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The local scaling transformation is used to generate a wave function W p( {rk J ) from a reference 
function Wo({ rk J ) in such a manner that thegenerated function W p( {rk J ) has exactly the same one-
electron density as a given density p(r). The method enables us to perform a variational determina-
tion of the density p(r) through the minimization of the energy E [p] associated with the wave func-
tion W p( {rk J). Using the single-; wave function as a reference， we apply this procedure to the 
ground-state Li and Be atoms within the Hartree-Fock approximation. Comparison ofthe densities 
themselves as well as the associated position (r") and momentum (p") moments shows that the 
present density compares well with the near-Hartree-Fock density. 

1. INTRODUCTION 

In contrast to the usual scaling method，1 which uni-
formly modifies the electron coordinates in the wave 
function by a constant factor， the local scaling method2 
modifies the electron coordinates by a function s=s(r) to 
obtain a new wave function. About 30 years ago， Half 
applied the method to the Kellner approximation3 of the 
He atom and obtained a nontrivial improvement， though 
he restricted the transformation function s( r) to a definite 
class of functions. A further generalization of Hall's ap-
proach has been studied by ten Hoor.4-6 

Recent1y， Kryachko and co-workers7-9 proposed an 
application of the local scaling method to the generation 
of the unknown parent wave function from a given one-
electron density p(r). For the N-electron system under 
consideration， they first chose an appropriate reference 
density ρ。(r)whose parent wave function 'l'o([rkl) was 
known， and then constructed a local scaling transforma-
tion between the reference po(r) and given p(r) densities. 
The transformation was then applied to 'l'o( [Ik I ) to gen-
erate a wave function 'l' p( [rk 1) corresponding _ t~ the 
given density p(r). Based on this procedure， they7-9 dis-
cussed formally the density-functional theory. A numeri-
cal i11ustration of this method has been presentedlO very 
recently for the He atom， and the practical utility of the 
method has been shown; at least， for this simple case. 
The use of the same procedure for the investigation of the 
interrelation between the position p( r) and momentum 
γ(p) densities has also been reported." -13 
In the present paper， we apply the method of local 
scaling transformations to the density-functional ca1cula-
tion of the Li and Be atoms within the Hartree-Fock 
framework. Since these atoms have two electronic shel1s 
with different characters， the present study is the first 
crucial step of the proposed approach towards the gen-
eral application to more complicated atoms and mole-
cules. In Sec. II， we outline the procedure for the genera-
tion of a wave function 'l' p( [rk 1) from a given density 
p(r)， and define the energy E[p] as a functional of the 
density. In Sec. III， the numerical resu1ts are presented 

and discussed for the Li and Be atoms in their ground 
states. The single-; wave function and the associated 
electron density are employed as a reference. Simple den-
sity functions are reported， which well reproduce the 
near-Hartree-Fock results. Atomic units are used 
throughout this paper. 

11. AN ENERGY DENSITY FUNCTIONAL 

For an N-electron atom in the S state， let a one-
electron density p( r) = p( r) be given， which is a function 
of the radius r = 1 r 1. If we could know the parent wave 
function 'l' p([ rd) of the given density p( r) in some 
manner， the energy E of the system would be uniquely 
defined as a functional of p( r) through the function 
'l' p([ rd ). 
For this purpose， we assume the presence of a refer-
ence wave function 'l'o( [rk 1) and the associated density 
Po( r) for the system. We then introduce the radiallocal 
scaling transformation s = s (r) between the two densities 
po(r) andp(r):7-1O 

p(r)=J(s/r)po(s) ， (1) 

where J(s /r) is the Jacobian of the transformation that 
ensures the relation 

J(s /rlr2dr =s2ds . (2) 

The function s = s (r) is a monotonically increasing func-
tion of r and is explicit1y determined by the integral equa-
11 tlOn 

ル(Mh=fJoW2の (3) 

For a small value of r， the asymptotic behavior of the 
transformation is given by 

s (r)=[p(O)/po(O)]I13r +0 (r2) ， (4) 

where we have assumed that Po(O)手O.
Using the local scaling transformation s = s (r)， we now 
construce -10 a wave function 'l' p( [ r k I ) as 
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I N 

叱((rkj)=I n J(sklrk)1/2Iqto((sd)， (5) 
I k=1 

where rk =(rk'D.k) and Sk =(sk>D.k) in the spherical po・
lar coordinates. By virtue of Eq. (2)， we can easily verify 
that the wave function '1' p( ! rk 1 ) has the electron density 
exactly the same as the give density p(r)， that is， 

N f Iqtp(川，rN)lh drN 

cial cases. 10，12 In the following， however， we fix the refer-
ence function '1'0 to some appropriate (i.e.， simple and yet 
physically acceptable) function and determine the elec-
tron density p(r) variationally based on Eq. (8). 

III. APPLlCATIONS TO Li AND Be ATOMS 

For the ground-state Li atom， we adopt the single-S 
wave function as the reference， which is specified by the 
two exponents SI and S2・Theoptimized exponents were 
reported by Clementi and Roetti. 14，15 For the electron 

=NJ(s Ir) f Iqto(s，s2' . . . ，SN )12ds2 . . . dSN 
=J(slr)po(s)=p(r) . (6) density function p(r) to be determined， we assume its (un-

normalized) functional form as 
Thus the generated wave function '1' p( ! rk 1) may be re-
garded as a possible parent wave function of the given 
density p(r). When the reference wave function qto(! rk 1 ) 
consists of a set of one-electron function (i.e.， orbitals) 
{恥(r)J， as is the case of the present study， the N-
electron transformation involved in Eq. (5) reduces to N 
single-electron transformations for the constituent orbit-
als. 13 Equation (5) is then replaced with 

Pn(r)=exp(一cor)+玄atrbzexp(-ctr)， (9)

。'pi(r)=[J(sIrj]1I2ttOi(S)， i = 1，2， • • • ，N . (7) 
If the reference orbitals !九(r)J are orthonormal， the 
same is true for the generated orbitals ! tt pi (r) J， and the 
structure of the wave functionqt o( {rk 1) remains unal-
tered from that of the reference fUIIction '1' o( ! rk 1 ).13 
Assigning the wave function '1' p( ! r k 1) to the parent 
wave function of the given density p(r)， we may now 
define the energy E as a functional of the density: 

E[p]=E[p;qto]=(叱IHlqtp)/(qtplqtp)， (8) 

where H is the Hamiltonian of the system. Clearly， the 
generated wave function '1' p( ! rk 1) depends on the refer-
ence function qto( ! rk J ) initially chosen， and therefore the 
energy E is also a functional of '1'0' except for sorne spe・

which represents a linear combination of generalized 
Slater-type functions. ! ai，bi'Ci 1 are variational parame-
ters where ! bi 1 are restricted to be non-negative. The in-
dex n governs the number of basis functions in Eq. (9). 
By this choice of the functions for po(r) and p(r)， the in-
tegrals appearing in Eq. (3)， which determine the trans-
formation function s = s (r)， can be analytically evaluated 
based on the formula16 

r向 p(-ct)dt =c一(b+1)γ(b+ 1，叫は0，b>ー 1
(10) 

where γ(a，x) is the incomplete gamma function. 
Since we have fixed the functional forms of '1' o( ! r k 1 ) 
and p( r)， the energy density functional E [p] now reduces 
to a function of the parameters embedded in p and '1'0: 

E[p]=E((ai，bi，c;];SI，S2) . (11) 

We have carried out the optimization of these parame-
ters so as to minimize the energy E， which is defined as 

T ABLE 1. Results of the density-functional calculation for the ground-state Li atom based on the 10・
cal scaling method. For the explicit form ofthe density function Pn(r)， see Eq. (9) of the text. 

Density 

Single-C 
(reference) 

P1(r) 

pir) 

P3(r) 

N ear-Hartree-F ocka 

aReferences 17 and 18. 

Optimum parameters 

C1=2.69063， C2=0.63961 

co=5.45114 

a1 =0.98249X 10一九 b1=2.01074，c1=1.30130 
C1 =2.995 69， C2=0. 73877 

co=5.94458 

a1 =0.92036， b1 =2.32914， C1 =6.32680 
a2 =0. 71118 X 10-3， b2 =2. 74527， C2 = 1.48045 

C1=2.73836， C2=0.66549 

co=6.055oo 

a1 =0.63707， b1 = 1. 77484， C1 =5.78600 
a2 =0.132 63 X 10ーとん=3.66310，c2=1.50250 
a3=0.80130XlO-3， b3=4.26890， c3=2.28760 

C1=2.56539，ら=0.62120

Energy 

-7.418482 

-7.423251 

-7.431530 

-7.431670 

-7.432727 
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TABLE 11. Position (rn) and momentum (pn) moments associated with the density functionp3(r) 
for the ground-state Li atom. The values in parentheses are errors in percent relative to the near-
Hartree-Fock values. 

42 

Single-S" 
(reference) Near-Hartree-Fockb 

10.072 
1.9052 
1.6733 
6.2104 
31.586 
189.03 

P3(r) 

1O.070(一0.0)
1.9045(一0.0)
1.6837( +0.6) 
6.3067( + 1.6) 
32.296( +2.2) 
193.96( +2.6) 

9.7731( -3.0) 
1.9045(一0.0)
1.6947( + 1.3) 
6.5286( + 5.1 ) 
34.564( +9.4) 
215.05( + 13.8) 

Momentsa 

(r-2 ) 
(r一1) 

(r) 
(r2 ) 

(r3 ) 
(，4 ) 

8.8520 
1.7286 
1.6352 
4.9550 
23.665 
207.89 

8.9346(+0.9) 
1.7369( +0.5) 
1.6348(一0.0)
4.9544( -0.0) 
23.659( -0.0) 
207.16(ー 0.4)

9.4157( +6.4) 
1.7638( +2.0) 
1.6505( +0.9) 
4.9457(一0.2)
22.403( -5. 3) 
177.20(一14.8)

(p -2) 
(p-l ) 

(p) 
(p2 ) 

(p3 ) 

(p4) 

aThe position and momentum densities are normalized to unity. 
bThe position moments are taken from Ref. 19， whi1e the momentum moments from Ref. 20. 

tions is 0.014245， the density function P3(r) recovers 
93% ofthis difference. 
In Table 11， the one-electron position moments < rn) 
(-2三n三4)resulting from the density P3(r) for the Li 
atom are summarized and compared with those from the 
near-Hartree-Fock density.19 The moments of the 
single-; wave function are also given there for reference. 
It is clear t出ha幻tthe moments of P3メ(r吋，う)are much closer to 
the H王art位re白e.干.
same おs t釘ru悶e for the momentum moments <p n) 
(-2三n三4)summarized in the table， where the momen-
tum moments of the P3(r) have been evaluated based on 
the density mapping procedure11ー13developed recently. 
Figure 1 examines directly the deviation of the radial 
density 47Tr2p3(r) from the near-Hartree-Fock density19 
as a function of r. When compared with the correspond-

the Hamiltonian expectation over the wave function 
'11 p( ! rk J) generated by the local scaling procedure [see 
Eq. (8)]. The results for the ground-state Li atom are 
summarized in Table 1， where the index n is restricted to 
be 1， 2， or 3. We find that even the simplest function 
Pl(r) constructed from two exponential functions associ-
ates the energy (一7.423251) lower than the single-; en-
ergy (一7.418482). Addition of another exponential 
function， i.e.， the P2(r) function， noticeably improves the 
energy to -7.431530. However， the energy improve-
ment seems to be approximately “saturated" for the P3(r) 
function， having four exponential terms. The energy 
-7.431670 of the density P3(r)， which is the most fJ.exi-
ble function in the present study， is lower than the 
single-; energy by 0.013 188. Since the energy difference 
between the single-; and near-Hartree-Fock wave func-
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FIG. 2. Deviation in the radial density from the near-
Hartree-Fock resu1t for the Be atom. The parent densities are 
normalized to unity. The deviation and the radial distance r are 
m atomic units. 
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0 

FIG. 1. Deviation in the rad.ial density from the near-
Hartree-Fock result for the Li atom. The parent densities are 
normalized to unity. The deviation and the radial distance ， are 
in atomic units. 
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T ABLE 111.. Results of the density-functional calculation for the ground-state Be atom based on the 
local scaling method. For the explicit form ofthe density functionpn(r)， see Eq. (9) ofthe text. 

Density Optimum parameters Energy 

Single-~ 
(reference) 

P1(r) 

P2(r) 

P3(r) 

Near-Hartree-Focka 

'References 17 and 18. 

~1=3.68478， ~2=0.95603 

co=7.55114 
a1 =5.19805X 10-3， b1 =2.421 09， C1 =2.06096 

~1=3.ω3 69， ~2詰0.95831

co=7.79677 
a1=ー0.22080，b1 =3.33452， C1 =4.98835 
a2=8.86646X1O-3， b2=0.αm∞， C2 = 1. 373 72 

~1=3.63293， ~2=0.95395 

co=8.50132 
a1=一0.30266，b1 =2.∞550， C1 =5.133 55 
a2 =0.168 93， b2 =0.∞o∞， c2=4.64942 
a3=6.88132X 10-3， b3=1.21894， c3=1.69038 

~1=3.65424， ~2=0.95693 

-14.556740 

-14.563622 

-14.568511 

-14.569ω4 

-14.573023 

42 

ing single-~ curve， the superiority of P3(r) is remarkable， 
particularly in the small-r region. It can be then said that 
the variationally determined density function P3(r) is 
quite a good approximation to the Hartree-Fock density. 
Similar density-functional calculations have been done 
for the ground state of the Be atom. The resu1ts are sum-
marized in Tables 111 and IV and Fig. 2. As has been the 
case of the Li atom (Table 1)， Table 111 shows. that even 
the simplest function pt(r) gives an energy (ー14.563622)
much lower than the single-~ energy (一14.556740)，
though the latter wave function has been employed as the 
reference to generate aparent wave function of the densi-
ty Pn(r). Addition of density basis functions further im-
proves the energy， and the present best function P3(r) as-
sociates the energy -14.569644. This density function 

recovers 79% of the energy difference of the single-~ and 
near-Hartree-Fock calculations. Figure 2 demonstrates 
how the present density P3(r) is closer to the near-
Hartree-Fock density than the single-~ one. However， 
there is a significant difference between the energies of 
P2(r) and P3(r) densities， and the present density-
functional calculation for the Be atom appears to be sub-
ject to further improvement. This situation is different 
from that of the Li atom. 
The positionand momentum moments， (rn) and (pn) 
with -2三n三4，associated with the density function 
P3(r) are tabulated in Table IV. For the position mo-
ments， we find that (r -2) and (r4) are improved， but 
(r) and (r2) slightly change for the worse. Figure 2 
shows， however， that the better agreement of the single-~ 

TABLE IV. Position (rn) and momentum (pn) moments associated with the density functionp3(r) 
for the ground-state Be atom. Values in parentheses are errors in percent relative to the near-Hartree-
Fock values. 

Single-~ 

Moments' (reference) pt) Near-Hartree-Fockb 

(r-2 ) 14.105( -2.1) 14.390( -0.1) 14.406 
(r-1 ) 2.1012(一0.0) 2.1012(一0.0) 2.1022 
(r) 1.5350( +0.2) l.5390( +0.4) 1.5322 
(r2 ) 4.3348( +0.1) 4.3696( + O. 9) 4.3297 
(r3 ) 15.ω9( -1.1) 15.967( + 1.1) 15.787 
(r4) 65.165( -3.7) 68.327( + 1.0) 67.655 

(p-2) 6. 1744( -2.3) 6.3455( +0.4) 6.3228 
(p一1) 1.5688( -0.7) l.5839( +0.3) 1.5796 
(p) 1.8698( +0.6) 1.8580( -0.0) 1.8586 
(p2 ) 7.2784(一0.1) 7.2847(一0.0) 7.2865 
(p3) 44，716( -3.6) 46.33l(一0.1) 46.398 
(p4) 482.99( -10.6) 535.92(一0.8) 540.23 

aThe position and momentum densitiωare normalized to unity. 
~he position moments are taken from Ref. 19， while the momentum moments from Ref. 20. 
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moments with the near-Hartree-Fock ones is the result of 
an acciden:tal cancellation of the contributions from the 
positive and negative deviations in the radial density. On 
the other hand， all the momentum moments show consid-
erable improvement: The moments (p n) generated from 
the position density P3(r) coincide with the near-

Hartree-Fock results within 1 % error. 
In conc1usion， the density-functional approach based 
on the local scaling method has been found to be quite 
successful for the Li and Be atoms. The present density 
P3(r) is a satisfactory approximation to the Hartree-Fock 

density. The most critical point ofthis approach is an ac-
curate determination of the local scaling function s =s (r) 
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