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The electron-pair (or intracule) density is the probability density function for an
interelectronic vector and is intimately related to the electron correlation in many- -electron
systems. Based on the local scaling method, a theory is presented for the direct variational
determination of the electron-pair density. Illustrative applications are given for the ground
state of the helium atom. Simple electron-pair density functions are reported which compare

.

quantitatively with the exact density.

1. INTRODUCTION

Using the method of local scaling,’” we have recently
developed®® a practical theory for the energy density func-
tional E[p], which enables us a direct variational determina-
tion of the electron density (i.e., diagonal 1 matrix) p(r).
For the N-electron system under consideration, we first as-
sume the presence of an appropriate (i.e., simple yet physi-
cally acceptable) reference wave function W, ({r;}) which
associates the electron density py(r). We then construct a
local scaling transformation s = s(r) between the reference
Po(r) and the given p(r) densities, and apply it to W, ({r;})
to generate a wave function ¥, ({r;}) corresponding to the
given density p(r). The generated wave function ¥, {r; H
has the density exactly the same as the given densuy p(r)
and hence we regard ¥, ({r;}) as a parent wave function of
the density p(r). The energy density functional E[p] is then
defined as the Hamiltonian expectation over the wave func-
tion ¥, ({r,}).

The approach has been actually applied® to the ground-
state helium atom and its analogs both in position and mo-
mentum spaces. Simple position and momentum densities
have been reported that well reproduce the Hartree—Fock
limit energy. The applications to the Li and Be atoms,’
which have two different electronic shells, have also been
successful. Using the single-zeta wave function as a refer-
ence, we have also constructed the simple density functions
whose electronic energies are lower than the reference sin-
gle-zeta energies by 0.013 188 a.u. for Li and 0.012 904 a.u.
for Be. A few calculations beyond the Hartree-Fock approx-
imation have also been given® for the helium and helium-like
atoms. '

In the present paper, we develop an energy density func-
tional theory for the electron-pair density based on the meth-
od of local scaling transformation. The electron-pair (or in-
tracule) density 7(u) represents the probability density for
the interelectronic vector u =r; —r, (see Ref. 10 for a re-
view). Naturally, the electron-pair density /(u) is closely
connected with the electron correlation problem. Coulson
and Neilson,'! e.g., defined the Coulomb hole in terms of the
difference of the Hartree—Fock and exact electron-pair den-
sities. In Sec. II, the property of the electron-pair density is
first outlined. A local scaling transformation is then intro-
duced for the reference and given electron-pair densities, and
an energy functional is defined in terms of the electron-pair
density. In Sec. IT1, illustrative applications are presented for

5856 J. Chem. Phys. 93 (8), 15 October 1990

0021-9606/90/205856-06$03.00

the helium atom. Several simple electron-pair densities are
reported which well compare with that from the Hylleraas
six-term wave function. Atomic units are used throughout
this paper.

. ENERGY FUNCTIONAL OF ELECTRON PAIR
DENSITY

A. Definition of electron-pair or intracule density

For the calculation of the nqﬁrelativistic energy of an V-
electron atom or molecule, the three types of density matri-
ces are required;'? the off-diagonal 1 matrix y(r;r’) for the
kinetic energy 7,

T=T[yl=(— 1/2)J[A,7/(r|r')],,=, dr, (1a)
the diagonal 1 matrix p(r) for the electron—nucleus attrac-
tion potential U,

- U=Ulp]= —ﬂz Za/|r—Ra|]p(r)dr,

and the diagonal 2 matrix I' (r,,r,) for the electron—electron
repulsion potential W, '

(1b)

W=wI[I']= f[l/|r1 — 1,/ 1T (rp,ry)dr, dr,.  (lc)

These density matrices are all derived'? from the spin-
less 2 matrix I'(r,,r,|r],r5):

- T(rpry) = L(r,r,|r,r,), (2a)
P(elr') = [2/(N — 1)]f L(rrlr)dn, | (2b)
p(r) =y(r|r). ' . (2¢)

Therefore, the 2 matrix T can be considered as the parent
quantity for the energy. Introducing the extracular and in-
tracular variables

R=(r;+r1,)/2and R’ = (r] +15)/2, (3a)

u=r;,—r,andu’ =ry —r3, (3b)

we have the intracular—extracular representation of the 2
matrix:

I (R,u|R’,u')

=T R+uw2R—u2R +u/2,R —u'/2),
whose inverse transformation is

(4a)
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[(r,r,|r,r;)

=T'((ry +1,)/2,r; — 1,|(x] +13)/2,r] —1}). (4b)
Then the electron-pair or intracular density J(u) is defined
by

I(ll)‘:‘f I"(R,u|R,u)dR, (5a)

f[(u)du=N(N— /2, (5b)

which is the probability density function for an interelec-
tronic vector u. The radial electron-pair density f(«) is also
defined by

Aw) =u2f1(u)dﬂ, (6a)

fmf(u)du=N(N~ 1)72, (6b)
0

where (u,)) is the spherical polar coordinates of the vector
u.

B. Generation of the 2 matrix from electron-pair density
by local scaling

For the system under consideration, we assume the
presence of a prototypical 2 matrix I'y (R,u|R’,u’) and the
associated radial electron-pair density f,(u«) as a reference.
To generate a 2 matrix I'/(R,u|R’,u’) corresponding to a
given radial electron-pair density f(u), we first establish a
local scaling between the two densities f(«) and f,(u):

S(u) =J(w/u)fy(v), (7a)

where J(v/u) is the Jacobian for the variable transformation
v = v(u) and guarantees the relation

J(v/u)du = dv. (7b)
Combining Egs. (7a) and (7b), we can determine the explic-

it functional form of v = v(u) by the solution of either the
differential equation

—fi—v—=f(u)/ﬁ)(v), : (8a)
du
or the integral equation
u v(u)
J fx)dx = Joy)dy. (8b)
0 0

The function v(u) is a monotonically increasing function of
u,and v(0) =0and v(w ) = x.

Applying the local scaling v = v(u#) thus determined,
we define a new 2 matrix I‘}(R,u|R',u’) as follows:

CH(Ru|R ') = [J(v/u)J(v'/u')]"’T§ (RyV|R,V'),
(9a)
where
v=[v(u),Q2] and v' = [v(&),Q’] (9b)
in the spherical polar coordinates. In Eq. (9a), we modify
only the radial variable and the angular part remains un-
changed. Then it can be proved that the 2 matrix I'} asso-
ciates the radial electron-pair density exactly the same as the

given density f(u), and hence the generated 2 matrix I" can
be a candidate of the parent 2 matrix of f(u).
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C. An energy functional

We assign the 2 matrix I'; defined by Eq. (9a) to the
parent 2 matrix of the given electron-pair density f(u). Then
the 2 matrix I';(r,,r,|r},r;) is obtained through the inverse
transformation’ (4b), and the three density matrices
V,(x|r'), ps(r),and T ;(r,,r,) follow straightforwardly
[Egs. (2a)—(2c)1, all of which are consistent with the ini-
tially given density f(u). Consequently, we find that the en-
ergy E of the system is a functional of the given electron-pair

density f(u) and the reference 2  matrix
[{ (Ru|R'u') = Ty(r,r,|r,r3),
E=T[v]+Ulp/] +WI[I,]
=E[fT}]. (10a)

Since Eq. (9a) represents a simple modification of the refer-
ence 2 matrix I'g, we suppose that the generated matrix I'; is
physically acceptable so long as I, is physically acceptable.
Then the energy functional (10a) is an upper bound to the
exact energy,

E[fiT4]>E - (10b)

For a chosen I'j, we can then determine the electron-pair
function f(u) so as to minimize the energy E. This is a direct
variational determination of the radial electron-pair density.

To generate a parent 2 matrix I'; of a given density f(u),
we have to explicitly know the local scaling transformation
v =v(u) by solving either Eq. (8a) or (8b). This is not a
simple task. When we vary the function f(u), as is the case of
the present study, we can avoid this procedure.

Combining Egs. (7a) and (9a), we have

TCH(Ru|Rw) = {[f(u)/fo(0) 1 (') /fo(v') 1}
XT§ (R,v|R’,¥'). (11a)

We define the transformation ¥ = u(v) as the inverse trans-
formation of the local scaling v = v(u). Then Eq. (11a) is
rewritten as

I [Ru(v)|R,u(v)]
= ({flu) 1/ Hf [u() 1/f,(0H 12
X Tg (RV|R,V),

which can be rearranged as

(11b)

L7 (RYIR,Y) = {[f' (0)/fo() 1/ W) /fo(') 1}

X T (R,¥|R¥), (11c)

where
7 (RyV[R,V) =T/[Ru(v)|R,u(v)], (12a)
) =flu@]. (12b)

Itis clear that the new 2 matrix I'/ (R,u|R’,u’) associates the
radial electron-pair density f'(u). The density function
f'(u) is specified by the given density f(#) and the resultant
local scaling v = v(u) or u = u(v) [see Eq. (12b)]. When
we optimize the function f(u) so as to minimize the energy
functional E [£,T'; ], however, it is very convenient to treat
the function f” (u) as an independent quantity, since we can
bypass the explicit determination of the scaling function.
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Renaming the function f” (u) as f(u), we may summa-
rize the procedure of a variational determination of the elec-
tron-pair density f(u) as follows:

(1) Choose a reference 2
' (R,u|R’,u’) which associates f,(u).

(ii) For a trial density f(u), construct a 2 matrix:

matrix

L7 (RulR W) = {[f(u)/fo(w) 1 (W) /fo(u') ]}
XT'g(Ru|R"u'), - (13)

where f(u) should satisfy the normalization condition [Eq.
(6b)].

(iii) Using the densities 71,0/, and I ;resulting from Eq.
(13), optimize the function f(#) so as to minimize the ener-
gy functional [Eq. (10a)].

11l. APPLICATION TO HELIUM ATOM

A characteristic of the two-electron system is that the 2
matrix is a simple product of the wave function with its com-
plex conjugate, i.e.,

L (ry,r,|r,r;) = W (r),r;)¥(r,r,), (14a)

I'(Ru|R',u') = ¥'*(R',u) V' (Ru). (14b)
Since the information contents in I (or I'') and ¥ (or ¥')
are equivalent, the proposed method for the two-electron
system can be rewritten in terms of the wave function. For a

trial pair density f(u) and a reference wave function
V({ (R,u), Eq. (13) reads

V7 (Ru) = [fu)/fo(u)]*¥5 (Ru), (15a)
where
Solu) =u2fdﬂ,, de|W5(R,u)|2. (15b)

Furthermore, it was proved' for the helium atom in its
ground state that the exact wave function is expressible by
the three basic variables r,=|r|,7,=|r,|, and
1= |r, — 1,|. In the present study, it is then convenient to

use the Hylleraas variables defined by"

S=71) + 1y and u=r,. (16)
In the Hylleraas coordinates, Eqs. (15a) and (15b) are re-
written as

d’f(s’t,u) = [f(u)/f(‘)(u)]l/zlbo(syt,u)y
folu) =27u fu dt Jw ds(s? — t2) | (s,t,u) > (17b)
(0] u

t=r, — 1,
(17a)

For any 9,(s,t,u), we can verify that the generated wave
function ¢,(s,t,u) associates the electron-pair density exact-
ly the same as the given density f(u):

27%u Jm dt JW ds(s* — tz)lzﬁf(s,t,u)]2
(0] u
= [f(u)/fo(u)][2772uf dt
0

Xfw ds(s> — t?) |9y (s,t,u) |2]

= [fw)/fo(w) 1fo(u) = flu). (18)
Now the energy functional £ takes the form
E=E[y,] = E [fth), (19)

which means that the energy E is a functional of the pair
density f(u) for a given reference function ¥, (s,z,u). In the
actual calculation, we assume a density function f(u;a,b,c...)
which has adjustable parameters a,b,c... . An appropriate
reference function ¥, (s,%,u;a,B...) with parameters a,f,... is
also chosen. Then the energy functional reduces to an energy

TABLE 1. Several electron-pair densities examined for the helium atom with the reference function

¥ = (&/m)exp( — as).

Total No. of Normalized electron-pair density
parameters (optimum parameters)?® Energy

1 Solu) — 2.847 656
(a = 1.687 50)

3 N%u exp( — bu) —2.874 526
(@a=2.73421,b = 2.650 78;a = 1.851 61;N = 2.962 58)

3 N*(u? + au®)exp( — bu) —2.885799
(a=8.87543,b=2.798 03;a = 1.854 27;N = 1.020 55)

4 N2u® exp( — bu) —2.889 324
(@a=2.213 12,b = 1.446 06,c = 1.366 42;a = 1.848 24;
N =1.64355)

4 N2(u? + au® + bu*)exp( — cu) —2.891234
(@ =3.93070,b = 7.234 58,c = 3.315 38;a = 1.848 48;
N=1.20952)

5 N2(u? + au® + bu* + cu’)exp( — du) —2.891254
(a=4.39138,b=7.437 47,c = 1.797 93,d = 3.482 31;
a=1.848 33;N = 1.198 56)

5 N?*(u? + au® + bu*)exp( — cu?) —2.891254
(@ =3.949 50,b = 5.908 74,c = 3.180 29,d = 1.021 41;
a=1.84833;N=1.196 17)
Exact® —2.903 724

2 N stands for the normalization constant.
® Reference 16.
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Af(u) x 100

P
-8 —
u

FIG. 1. Comparison of the helium Coulomb hole functions Af(u#) when the
reference function (21a) is employed. Dashed, solid, and dotted lines mean
the reference, generated, and exact hole functions, respectively.

function with respect to the parameters embedded in fand
Yo

E [fy] = E(a,b,c,..;0.03,...), (20)
" and hence the variational problem is simplified to the opti-
mization problem.

As a reference function, we have first employed the
Kellner (or single-zeta) function,'*

Yo(s,t,u) = (a®/m) exp( — as), (21a)
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which associates the electron-pair density

fo(u) = (1/6)a®u*(3 + 6au + 40”u*) exp( — 2au).
(21b)

For a given f(u) the wave function ¢, has been generated
through Eq. (17). The integrations involved in the evalua-
tion of the associated energy have been performed analyti-
cally with respect to s and ¢, and numerically with respect to
u using the double exponential method.'

After the examination of various functions for f(u), we
have found that functions simply constructed from a polyno-
mial and an exponential give sufficiently good results. Table
I summarizes several of such functions. The energy improve-
ment is almost “saturated” when we cast four adjustable
parameters in f(u). For the reference function (21), the
present best energy is obtained to be — 2.891 254 with the
density,

flu) =N2(ui+au3+bu4)exp( — cu?). (22)
The energy is lower than the energy of ¢, by 0.043 598. Since
the energy difference between the reference and exact wave
functions is 0.056 068, the present method recovers 77.8%
of this difference. The energy improvement is really remark-
able.

The behavior of the generated electron-pair density f(u)

is shown in Fig. 1 using the Coulomb hole function'' defined
by

Af(u) = flu) — fur (),
fw Af(u)du =0,
(4] .

(23a)

(23b)

where fyr (#) is the Hartree-Fock electron-pair density
which we have obtained from the Clementi-Roetti wave

TABLE II. Several electron-pair densities examined for the helium atom with the reference function

o = No exp( — as) (1 + Br?).

Total No. of Normalized electron-pair density
parameters (optimum parameters)? Energy

2 folw) —2.876 675
(a = 1.685 60,8 = 0.140 10)

4 N%uexp( — bu) —2.888 817
a=2.697 54,b = 2.535 58;a = 1.805 41,8 =0.095 11;
N=12.738 85)

4 N2(u? + au®)exp( — bu) — 2.898 800
(a = 8.090 56,b = 2.708 06;a = 1.809 86,8 = 0.090 79;
N=10.998 35)

5 N2u® exp( — bu‘) : —2.900 109
(a=2.22832,b=1.45475,c = 1.331 62;a = 1.809 30,
B =0.084 14;N = 1.617 87)

5 N2(u? + au® + bu*)exp( — cu) —2.902 253
(a=4.27599,b = 6.052 80,c = 3.182 51;a = 1.809 08,
B =0.084 63;N = 1.149 27)

6 N2(u? + au® + bu*)exp( — cu?) . —2.902 273
(a=4.253 72,b = 7.540 87,c = 3.327 99,d = 0.977 70;
a = 1.809 05,5 = 0.084 90;N = 1.163 51)

7 N2(? + au® + bu* + cu®)exp( — du®) —2.902 280

" (a=6.761 66,b = 13.392 55,c = 13.340 33,d = 4.323 58,

e=0.895 53;a = 1.809 02,5 = 0.084 93;N = 1.166 18)
Exact® —2.903 724

2 N stands for the normalization constant.
®Reference 16.
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function.'” Also plotted in Fig. 1 are the Coulomb hole func-
tions associated with the reference wave function (21) and
the exact wave function. The Hylleraas six-term wave func-
tion'*'® has been regarded as giving the exact f(u) to avoid
undue numerical complexity. It is clear in the figure that the
reference density f,(#) exhibits an incorrect behavior; the
exact Af(u) shows a decrease/increase in a small/large u
region, while the reference Af(u) shows the opposite
change. On the other hand, the generated pair density has a
qualitatively correct character.

The second wave function we have employed as a refer-
ence function is

Yo(s,t,u) = Nyexp( — as) (14 Bt?), (24a)

which includes two adjustable parameters. N, is the normali-
zation constant

Ny ?=(r/a")(a* + 3a°B+9B7), (24b)
and the associated electron-pair density is
So(u) = N§(7u?/210a%) [3B87 (4w* + 14w + T)u?
4+ 14B(4w* + 10w + 5)u?
+ 35(4w? + 6w + 3) Jexp( — 2w), (24¢)

where w = au. The results of the density functional calcula-
tions are summarized in Table IL. To obtain a “saturated
energy,” a five-parameter function has been required in the
present case. The lowest energy ( — 2.902 280) has been ob-
tained with the density function,

fu) = N2(u? + au® + bu* + cu’)exp( — du®). (25)

The energy is lower than that of the reference function (24a)
by 0.025 605 and covers 94.7% of the energy gap between

Af(u) x 100

FIG. 2. Comparison of the helium Coulomb hole functions Af(#) when the
reference function (24a) is employed. See the caption to Fig. 1.

the reference and exact wave functions. The generated pair
density is compared in Fig. 2 with the reference and exact
ones using the Coulomb hole function Af(u). The reference
density f,(#) [Eq. (24c) ] already reveals correct qualitative
features, but it is clear that the generated density has a Cou-
lomb hole which compares quantitatively with the exact
Coulomb hole. The simplicity of the function (25) is notice-
able.

TABLE III. Several electron-pair densities examined for the helium atom with the reference function

Yo = Ny exp( — as) (1 + Bt + yu).

Total No. of Normalized electron-pair density
parameters (optimum parameters)® Energy

3 Solu) —2.902 432
(a=1.81607,=10.130 81,y = 0.291 79)

5 N2u® exp( — bu) —2.888 998
(a=12.701 84,b = 2.538 43;a = 1.805 09,3 = 0.129 72,
y=0.181 59;N = 2.743 15)

5 N2(4* + au®)exp( — bu) —2.899 094
(a=8.157 81,b =2.707 62;a = 1.809 45,4 = 0.141 39,
y=0.283 21;N =0.994 32)

6 N%u exp( — buc) —2.901 116
(a=12.218 82,b=1.421 64,c = 1.348 01;a = 1.808 03,
£ =0.248 75,y = 1.058 33;N = 1.591 80)

6 N2(? + au® + bu*)exp( — cu) —2.903 002
(a =4.090 36,b = 6.308 10,c = 3.195 02;a = 1.808 11,
B =0.214 76,y = 0.826 27;N = 1.153 50)

7 N2(u? + au® + bu* + cu’)exp( — du) —2.903 002
(a=4.147 85,b = 6.456 09,c = 0.292 97,d = 3.236 88;
a=1.808 11,4=0.215 20,y = 0.829 42;N = 1.152 92)

7 N%(u® + au® + bu*)exp( — cu?) —2.903 002
(a =4.090 79,b = 6.194 49,c = 3.183 20,d = 1.001 86;
a=1.808 11,5 =0.215 33,y = 0.830 32;N = 1.152 41)
Exact® —2.903 724

N stands for the normalization constant.
®Reference 16.
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FIG. 3. Comparison of the helium Coulomb hole functions Af(#) when the
reference function (26a) is employed. See the caption to Fig. 1.

The third (and last) example of the present approach
uses the three-parameter reference function

Yo(s,t,u) = Nyexp( — as) (14 Bt? + yu), (26a)
Ny %= (7/8a") (8a* + 350’y
+ 24a°B + 48a*Y* + T1aBy + 12B7), (26b)

fow) = N3 (7u?/210a) 382 (4w* + 14w + T)u*
+ 14B8(yu + 1) (4w* + 10w + 5)u?

+ 35(yu + 1)?(4w” + 6w + 3) lexp( — 2w),
(26¢)

where w = au. The results for several simple pair density
functions are summarized in Table III. Since the reference
function (26a) is considerably accurate by itself, the first
three density functions in the table cannot give an energy

better than the reference energy ( —2:902 432). The three-
and four-parameter electron-pair densities improve the en-
ergy, but its amount is small (0.000 570). Inclusion of addi-
tional parameters has not given essential improvement and
the energy lowering has seemed to be saturated with these
functions. As a result, all the Coulomb hole functions de-
rived from the reference, exact, and present best electron-
pair densities are almost superimposable (as seen in Fig. 3).

In summary, we have developed an energy functional
theory for the electron-pair density based on the local scaling
method. The method has been applied to the helium atom in
its ground state and simple €lectron-pair densities have been
determined which quantitatively compare with the exact
density. The approach has been found to be effective particu-
larly when the reference function is not sufficiently accurate.
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