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The local scaling transformation is used to generate a wave function W,({r,}) from a reference
function Wy({r,}) in such a manner that the generated function ¥,({r}) has exactly the same one-
electron density as a given density p(r). The method enables us to perform a variational determina-
tion of the density p(r) through the minimization of the energy E [p] associated with the wave func-
tion W,({r,}). Using the single-{ wave function as a reference, we apply this procedure to the
ground-state Li and Be atoms within the Hartree-Fock approximation. Comparison of the densities
themselves as well as the associated position {r") and momentum {p") moments shows that the
present density compares well with the near-Hartree-Fock density.

I. INTRODUCTION

In contrast to the usual scaling method,! which uni-
formly modifies the electron coordinates in the wave
function by a constant factor, the local scaling method?
modifies the electron coordinates by a function s=s(r) to
obtain a new wave function. About 30 years ago, Hall?
applied the method to the Kellner approximation® of the
He atom and obtained a nontrivial improvement, though
he restricted the transformation function s(r) to a definite
class of functions. A further generalization of Hall’s ap-
proach has been studied by ten Hoor.*°

Recently, Kryachko and co-workers’ ~® proposed an
application of the local scaling method to the generation
of the unknown parent wave function from a given one-
electron density p(r). For the N-electron system under
consideration, they first chose an appropriate reference
density po(r) whose parent wave function ¥y({r;}) was
known, and then constructed a local scaling transforma-
tion between the reference py(r) and given p(r) densities.
The transformation was then applied to W({r,}) to gen-
erate a wave function W ({r;}) corresponding to the
given density p(r). Based on this procedure, they’ ~° dis-
cussed formally the density-functional theory. A numeri-
cal illustration of this method has been presented!® very
recently for the He atom, and the practical utility of the
method has been shown; at least, for this simple case.
The use of the same procedure for the investigation of the
interrelation between the position p(r) and momentum
y(p) densities has also been reported.'! ~ '3

In the present paper, we apply the method of local
scaling transformations to the density-functional calcula-
tion of the Li and Be atoms within the Hartree-Fock
framework. Since these atoms have two electronic shells
with different characters, the present study is the first
crucial step of the proposed approach towards the gen-
eral application to more complicated atoms and mole-
cules. In Sec. II, we outline the procedure for the genera-
tion of a wave function ¥, ({r;}) from a given density
p(r), and define the energy E[p] as a functional of the
density. In Sec. III, the numerical results are presented
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and discussed for the Li and Be atoms in their ground
states. The single-{ wave function and the associated
electron density are employed as a reference. Simple den-
sity functions are reported, which well reproduce the
near-Hartree-Fock results. Atomic units are used
throughout this paper.

II. AN ENERGY DENSITY FUNCTIONAL

For an N-electron atom in the S state, let a one-
electron density p(r)=p(r) be given, which is a function
of the radius r=|r|. If we could know the parent wave
function W,({r;}) of the given density p(r) in some
manner, the energy E of the system would be uniquely
defined as a functional of p(r) through the function
\l’p( [rk } ).

For this purpose, we assume the presence of a refer-
ence wave function Wy({r,}) and the associated density
po(r) for the system. We then introduce the radial local
scaling transformation s =s(r) between the two densities
polr) and p(r):’ 710

p(r)=J(s/r)py(s), (1)

where J(s /r) is the Jacobian of the transformation that
ensures the relation

J(s/r)ridr =s%s . ()

The function s =s(r) is a monotonically increasing func-
tion of r and is explicitly determined by the integral equa-
tion!!

r 29, — [° 2
fop(x)x dx fopo(y)y dy . (3)

For a small value of r, the asymptotic behavior of the
transformation is given by

s(r)=[p(0)/po(0)]'*r + 0 (r?), 4)

where we have assumed that py(0)70.
Using the local scaling transformation s =s(r), we now
construct’”'* a wave function W, ({rc})as
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\Pp({rk})z Wo({si}), (5)

N
I J (s /7 )2
k=1

where 1, =(r;,Q;) and s, =(s;,Q;) in the spherical po-
lar coordinates. By virtue of Eq. (2), we can easily verify
that the wave function W, ({r, }) has the electron density
exactly the same as the give density p(r), that is,

Nf W (r,1, ... ,tp)|%dr, - - dry

=NJ(s/r)f l‘l’o(S,Sz, e ,SN)|2d82 ct e dsN

=J(s/r)pg(s)=pl(r) . (©6)

Thus the generated wave function V¥ ,({r,}) may be re-
garded as a possible parent wave function of the given
density p(r). When the reference wave function ¥y({r,})
consists of a set of one-electron function (i.e., orbitals)
{¥o;(r)}, as is the case of the present study, the N-
electron transformation involved in Eq. (5) reduces to N
single-electron transformations for the constituent orbit-
als.’> Equation (5) is then replaced with

P (O=[T(s/N]"*;(s), i=12,...,N. @)

If the reference orbitals {4;(r)} are orthonormal, the
same is true for the generated orbitals {¢,(r)}, and the
structure of the wave function W, ({r;}) remains unal-
tered from that of the reference function Wy({r,})."

Assigning the wave function ¥,({r;}) to the parent
wave function of the given density p(r), we may now
define the energy E as a functional of the density:

E[pl=E[p;¥,]=(V |H|¥,) /(¥ |¥,) , ®)

where H is the Hamiltonian of the system. Clearly, the
generated wave function W,({r;}) depends on the refer-
ence function Wy {r, }) initially chosen, and therefore the
energy E is also a functional of ¥, except for some spe-

cial cases. '%!? In the following, however, we fix the refer-
ence function ¥, to some appropriate (i.e., simple and yet
physically acceptable) function and determine the elec-
tron density p(r) variationally based on Eq. (8).

III. APPLICATIONS TO Li AND Be ATOMS

For the ground-state Li atom, we adopt the single-§
wave function as the reference, which is specified by the
two exponents §; and §,. The optimized exponents were
reported by Clementi and Roetti.!*!* For the electron
density function p(r) to be determined, we assume its (un-
normalized) functional form as

n
pa(r)=exp(—cor)t+ 3 airb‘exp(—c,-r) , 9

i=1
which represents a linear combination of generalized
Slater-type functions. {a;,b;,c;} are variational parame-
ters where {b;]} are restricted to be non-negative. The in-
dex n governs the number of basis functions in Eq. (9).
By this choice of the functions for py(r) and p(r), the in-
tegrals appearing in Eq. (3), which determine the trans-
formation function s =s(r), can be analytically evaluated

based on the formula'®

foxtbexp(—ct)dt =c Dy (b +1,cx), x=20, b>—1

(10)

where y(a,x) is the incomplete gamma function.

Since we have fixed the functional forms of Wy({r,})
and p(r), the energy density functional E [p] now reduces
to a function of the parameters embedded in p and W;:

E[p]=E({a;,b;,c;};81,55) - (11)

We have carried out the optimization of these parame-
ters so as to minimize the energy E, which is defined as

TABLE 1. Results of the density-functional calculation for the ground-state Li atom based on the lo-
cal scaling method. For the explicit form of the density function p,(r), see Eq. (9) of the text.

Density Optimum parameters Energy
Single-¢ £,=2.69063, £,=0.639 61 —7.418482
(reference)
pi(r) co=5.45114 —17.423251
a;=0.98249X1073, b, =2.01074, ¢,=1.30130
£1=2.99569, £,=0.73877
par) €0=5.944 58 —7.431530
a;=0.92036, b;=2.329 14, ¢, =6.326 80
a,=0.71118X 1073, b,=2.74527, c,=1.48045
£,=2.738 36, £,=0.66549
pslr) €p=6.05500 —17.431670
a,=0.63707, b;=1.774 84, ¢,=5.78600
a,=0.13263X 1073, b,=3.663 10, c,=1.502 50
a;=0.80130X 1073, b;=4.26890, c;=2.287 60
£,=2.56539, £,=0.62120
Near-Hartree-Fock? —17.432727

*References 17 and 18.
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TABLE II. Position {r") and momentum {p") moments associated with the density function p;(r)
for the ground-state Li atom. The values in parentheses are errors in percent relative to the near-

Hartree-Fock values.

Single-§

- Moments® (reference) ps(r) Near-Hartree-Fock®
(r7?) 9.7731(—3.0) 10.070(—0.0) 10.072
(r71) 1.9045(—0.0) 1.9045(—0.0) 1.9052
(r) 1.6947(+1.3) 1.6837(+0.6) 1.6733
(r?) 6.5286(+5.1) 6.3067(+1.6) 6.2104
(r?) 34.564(+9.4) 32.296(+2.2) 31.586
(r*) 215.05(+13.8) 193.96(+2.6) 189.03
(™ 9.4157(+6.4) 8.9346(+0.9) 8.8520
(p~" 1.7638(+2.0) 1.7369( +o 5) 1.7286
{(p) 1.6505( +0 9) 1.6348(—0.0) 1.6352
(p?) 4.9457(—0.2) 4.9544( — 0.0) 4.9550
(p®) 22.403(— 5.3) 23.659(—0.0) 23.665
(p*) 177.20( —14.8) 207.16(—0.4) 207.89
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*The position and momentum densities are normalized to unity.
®The position moments are taken from Ref. 19, while the momentum moments from Ref. 20.

the Hamiltonian expectation over the wave function
W,({r;}) generated by the local scaling procedure [see
Eq. (8)]. The results for the ground-state Li atom are
summarized in Table I, where the index n is restricted to
be 1, 2, or 3. We find that even the simplest function
pi(r) constructed from two exponential functions associ-
ates the energy (—7.423251) lower than the single-{ en-
ergy (—7.418482). Addition of another exponential
function, i.e., the p,(r) function, noticeably improves the
energy to —7.431530. However, the energy improve-
ment seems to be approximately ““saturated” for the p;(r)
function, having four exponential terms. The energy
—7.431 670 of the density ps(r), which is the most flexi-
ble function in the present study, is lower than the
single-§ energy by 0.013 188. Since the energy difference
between the single-{ and near-Hartree-Fock wave func-
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FIG. 1. Deviation in the radial density from the near-

Hartree-Fock result for the Li atom. The parent densities are
normalized to unity. The deviation and the radial distance r are
in atomic units.

tions is 0.014 245, the density function p;(r) recovers
93% of this difference.

In Table II, the one-electron position moments {r")
(—2=n =4) resulting from the density p;(r) for the Li
atom are summarized and compared with those from the
near-Hartree-Fock density.! The moments of the
single-{ wave function are also given there for reference.
It is clear that the moments of p;(7) are much closer to
the Hartree-Fock moments than the single-§ ones. The
same is true for the momentum moments {p")
(—2=<n <4) summarized in the table, where the momen-
tum moments of the p;(r) have been evaluated based on
the density mapping procedure'! ~!* developed recently.

Figure 1 examines directly the deviation of the radial
density 47r’p,(r) from the near-Hartree-Fock density'®
as a function of . When compared with the correspond-
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FIG. 2. Deviation in the radial density from the near-
Hartree-Fock result for the Be atom. The parent densities are
normalized to unity. The deviation and the radial distance r are
in atomic units.
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TABLE III. Results of the density-functional calculation for the ground-state Be atom based on the
local scaling method. For the explicit form of the density function p,(r), see Eq. (9) of the text.

Density Optimum parameters Energy
Single-§ £1=3.68478, £,=0.95603 —14.556 740
(reference)
pilr) cp=1.55114 —14.563 622

a,=5.19805X 1073, b, =2.42109, ¢, =2.06096
£,=3.603 69, £,=0.95831

palr) co=1.79677

—14.568 511

a;=—0.22080, b, =3.33452, c;=4.98835
a,=8.86646X 1073, b,=0.00000, c,=1.37372
£,=3.63293, £,=0.95395

- pa(r) ‘ ¢, =28.50132 ‘

—14.569 644

a,=—0.30266, b, =2.00550, c;=5.13355
a,=0.16893, b,=0.00000, c,=4.64942
a;=6.88132X1073, b,=1.21894, ¢,=1.69038
£,=3.65424, £,=0.95693

Near-Hartree-Fock?

—14.573 023

#References 17 and 18.

ing single- curve, the superiority of p;(#) is remarkable,
particularly in the small-r region. It can be then said that
the variationally determined density function p,(r) is
quite a good approximation to the Hartree-Fock density.
Similar density-functional calculations have been done
for the ground state of the Be atom. The results are sum-
marized in Tables IIT and IV and Fig. 2. As has been the
case of the Li atom (Table I), Table III shows that even
the simplest function p,(r) gives an energy ( —14.563 622)
much lower than the single-{ energy (—14.556740),
though the latter wave function has been employed as the
reference to generate a parent wave function of the densi-
ty p,(r). Addition of density basis functions further im-
proves the energy, and the present best function ps(r) as-
sociates the energy —14.569 644. This density function

recovers 79% of the energy difference of the single-§ and
near-Hartree-Fock calculations. Figure 2 demonstrates
how the present density p;(r) is closer to the near-
Hartree-Fock density than the single-{ one. However,
there is a significant difference between the energies of
po(r) and ps(r) densities, and the present density-
functional calculation for the Be atom appears to be sub-
ject to further improvement. This situation is different
from that of the Li atom.

The position and momentum moments, {#") and {p")
with —2<n <4, associated with the density function
pi(r) are tabulated in Table IV. For the position mo-
ments, we find that (%) and (r*) are improved, but
(r) and (r?) slightly change for the worse. Figure 2
shows, however, that the better agreement of the single-§

TABLE IV. Position (r") and momentum {p") moments associated with the density function ps(r)
for the ground-state Be atom. Values in parentheses are errors in percent relative to the near-Hartree-

Fock values.

Single-&

Moments® (reference) pilr) Near-Hartree-Fock®
(r=2) 14.105(—2.1) 14.390(—0.1) 14.406
(r=1 2.1012(—0.0) 2.1012(—0.0) 2.1022
(r) 1.5350(+0.2) 1.5390( +0.4) 1.5322
(r?) 4.3348(+0.1) 4.3696(+0.9) 43297
(r?) 15.609(—1.1) 15.967(+1.1) 15.787
(r*) 65.165(—3.7) 68.327(+1.0) 67.655
(p7%) 6.1744(—2.3) 6.3455(+0.4) 6.3228
(p~H 1.5688(—0.7) 1.5839(+0.3) 1.5796
(p) 1.8698(+0.6) 1.8580(—0.0) 1.8586
{(»H 7.2784(—0.1) 7.2847(—0.0) 7.2865
(p>) 44.716(—3.6) 46.331(—0.1) 46.398
(p*) 482.99(—10.6) 535.92(—0.8) 540.23

*The position and momentum densities are normalized to unity.
The position moments are taken from Ref. 19, while the momentum moments from Ref. 20.
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moments with the near-Hartree-Fock ones is the result of
an accidental cancellation of the contributions from the
positive and negative deviations in the radial density. On
the other hand, all the momentum moments show consid-
erable improvement: The moments {p") generated from
the position density p;(r) coincide with the near-
Hartree-Fock results within 1% error.

In conclusion, the density-functional approach based
on the local scaling method has been found to be quite
successful for the Li and Be atoms. The present density
p;(7) is a satisfactory approximation to the Hartree-Fock
density. The most critical point of this approach is an ac-
curate determination of the local scaling function s =s (7)
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by the solution of the nonlinear equation, Eq. (3). Before
we extend the present approach to heavier atoms and
molecules, we would like to develop a modified theory
which may simplify the determination of the scaling
function.
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