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Linearly averaged position moment (LAPM) [R kR%.--R '{;}"] is defined as the linear (not
quadratic) average of the position moment operator R 'R %+ - R f}é" over the N-electron wave
function W({R;}), where {R,} are 3N Cartesian coordinates of electrons and {k;} are non-
negative integers. When all the LAPM’s are well defined, it is shown that the Schrodinger
equation is equivalent to a set of an infinite number of equations between LAPM’s involving
the potential-energy operator. The kinetic energy operator does not appear. The spherical
polar representation of the LAPM equation is also presented. Illustrations are given for simple
one- and two-electron atoms, where the LAPM equation is applied to the determination of

approximate wave functions and associated energies.

1. INTRODUCTION

Previously, the zero momentum energy expression has
been proposed'~ and applied'~ as a sensitive criterion to
assess the accuracy of approximate wave functions. The
expression has been derived by the application of the local
energy concept®’ to the momentum-space Schrodinger
equation: The equation to be satisfied at the momentum-
space origin is considered and is inversely transformed into
position space. The resultant zero momentum energy
expression includes rather strange integrals,

3N 3N
H‘ij]s J(H R,*f)\l/(r)dr, : (1a)

=1 = 1

3N 3N
[(H Rf') V(r)] EJ(H R,kf) V(r)¥(r)dr,
J

=1 =1

(1b)

which are linear averages of the Cartesian moment II}Y , R f"
and potential-energy V(r) operators over the position wave
function W(r) (see also Ref. 8). {k; } are non-negative inte-
gers.

Stimulated by these studies, we have recently shown’
that there exists a set of relations between position moments
linearly averaged over the wave function. These relations
constitute a necessary condition for the true wave function,
and the zero momentum energy formula'~ follows from the
simplest case of the relations. A further generalization is pro-
posed'” for the linear average over the wave function in a
finite domain, whose results can be used as a measure for the
regional accuracy of wave functions. These studies have add-
ed nontrivial information to the structure of the Schrodinger
equation.

In the present paper, we show that the set of relations
between linearly averaged position moments (LAPM’s) has

a deterministic property. When all the LAPM’s are well de- -

fined, the Schrodinger equation is equivalent to a set of an
infinite number of equations between LAPM’s involving the
potential-energy operator ¥ (r). The kinetic energy operator
becomes implicit. In the next section, the formalism is pre-
sented. Some illustrative applications are given in Sec. I11 for
the determination of approximate wave functions and asso-

ciated energies from the LAPM equation. Hartree atomic

units are used throughout this paper.
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1l. FORMALISM
The N-electron Schrodinger equations in position and
momentum spaces are written as

(= A2+ V(r) — E)¥(r) =0, (2a)

(b2 — EY®(p) + f W(p—p)®(p)dp' =0, (2b)

wherer={r;} and p={p, } are position and momentum vec-
tors of the electrons, respectively, and A= 2}‘; 1 4; and

pzzz;‘; 1 1P |2. The wave functions ¥ (r) and ®(p) and the

potential-energy operators ¥(r) and W(p) are, respectively,
pairs of the Fourier transforms:

d(p) = (27) “3N/2Jexp( — irp)W(r) dr, (3a)

W(r) = (2m) "‘””Je)&p( + ir-p)P(p) dp, (3b)
W(p) = (2m) ““NJCXP( — ir-p) V(r) dr, (4a)
V(r) =JCXP( + irp) W(p) dp, (4b)

where r-p means 2_, r;-p;.
Combining Egs. (2)-(4), we obtain the Schrodinger
equation in an intermediate representation:

(p°/2 — E)[exp( — irp)] + lexp( — irp) ¥(r)]1 =0, (5)

where the square brackets stand for

f(n] Eff(r)\l’(r) dr, (6)

which is a linear average of f(r) over the position wave
function W(r). We implicitly assume that the two integrals
appearing in Eq. (5) do exist.
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A. Cartesian representation

Now we expand the exponential function exp( — ir-p) in an absolutely convergent series:

3N o .
exp( — irp) = H 2 (—iR,Pj)k‘/k,!
J=1k=0
= 5 (= D¥RPY - (Ryy Py ) "Ik 1 ke, (N

(k=0
where {R;}and {P;} (j = 1,2,..,3N) represent the 3N Cartesian coordinates of the position and momentum vectors of the N
electrons. We assume all the LAPM’s [1I}Y | R ’] and [(II Y. R ’) V(r) ] exist and their linear combinations are well
defined. Then we can exchange the integration and the summation when Eq. (7) is substituted into Eq. (5), and we have

0

PR :)"k'{z S kmkpy — D[RYwR IR TR 1R + E [R RV = [(RY=R V(D) ]
k,

m=1
X (PhumP 53 / (K lweky 1) = 0, (8)

as an alternative form of Eq. (5). For Eq. (8) to hold for any values of {P;}, all the coefficients of P ¥'P % appearing on the
left-hand side of Eq. (8) must vanish;

_z K, (K, -—1)[ o2 w ]+E ,ﬁ,R’k’]"[(,H R*')V(r)]zo, 9)

m=1 j= l =1
where k; = 0,1,2,... . Equation (9) represents a set of an infinite number of equations, and is equivalent to the Schrodinger
equation provided that all the LAPM’s and their linear combinations are well defined. It may be interesting to observe that in
Eq. (9) the kinetic energy operator does not appear and its contribution is represented by the first term.
If we set k, = ky = = = k., = 0in Eq. (9), we obtain a special form:

ki(ky—D[RY-?]+E[RY] - [R} V(D] =0, (10)

~ which is a set of single-component equations and constitutes a subset of Eq. (9).

B. Spherical polar representation

When the system under consideration has a spherical symmetry, the use of the spherical polar coordinates is natural. The
relation to be satisfied between the LAPM’s in the spherical polar coordinates can be derived as follows.

We first invoke the plane-wave expansion'

/

exp(—ipor) =4rS S (= DY ()Y, ()Y, (), (11)

L=0m = -,

where (p,,!l,) and (r;,w;) are the spherical polar coordinates of the vectors p; and r, respectively. Y, is the usual spherical
harmonic'' and j, (z) is the spherical Bessel function of the first kind. '2Substituting Eq. (11) into the parent equation (5) and
gathering the coefficients of the linearly independent term 111, Y, (£2,), we obtain

(I; p,) 1'[1, (pr))Y ,m,(w_,)] [/[[IJ/ () Y,,,,,,(w,)] + [V('),r:[,” (Pir)Yh, (@) (12)
Substitution of the expansion' for j, (z)
Ji(z) = (2z)’ki {(=D*U + K)VKV2I + 2k + 1)1}, (13)
=0
into Eq. (12) followed by comparison of the coefficients of 11} | p,” t 2 ' gives the desired result:
ﬁ ki (2L, + 2k; + 1)[ wz[[ r’“"fy,,,,,(w,)] - ﬁ[n Y, (o, )] [_V(r) H Ry, (w)| =0, (14)
l\:hlcre k;=0,1.2,.;1 = O,ll;:...; m,=—1,—1, + l,{.., + [ fori=1.2,.,N. Equatmn (14) is a set of LAPM equations in

the spherical polar coordinates.
A special case of Eq. (14) for [, = m,; =0 (i = 1,2,...,N) reads

N N
S k(2 + 1) r,—zn r“]+E 7 ] [(l‘[ r}kf)V(r)]zo, (15)
v

I=1 j=1 =1
since Yy (w,) = (47)~ 2 Ifwesetk, = k, ==+ = ky = 0, Eq. (15) further reduces to a set of single-component equations
k|(2k|+])['2|k'~2] +E[’%k'] - [’llk' V(r)]:(), . (16)
which may compare with Eq. (10) in the Cartesian representation.
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C. Discussion

Equation (9) may be considered as a projection of the position-space Schrodinger equation onto momentum space with
the discrete Cartesian bases 11X | P,’f’ defined by a set of non-negative integers {kj }. Similarly, Eq. (14) is regarded as a
projection onto the spherical polar bases II'. , p " % Y, (£;) defined by the integers {;,/;,m; }. We can then use Eq. (9) or
(14) for the determination of an approximate wave function and the associated energy. When a trial function includes M
parameters, M + 1 equations from the set (9) or (14) [or the subset (10), (15), or (16)] determine the values of these
parameters as well as the approximate energy E. In this approach, no existing approximation theories are invoked such as the
variation method and the perturbation theory.

Then a problem of how to choose the M + 1 equations from the set (9) or (14) emerges. In the case of the Cartesian
representation, we should be reminded that an equation from Eq. (9) with some {kj} constitutes the coefficient of the bases
e, PI'-" when the Schrodinger equation (5) is expanded. If we adopt equations with smaller (larger) {kj }, the Schrédinger
equation is satisfied in a smaller (larger) p region of momentum space. Therefore the choice depends on which region one
needs more accurate description for. Here we note that the position and momentum representations emphasize inverse
regions of the respective spaces. Analogous discussion holds for the set (14) given in the spherical polar coordinates.

1. ILLUSTRATIVE APPLICATIONS

In the following, we apply the LAPM equation to (approximate) solutions of two simple systems, i.e., the hydrogen-like
atom and the ground-state helium atom. In the former case, the correct wave function and the associated eigenenergy are
completely reproduced. In the latter case, we discuss the property of approximate LAPM solutions using a simple trial
function.

A. Hydrogen-like atom

For a single-electron system, the LAPM equation in the spherical polar coordinates [Eq. (14)] reads

k(2K + 2L + D[P L =2Y 8 ()] + E [PA LY By (@) ] — [V LY 2y, (@) ] = 0. (17)
When V(r) = — Z /r (i.e., ahydrogen-like atom with nuclear charge Z), Eq. (17) suggests that the wave function ¥(r) has
the following form: .

W(r) =R(NY,, (w). (18)
Substituting Eq. (18) and the explicit form of ¥(r) into Eq. (17), we obtain the radial LAPM equation:

k(2k + 20+ D) [A4*I-2], + E[P*!], + Z [P+ '], =0, (19)
where 7 '

roL=["rornra (20)

If we assume a radial function R (r) of the form

n =1

R(r) = ( E aig’;")exp( —¢r), (21)

=10
Eq. (19) becomes

n=1 n=—1 n =1

kQk+21+1) Y a2k + 1+ D'+ (E/ED) Y a;Qk+1+i+2!1+(Z/8) Y a;2k+1+i+1D!=0, (22)

i=0 i=0 i=0
from which we have to determine E, {a, }, and ¢ for a given set of Z, /, and n.
To solve Eq. (22), we introduce a linearly independent basis set defined by

x4+ D(x+2)=(x+1i) forixl,

S 1 fori=0. (23)
Then Eq. (22) is rearranged as
n-—1
G+E/Na,_ Qk+ Doy +{U+E/6Da, s +(Z/5—m)a,_ J2k+ D, + Y {G+E/Da,_,
=2
+(Z/6—Da,., =y —DU+i+ a}(2k+ 1),
+{(Z/5—Day— 41— 1) (I +2)a,} 2k + 1), — J(I + 1)ay(2k + 1), = 0. (24)
For Eq. (24) to hold for any non-negative integer k, all the coefficients of { (2k + /), } must vanish. We immediately have
E=Z/n, E= —(22= —Z/2n%, _ (25)
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and a recursion relation for the expansion coefficients {a, }
U=dDU+i+Va, =2(n—ia,_,,
Il + Yya,=0.

i=12,.,n—1,

(26a)
(26b)

When n</, | — iis positive and therefore Eq. (26a) has a general solution

a,=IU+)(n—1U—=i—=[(n—i— DU+ i+ 1)] "}a,
Because of Eq. (26b), however, Eq. (27a) trivially results in

a,=0, i=01,.,n—1,

(27a)

(27b)

and there is no physically meaningful solution for the case of n</. The well-known quantum condition n >/ or I<n — 1 thus
emerges. In this case, Eqs. (26a) and (26b) have a general solution

o [{( =)= 1=+ DY (n—i— DG =D+ 1+ 1)}a,
| =
0

where a, is an arbitrary nonzero constant.
Now the radial function R(r) [Eq. (21)] becomes

n=1

R(r) = ( D a,g’r‘)exp( —¢r)

i=I

n-1-—1
= (5')’( S a,+/§"")exr)( —¢n), (29a)
(=0
where
a;,, ={(=2)(n—=1-D1Q2I+ 1)
X[(n—1—i— D2+ i+ D] "}a,
(29b)

and § = Z /n. If we choose
a=—[(n+1=DN/[(n=1-1)120+1)!]
in Eq. (29b), the polynomial involved in Eq. (29a) is noth-
ing but the associated Laguerre polynomial L 2+ (2£r). We
finally have
R(r) = ({r)'L3t 26r)exp( —&r). (30)

Equations (18), (25), and (30) constitute the complete so-
lutions for the hydrogen-like atom obtained from the present
LAPM equation. They are identical to the known results'*
which usually follow from the solution of the Schrodinger
equation as a second-order differential equation.
B. Ground-state helium atom

The LAPM equation (15) for N =2 is

K2k, + DAY=R + ky(2k, + 1[92

+ E [n*r'] — [RrnV(r,r)] =0, (31)
where
Viroey) = —Z/ry—2Z/r,+ 1/ry,, (32)

for a helium-like atom with nuclear charge Z. Let us consid-
er the approximate wave function given by a single product
of the scaled hydrogenic 1s functions:

V(r,ry) =exp( — &ry)exp( —&ry), (33)

which was first examined by Kellner' in the variational
treatment of the ground-state helium atom.

Foraspecial case of k, = k and k, = 0, the explicit eval-

uation of the integrals appearing in Eq. (31) for the wave
function (33) results in a simplificd LAPM equation

forl<i<n —1,

for 0<i <, (28)

—

kE*+2(k+ 1)E
+{(k+2)Z—1+4 (k+3)2"%*=3}¢=0, (34)

which includes the quantities £ and { to be determined. In
contrast to the case of hydrogen-like atoms, there is no set of
E and ¢ values which satisfies Eq. (34) for all possible &,
implying that the exact wave function is not expressed in the
form of Eq. (33).

However, we can employ some selected equations from
Eq. (34) for an approximate determination of E and §. Let
us examine the first two equations resulting from k = 0 and
1. They are

E+(Z—-5/16), =0, fork=0, (35a)
CPH4E+ (3Z-]¢=0, fork=1. (35b)

Though we cannot uniquely determine two unknowns from
a single equation, Eq. (35a) holds if

(=C=Z—f andE=E,= —{i=—(Z- ()%
(36a)
which are {, = 1.6875 and E, = — 2.847 656 when Z = 2.

Accidentally, Eq. (36a) is identical to the result of the vari-
ational calculation as has been discussed in relation to the
zero momentum energy expression.' Similarly, Eq. (35b)
holds if

4'24'122_274 and E:Elz_é'%:_(z_;‘)z,
(36b)
which become £, = 1.708 333 and E, = — 2.918 403 when

Z = 2. This approximate energy E, is lower than the exact
energy'® — 2.903 724, since the LAPM energy is not an up-
per bound to the true energy in general. The unique solutions
that satisfy both Eqgs. (35a) and (35b) are

&= o :Z—ﬁ and

E=E,= —(Z—- ) (Z—3}), (36¢c)
which - become §,, = 1.625 and E,, = — 2.742 188 for
Z=2.

In order to clarify the difference in the above three ap-
proximate solutions [ Egs. (36a), (36b), and (36c) ], it may
be convenient to introduce the quantity

A(pp) = (p1/2+ p3/2 - E)[exp( — iryp, — iry'p;) |

+ lexp( — irpp, — iryep,) V(r,,rz)]. (37)

J. Chem. Phys., Vol. 91, No. 8, 15 October 1989
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The condition A(p,,p,) = Ois equivalent to the Schrodinger
equation in momentum space, and hence the deviation of
A(p,,p,) from zero characterizes the property of an approxi-
mate solution. For a particular case of p, = 0, Eq. (37) re-
duces to
6(p)=A4(p,,0)
= (p2/2 — E)[exp( — ir;p,) ]
+ [exp( —irpsp) V(r,ry)]. (38)

For the approximate wave function given by Eq. (33), the
difference function 6(p) is evaluated to be

5(p) =8(p) =327 (p* —2E). ~2(p*+ £H) 72
_Zg—-l(p2+é—2)—-l[é-—2+ (p2+§2),|]
+ 28 %[ Lo(psL,E) + Ly(piLE)

+ Ly(p:6,E) 1}, (39)

where the explicit forms of the functions L;(p;S.E)
(j=6,7,8) are given in Ref. 16.

In the case of the helium atom (Z = 2), Fig. 1 shows the
6(p) functions for the three sets of approximate parameters,
(CoEy)s (£1L,E)), and (§y,,E,,). For the first set obtained
from the LAPM equation (34) with k = 0, the deviation of
8(p) from zero is small in the low-momentum region and
especially §(0) = 0. For the second set resulting from the
LAPM equation with k =1, |5(p)| decreases in the high-
momentum region, but increases remarkably in the low-mo-
mentum region. For the third set, the low-momentum be-
havior of 6 (p) is much improved, but a large deviation in the
high-momentum region is observed. These behaviors may be
easily understood if we are reminded of the fact that the
satisfaction of the k th LAPM equation corresponds to mak-
ing the coefficient of p2k zero when &(p) is expanded in a
power series of p. In fact, the §(p) functions for the three
sets of parameters can be expressed as

8y(p) = 3277 [ (2*/3%")p?

— (372%/37)p* + 0(p*) ], (40a)
5,(p) = 3277[(163:2'34/41%)

— (79:22:3%/41°)p* + O(p*) 1, (40b)
801 (p) = 3277 — (21:2%/13°)p* + O(p®)].  (40c)

The low-momentum superiority of the third set [ Eq. (36¢) ]
is clear from Eq. (40c). If we adopt a more flexible trial
function with several adjustable parameters, we may be able
to extend the zero deviation of the §(p) function to the inter-
mediate-momentum region. Such a possibility will be exam-
ined in the future.

Toshikatsu Koga: Schrédinger equation in moments

8(p)/au

-1.5 + + +

FIG. 1. Behavior of the difference function 6(p) for the three sets of param-
eters ¢ and K with Z = 2. The solid line is for §, and E,, [Eq. (36a) ], the
dashed line for ¢, and £, [ Eq. (36b) |, and the dotted line for {;,, and E,),
[Eg. (36¢)].
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