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The local-scaling density-functional method enables us to determine the ground-state electron
density directly and variationally through the generation of a parent wave function of a given
density. A generalization of the method to excited states is developed by the use of a
configuration-interaction-type reference wave function. From a given density which
approximates the nth-state density, all the mth-state wave functions (m<n) are generated in
such a manner that they satisfy the wave function and Hamiltonian orthogonalities. The nth-
state electron density is determined so as to minimize the Hamiltonian expectation value over
the generated nth-state wave function. An illustrative application is presented for the 2 'S state
of the helium atom, and simple electron-density functions which compare well with the near-

exact density are reported.

1. INTRODUCTION

Thelocal scaling"> modifies the spatial coordinates {r, }
of electrons in the wave function in a locally different man-
ner based on scaling functions {s; = s(r,)}, where the sub-
script i enumerates the electrons in the system. The ordinary
(or uniform) scaling method? corresponds to a special case
of the local scaling method, where the scaling function is
taken to be {s, = 7r,} with 7 being a positive constant.

Recently, Kryachko and co-workers* proposed an ap-
plication of the local-scaling method to the construction of
the unknown parent wave function from a given one-elec-
tron density p(r). For the N-electron system under consider-
ation, they assume the presence of an appropriate reference
electron density p,(r) whose parent wave function
¥, ({r,}) isknown. (The symbol {r, } stands for the spatial
coordinates of the NV electrons collectively. Spin variables are
suppressed, since they play no direct role in the present
study.) They first construct a local-scaling transformation
s = s(r) between the reference p, (r) and given p(r) densi-
ties. The transformation is then applied to the reference
wave function ¥, ({r, }) to generate a new wave function
¥, ({r;}) in such a manner that ¥, ({r, }) has an electron
density exactly the same as the given density p(r). The gen-
erated function ¥, ({r,}) is regarded as a parent wave func-
tion of p(r), and the energy associated with the given density
p(r) is defined by

E(p) =(¥Y,|H|¥,)/(¥Y,|¥,),
where H is the Hamiltonian of the system. Within the frame-
work of the chosen reference wave function ¥, ({r,}), the
energy E is thus a functional of the electron density, and the
density p(r) can be determined variationally so as to mini-
mize the energy E(p). An analogous procedure has been
developed in momentum space.’ The method may be called
the local-scaling density-functional method.

The method has been actually applied® to the ground-
state helium atom and its analogs both in position and mo-
mentum spaces. Simple position and momentum densities,
which well reproduce the Hartree-Fock limit energy, have
been reported. The applications to the Li and Be atoms have
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also been successful.” Using the single-£ wave function as a
reference, we have been able to construct simple density
functions which have anear double-§ accuracy. A few calcu-
lations beyond the Hartree-Fock approximation have been
also performed® for the helium and helium-like atoms.

However, the local-scaling density-functional method
applies only to the ground state (i.e., the lowest-energy state
of the same symmetry) of a system in its original form. In the
present paper, we develop a generalized version of the local-
scaling density-functional theory which works for excited
states as well as for the ground state. In the next section, our
formalism is presented. We use a configuration-interaction
(CI) type reference wave function. From a given density
p(r) which approximates the nth-state density, we generate
all the mth-state wave functions {\I!m,p} (m<n) in such a
manner that they satisfy the wave function and Hamiltonian
orthogonalities. The nth-state density p(r) is determined so
as to minimize the energy density functional

En (P) = <\Iln,p ‘H Iwn,p>/(‘l’n,p|wn,p)

defined through the nth-state wave function ¥, ,, which is
generated under the two orthogonality conditions. In Sec.
III, numerical illustrations are given for the 2 'S state of the
helium atom. Simple density functions which compare well
with the near-exact density due to Coolidge and James® are
obtained. Atomic units are used throughout this paper.

Il. FORMALISM

In order to establish an energy functional E, (p) of the
electron density p(r) for the nth state following the local-
scaling density-functional spirit, we have to generate a corre-
sponding (normalized) nth-state wave function ¥, , ({r, })
from the given density p(r). Moreover, the generated wave
function ¥, , is required to satisfy the wave function and
Hamiltonian orthogonalities,

<\pn,p|‘l’m,p> =5nm’ (la)
(Y, H|Y,,,) =E, ()8, (1b)
Equation (1) implies that from the given density p(r), we
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have to generate not only the nth-state function ¥, , but also

other (lower) state functions {¥,, ,} in such a manner that
they satisfy Eq. (1).

For this purpose, we start from a reference function in
the form of a CI function,

M
\pn,O({rk})‘-: BOCn = z Cin'pi,o({rk})’ (2)
i=1
where B, is a row matrix of M basis configuration functions,
BO = (¢1,0’¢2,0!---a'/1M,0 )’ (33)
and C,, is a column matrix of expansion coefficients,
C, ="(Ci,,ConssChrsn)- (3b)

Until the last stage of the present theory, we keep the explicit
value of C,, unspecified except for the imposition of the nor-
malization condition,

C}rS,C, =1, 4)

where S, is the overlap matrix between the basis configura-
tions,

So = (Sy0)» (5a)
S0 = J % {r Dy (n D, .dry. (5b)

The electron density p, o (r) associated with the reference
function (2) is defined by

Pno (i') = Nf |W,.0 (F,E25.,T ) |2dE, . dE . 6)

Leta trial density p(r) (normalized to N) be given as an
approximation to the nth-state electron density. The two
densities p,(r) and p(r) can be related to each other
through the local-scaling transformation,*

p(r) =J(s/r)p,o(s), (7a)
where s = s(r) is a local-scaling function and J(s/r) is the
Jacobian for the variable transformation from r to s. The
latter guarantees the relation

J(s/r)dr =ds. (7b)

‘When the system under consideration has spherical

symmetry, Egs. (7a) and (7b) can be replaced with

p(r) =J(s/T)p,o(s), s=s(r), (8a)

J(s/r)rdr = s’ds, (8b)
and the explicit functional form of the radial transformation
s = s(r) is determined either by the differential equation®

ds/dr = (r/5)*[p(r)/pno ()], (9a)
or by the integral equation®

fo p(x)x* dx = L Pro DY dy.

We note that Egs. (7a) and (7b) are general and apply
both to atoms and molecules in their arbitrary states and
structures. On the other hand, Egs. (8a)—(9b) are restricted
to the electron density of S-state atoms and to the spherically
averaged electron density.

For a given and fixed basis configurations B, the refer-
ence density p,, (r) is a function of the coefficient matrix

(9b)

C.,., and hence the local-scaling function s defined above is a
functional of the given density p(r) and the coefficient ma-
trix C,,,

s=s[p,C,]. (10)

Now using the local scaling s involved in Eq. (7a), we
define a new nth-state wave function ¥, , ({r, }),

N 172
‘l’n,p({l'k}) = H J(Sj/l'j) ‘Pn,o({sk}), (11a)
j=1
S, =S8(rg),
which is rewritten as
¥,,=B,C, (11b)
in terms of the locally scaled basis configurations B,
Bp = (¢‘,p’¢2,p,“"¢M,p )’ (lza)
N 172
g, (b = [[[ J(s,/r,)] bosd).  (12b)
j=1

Note that the overlap matrix S, between the generated con-
figuration functions {4, ,} is identical to the original overlap
matrix S,

S, = So, (13)

because of relation (7b). It is essential for the present theory
to recognize that the generated wave function ¥, , has an
associated electron density exactly the same as the given den-
sity p(r),

NJ W, (51p by ) |2dr, . dry = J(8/7)p,, (5)

and therefore we can regard ¥, , as a parent wave function
of the given density p(r).

The energy expectation value E, over the generated
wave function ¥, , is given by

(15)

E, =C,;HC,/C,;S,C,,
where H is the Hamiltonian matrix,
H=(H;), (16a)
H;= f ¥, e HHY,, ({r, ydr, ..dry, (16b)
and is a functional of p(r) and C,,
H=H[pC,]. (16c)

The variation of the energy expression in the form of Eq.
(15) with respect to the expansion coefficient results in a
generalized eigenvalue equation,

HC = SoCE, C = (C‘ ,...,C",...,CM),

E=(E;), E;=E}$;
From the M eigenvectors, we obtain M wave functions
{¥,., = B,C,,} that satisfy the orthogonality requirements
given by Eq. (1). However, we have a constraint to the solu-
tion of Eq. (17a). Taking relation (16c) into account, we
rewrite Eq. (17a) explicitly as

H[p.C,]1C=S,CE. (17v)

Since the Hamiltonian matrix H depends on the eigenvector

(17a)
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C,, Eq. (17a) must be iteratively solved with respect to C,,
until the self-consistency is achieved. The convergent C,, de-
fines the reference wave function (2) as well as a set of the M
generated wave functions {‘I/m,p =B,C,, }. The resultant
nth eigenvalue E,, is a functional of the given electron den-
sity p(r) within the framework of the basis configuration B,
initially chosen.

We have now established a route from a given electron
density p(r) to the excited-state energy functional
E, =E,(p). According to the Hylleraas-Undheim-Mac-
Donald theorem,’ the nth eigenvalue from the solution of
Eq. (17) is always an upper bound to the exact nth-state
energy,

En (p)>En,exac!' (18)

Therefore, we can variationally determine the excited-state
electron density so as to minimize the nth eigenvalue of the
pseudoeigenvalue equation (17b).

We emphasize that the present method enables us to
determine an excited-state electron density directly and var-
iationally. This should be compared with the ordinary indi-
rect procedure where the integration over N — 1 electron
coordinates follows after the (variational) determination of
the wave function. We also note that in the present approach
we can obtain the electron density in a considerably simple
functional form when compared with the density function
resulting, in particular, from the basis-set-expansion wave
function.

The present excited-state theory is completely different
from that proposed very recently by Kryachko and Lu-
defia.'® Based on Katriel’s superparticle approach,'" the lat-
ter authors developed a local-scaling density-functional the-
ory for the determination of the sum of the first n-state
densities (see also Ref. 12). On the other hand, here we have
presented a theory which determines the individual nth-state
density separately.

Toshikatsu Koga: Density-functional theory

lil. ILLUSTRATIVE APPLICATION TO THE HELIUM 2'S
STATE

We have applied the proposed method to the 2 'S state
of the helium atom. As a reference function, we have em-
ployed a CI wave function constructed from the orthogona-
lized hydrogenic 1s and 2s orbitals,"?

V,0 = Cyp, (1sls) + C,, (1525 + 2515) /vV2 + Cs, (252s),
(19)
where
Is = (@®/m)"* exp( — ar), (20a)
2s = [B*/7m(3A% =34 4+ 1)12(1 — ABr) exp( — Br),
(20b)
A= (a+pB)/3B, (20c)

and the relation (1s|2s) = 0 is always fulfilled by condition
(20c). (The two-electron singlet spin function is implicit. )
The reference electron density p,, () associated with the
wave function (19) is given by

Pao(r) = (2C%, + C%)(15)* + 2V2Cy, (Cy, + Cyy)
X (15)(25) + (€3, +2C5,) (29)% (e3))

When the ordinary CI calculation is performed, the function
(19) gives the best 2 'S energy (the second lowest eigenval-
ue) E,, = — 2.143 000 6 for the parameter values

a=199176, B=0.52058,
with the corresponding eigenvector
C,, =0.120 66, C,, =0.992 56, C,, = — 0.016 14.

For the 2 'S electron density p(r) to be determined, we
assume its functional form as

K
F.(r) =G[exp( -GN+ > a,r " exp( ~c,~r)], (22)

i=1

TABLEI. Results of the local-scaling density-functional calculations for the 2 'S state of the helium atom. For

the explicit form of the density function Fy (7), see Eq. (22) of the text.

Density Optimum parameters Energy
Pao(r) (a=1.99176, B=0.52058) —2.143 000 6
F,(r) ¢, =4.028 18 —2.1416155

a, =1.08733X10~% b, =5.538 65, ¢, = 1.604 01
G=2.65871 (a/B = 3.892 95)
F,(r) ¢ =3.97137 —2.144 1146
a, =2.43682X1073, b, = 1.964 75, ¢, = 1.061 56
a, = —8.57705X107% b, =2.703 77, ¢, = 1.996 82
G =2.607 26 (a/B = 4.210 40)
Fi(r) ¢o = 3.986 95 —2.144 1403
a, =2.48395x1073, b, =2.008 25, ¢, = 1.073 79
a, = —4.41221x107% b, =2.969 07, c, = 1.892 35
a; = —1.540 62X 102 by = 5.759 27, c; = 4.026 64
G=2.61819 (a/f=4.216 69)
Exact® —2.1459740

2References 17 and 18.
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FIG. 1. (a) The near-exact radial density D, (r) for the 2 'S state of the
helium atom. (b) Deviation in the radial density from D, (r). The solid
and dashed lines show [47r2F,(r) — D, ()] and
[47r%p,6 (r) — D¢, (r) ], respectively.

which represents a linear combination of generalized Slater-
type functions. The {a,,b;,c; } are variational parameters and

-G is the normalization constant. The index K governs the
number of basis functions in Eq. (22). By this choice of the
functions p, , () and Fg (r), the integrals appearing in Eq.
(9b) are expressed“ in terms of the incomplete gamma
function y(a,x),

f tbexp( —ct)dt =c~®+Vy(b+ l,cx). (23)
(]

4309

For a given set of parameter values a, S, {C,2 }, and
{a;,b;,c;}, Eq. (9b) is then solved numerically by the New-
ton method to determine the scaling function s = s(r).

Since we have fixed the functional forms of ¥, ;, and p,
the energy density functional E, (p) now reduces to a func-
tion of the parameters embedded inp and ¥, ;. The reference
function ¥, , includes the two adjustable exponents a and 3,
but it has been already proven'® that only the ratio a/B is
meaningful in the optimization of a reference wave function.
Therefore, we have

E, (p) =E2({ai!bi’ci};a/ﬁ)' (24)

Using the Powell method of conjugate directions,'® we
have carried out the optimization of these parameters so as
to minimize the energy E,. In each energy evaluation, the
mixing coefficients {C,, } of the three configurations are iter-
atively determined based on Eq. (17b) under the conver-
gence condition,

|C Umput) _ € outpud| 110~ % for all i

The results of the present local-scaling density-func-
tional calculations are summarized in Table I. The near-ex-
act radial density D, (r) of Coolidge and James® is plotted
in Fig. 1(a) for reference. When compared with this density,
even the simplest function F, (7) constructed from only two
exponential functions has been found to give a distribution
whose overall behavior is acceptable. However, it is not suffi-
ciently accurate in a quantitative sense. When we define the
error by -

Ax = max|47r *Fy (r) — D¢, (r)|, 25)
A, is found to be 0.019 624 at r = 3.2. Since the reference
density p,o(r) [Eq. (21)] has A,, =0.019436 (at
r=13.9), the quality of F, (r) is poorer than that of p, , (7).
The situation is also reflected in their associated energy val-
ues (the last column of Table I).

The addition of another exponential function, i.e., the
F, (r) function, remarkably improves both the density dis-
tribution and the associated energy: The maximum error
obtained is A, = 0.004 461 (at » = 2.2). The associated en-
ergy —2.1441146 is lower than the reference energy
E,,( = —2.143000 6) by 0.001 114 0. The simplicity of
the density function F, (r) should be noted: The F, () con-

TABLEII. Position moments (7 ") associated with the density function p(r) = F, (r) for the 2 'S state of the
helium atom. The values in parentheses are errors in percent relative to the exact values.

Moment* Pao(r) Fy(n) Exact
(r=2) 8.306 37 (0.15) 8.299 50 (0.07) 8.293 57°
(r=" 2.27013 (—0.03) 2.270 54 (—0.01) 2.270 82°
(r) 6.145 65 (3.36) 5974 11 (0.47) 5.946 12°¢
(r?) 349341 (8.56) 32,478 8 (0.93) 32.178 2¢
(r? 247.134 (14.36) 218.969 (1.32) 216.107°
(r*) 1992.10 (20.64) 1679.95 (1.73) 1651.3°

2The parent densities are normalized to two.
®Reference 19.
“References 17 and 18.
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sists of three terms, while the reference p, o (7) has six terms
when Eq. (21) is expanded.

However, further addition of exponential terms does
not seem to give an essential improvement. The F; (7) func-
tion has the error A; = 0.004 425 and the associated energy

— 2.144 140 3. In this sense, the improvement is approxi-
mately “saturated” with the F; () function having four ex-
ponential terms. The energy difference between the refer-
ence and exact wave functions is 0.002 973 4, and the present
best density F; () recovers 62% of this difference. The high
accuracy of the F, () density function is demonstrated in
Fig. 1(b) as a function of .

In Table II the position moments (7 ") ( — 2<n<4) re-
sulting from the density F; (r) are summarized and com-
pared with the exact values.'”'* The moments obtained
from the reference density p,, (r) are also given there for
comparison. The relative error remains 1.73% at most, and
satisfactory accuracy of the density function F; (r), obtained
by the local-scaling density-functional method, is again
clear.

In summary, we have developed a density-functional
method for excited states. In the application to the 2 'S state
of the helium atom, we have been able to determine a simple
and yet accurate density function variationally. We antici-
pate that the proposed method would also work well for
other states and systems.
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