of how to choose the M + 1 equations from the set (9) or (14) emerges. In the case of the Cartesian 
representation， we should be reminded that an equation from Eq. (9) with some {kj} constitutes the coefficient of the bases 

11注1pfjwhenthesehrるdingerequation (5) is expanded. If we adopt equations with smalIer (larger) {kj}， tl凶 chrodinger
equation is satisfied in a smalIer (larger) p region ofmomentum space. Therefore the choicedepends on which region one 
needs more accurate description for. Here we note that the position and momentum representations emphasize inverse 
regions of the respective spaces. Analogous discussion holds for the set (14) given in the spherical polar coordinates. 

III.ILLUSTRATIVE APPLlCATIONS 

In the folIowing， we apply the LAPM equation to (approximate) solutions oftwo simple systems， i.e.，-the hydrogen-like 
atom and the ground-state helium atom. In the former case， the correct wave function and the associated eigenenergy are 
completely reproduced. In the latter case， we discuss the property of approximate LAPM solutions using a simple trial 
function. 

A. Hydrogen-like atom 

For a single-electron system， the LAPM equation in the spherical polar coordinates [Eq. (14)] reads 

k(2k + 2L + 1) [〆k1L_2ytM(ω)] +E[，-2k+LytM(ω)] -[ V(r)戸 +LYtM(ω)]=0. (17) 

When V(r) = -Z /r (iム ahydrogen-Iike atom with nuclearchargeZ)， Eq. (17) suggests that the wave function ¥II(r) h踊
the following form: 

ψ(r) = R(r) Ylm (ω). (18) 

Substituting Eq. (18) and the explicit form of V( r) into Eq. (17)， we obtain the radial LAPM equation: 

k(2k + 21 + 1) [，-2k+l-2L + E [，-2k+ 1]， + Z [，-2k+ 1-IL = 0， (19) 

where 

U(r)lrzffM川昨 (20) 

Ifwe assume a radial function R(r) ofthe form 

州 =(Za，c十p(一5仰r吋) (21) 

Eq. (υ19) becomes 

k(2k+2/+ 1) I a;(2k+I+i)!+ (E/~2) I a;(2k+l+i+2)!+ (Z/~) I a;(2k+l+i+ 1)!=0， (22) 

from which we have to determine E， {a;}， and ~ for a given set of Z， 1， and n. 
To solve Eq. (22)， we introduce a linearly independent basis set defined by 

[(x+ l)(x+2)・ベx+ i) for i> 1， 
(x);=l 
II for i = O. 

(23) 

Then Eq. (22) is rearranged as 

(! + E/~2)an_ 1 (2k + l)n+1 + {(! + E/~2)an_ 2 + (Z/~ -n)an回 1}(2k + I)n + I {q + E/~2)a;_2 

+ (Z/~ -i)a;_ 1 一 ~(l- i)(l + i + 1)a;}(2k + /); 
+ {(Z/~ -I)a" -~(l ー 1)(l + 2)al}(2k + 1)1 -!/(l + 1 )a，，(2k + l)() = O. (24) 

For Eq. (24) to hold for any non-negative integer k， allthe c田節cientsof {( 2k + I);} must vanish. We immediately have 
~=Z/n， E=  _~2/2= -Z2/2n2， (25) 
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and a recursion relation for the expansion coefficients {a， } 

(/-i)(l+i+ I)a， =2(n-i)a，_" i= 1，2，…，n -1， 

/(1 + 1 )ao = O. 

(26a) 

(26b) 

When n<./， /ーiis positive and therefore Eq. (26a) has a general solution 

0， = {2'/(/ + 1) (n -1)!(/ -i -1 )![ (n -i -1 )1(/ + i + 1)!]叶}O()・
Because ofEq. (26b)， however， Eq. (27a) trivially results in 

(27a) 

0，=0， i=O，I，.・.，n-1， (27b) 

and there is no physically meaningful solution for the case of n<.l. The well-known quantum condition n> /or /<.nー 1thus 
emerges. In this case， Eqs. (26a) and (26b) have a general solution 

r{(ー 2)'-J(n -/-1 )!(2/ + 1 )!/(n -i -1 )!(i -/)!(i + / + 1 )!}oJ for / <I<.n -1， 
0， = {~ . p ~ • • (28) 
lo for O<.i < /， 

where al is an arbitrary nonzero constant. 
Now the radial function R(r) [Eq. (21)] becomes 

引 r)= (三:a，; 'r}xp( -;r) 
=(ク)I(ZlhISサ州

where 

0'+1 ={( -2)'(nー1-1) 1 (2/ + 1) 1 

X [(n -1-i -1 )1(2/ + i + 1 )111] -I}OJ， 
(29b) 

and; = Z /n. Ifwe choose 

al =ー [(n+ /-I)W/[ (n -1-1)!(2/ + 1)!] 
in Eq. (29b)， the polynomial involved in Eq. (29a) is noth-
ing but the associated Laguerre polynomial L ~/:パ2;r).We 
tinally have 

R(r) = (;r)'L ~γμ2;r)exp( -;r). (30) 

Equations ( 18)， (25)， and (30) constitute the complete so・
lutions for the hydrogen-Iike atom obtained from the prescnt 
LAPM equation. They are idcntical to the known results 1も
which usually follow from the solution of the Sch吋di.ngcr
equation as a second-order di宵erentialequation. 

B. Ground-state hellum atom 

The LAPM equation ( 15) for N = 2 is 

k， (2k， + 1) [ペ1<，-2ザ'1.]十九(2k2+ 1) [ !{It，ペヤ2]
+ E [~k ，ぺk%.] __ [!{k，ぺ"z.V(rl，r2>]=0， (31) 

where 

V(rl，r2) = .-Z /'1 -Z /r2十 1/'12・(32)

for a helium-likc atom with nuclearじhargcZ. Lct us consid-
er the approximatc wavc function givcn by a single product 
of the scaled hydrogcnic Is functions: 

ψ(rl川 )= cxp( -!;'I)CXP( _. !;'1.)， (33) 

which was first cxamincd by Kcllncr'4 in thc variational 
treatment of the ground-statc hclium a1om. 
For a spccialcase of k 1 "'" k and k2 =-0， 1hc cxplici1 cval-
uation of thc in1egrals appcaring in Eq. (31) f()r thc wavc 
func1ion (33) rcsults in a simplificd LAPM cquation 

k;2+2(k+ I)E 

+ {(k + 2)Z -1 + (k + 3)2-2k-3};= 0， (34) 
which includes the quantities E and ; to be determined. In 
contrast to the case ofhydrogen-like atoms， there is no set of 
E and !; values which satisties Eq. (34) for all possib¥e k， 
imp¥ying that the exact wave function is not expressed in the 
form ofEq. (33). 
However， we can emp¥oy some se1ected equations from 
Eq. (34) for an approximate determination of E and ;. Let 
us examine the tirst two equations resu¥ting from k = 0 and 
1. They are 

E + (Z -5/16)~. = 0， for k = 0， 

!;2十 4E+ (3Z -v; = 0， for k = 1. 
(35a) 

(35b) 

Though we cannot uniquely determine two unknowns from 
a sing¥e equation， Eq. (35a) ho¥ds if 

!;=ふ=Z - I~. and E = E() = -~. ~ =一 (Z- (~y ， 
(36a) 

which are ふ=1.6875 and E() = -2.847 656 when Z = 2. 
Accidcntally， Eq. (36a) is identica¥ to the result ofthe vari-
ational calculation as has been discussed in re1ation to the 
zero momcntum cnergy expression.' Similarly， Eq. (35b) 
holds if 

!; = !; 1 = Z -{4 and E = E I = -!; ~ =ー (Z一品)2， 
(36b) 

which b民 omeふ=1.708333 and E， = -2.918403 when 
Z = 2. This approximate energy E， is ¥ower than the exact 
energyl~ -2.903 724， since the LAPM energy is not an up-
per bound to the true energy in general. The unique solutions 
that satisfy both Eqs. (35a) and (35b) are 

{;=ふ1=Z  -A and 

E= Eo， =一 (Z-(6)(Z -V' (36c) 

which. become ;01 = 1.625 and E()J = -2.742188 for 
Z=2. 

In order to c1arify the differcncc in the above three ap-
proximatc so¥utions [Eqs. (36a)， (36b)， and (36c)]， it may 
bc convcnicnt 10 introducc the quantity 

企(PI，P2)三 (pf/2+ p~ /2 --E)[cxp(ー irI'PI --ir2"P2) ] 

+ Icxp( .-ir，・PI一ir2"P2)V(rl，r2)]. (37) 
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Thc condition 6.(PI，P2) = 0 is equivalent to the Schrりdinger
equation in momentum space， and hence the deviation of 

6. (PI ，P2) from zero characterizes the property of an approxi-
mate solution. For a particular case Ofp2二 0，Eq. (37) re・
duces to 

δ(PI)三6.(PI'O)

= (p~ /2 -E) I exp(ー ir，op，)] 

十 [exp(ー ir，・PI)V(rl，r2) J. (38) 

For the approximate wave function given by Eq. (33)， the 
di仔erencefunction δ(p) is evaluated to be 

。(p)= d(p) = 321T2{(p2 _ 2E);-2(p2 + ;2)一2
_ z; -1 (p2 + ; 2)一1[;-2+ (p2 + ;2)-1] 

+ 2~.2[L6(P;;，E) + L7(p;;，E) 

+ Lx (p;;，E) ] }， (39) 

where the explicit forms of the functions Lj (p;;，E) 
(j = 6，7，8) are given in Ref. 16. 
In thecaseofthe helium atom (Z = 2)， Fig. 1 shows the 
δ(p) functions for the three sets of approximate parameters， 
(ふ，Eo)， (ふ，E，)， and (;o"E()I)' For the first set obtained 
from the LAPM equation (34) with k = 0， the deviation of 
δ(p) from zero is small in the low-momentum region and 
especially δ(0) = O. For the second set resulting from the 
LAPM equation with k = 1， Iδ(p) I decreases in the high-
momentum region， but increases remarkably in the low-mo-
mentum region. For the third set， the low-momentum be-
havior ofδ(p) is much improved， but a large deviation in the 
high-momentum region is observed. These behaviors may be 
easily understood if we are reminded of the fact that the 
satisfaction ofthe k th LAPM equation corresponds to mak-
ing the coefficient of p2k zero when δ(p) is expanded in a 
power series of p2. In fact， the δ(p) functions for the three 
sets of parameters can be expressed as 

δ。(p)= 32r[(224/321)p2 

一 (37・229/327)p4+ 0(/')]， 
d，(p) = 32r[(l63・213・34/415)

(40a) 

一 (79・22003K/419)p4+ 0(p6)]， (40b) 

δOI(P) = 32r[一(21・220/139)p4+ 0(p6)]. (4Qc) 
The low-momentum superiority ofthe third set [Eq. (36c)] 
is clear from Eq. (4Oc). If we adopt a more flexible trial 
function with several adjustable parameters， we may be able 
to extend the zero deviation oftheδ(p) function to the inter-

mediate-momentum region. Such a possibility will be exam-
ined in the future. 
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