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Optimal Kinoshita wave functions with half-integer powers
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Kinoshita wave functions for helium and helium-like atoms have been generalized by using
half-integer powers for constituent terms. An extensive optimization has been performed for these
powers as well as the exponent and mixing coefficients. The optimal functions have been
constructed for the number of terms N =10, 20, 30, 50, 100 and the atomic number Z=1 (H™)—10
(NeB*). It is demonstrated that the use of half-integer powers dramatically improves the accuracy of
the Kinoshita function: In the case of He, for example, the optimal 100-term function gives
—2.903 724 377 033 hartrees, which is only 1X107'2 hartrees higher than the most accurate
literature value. The high accuracy of the optimal Kinoshita functions with half-integer powers has
been also confirmed for the first two excited states of the helium atom. © 1996 American Institute

of Physics. [S0021-9606(96)01215-5]

I. INTRODUCTION

In the early days of quantum mechanics, Hylleraas'~

succeeded to obtain accurate wave functions for helium and
helium-like atoms. For S states, Hylleraas proposed an ex-
pansion,

N
Dy=exp(—{s) X, cgslitmiu™, (1)
=1
where
s=lry|+r),  r=|r|=|r), w=|r—r,).

In the Hylleraas wave function (1), exponent {, mixing co-
efficients {c,}, and a set of non-negative integers {I;,m,,n;}
are parameters, where {m,} must be even for 'S states and
odd for 35 states. Accurate variational determinations of
these parameters were reported in Refs. 6-10.

In 1957, Kinoshita!""!? discussed (see also Scherr'®) that
the Hylleraas expansion (1) cannot be a formal series solu-
tion of the Schrodinger equation for two-electron atoms and
proposed an alternative expansion, -

N t m; u n;
Wy=exp(—{s5) 2 Cisli(—) (—) . ()
i=1 u §
which generalizes the Hylleraas expansion through negative
powers of the variables s and u. To our knowledge, actual
applications of the Kinoshita expansion have been very hm-
ited: Only for the ground-state He atom, Kinoshita!"!? r
ported 10-, 22-, 34-, 38-, 39-, and 80-term functions, and
Davidson'* constructed 34- and 44-term functions. Some of
these functions were improved® by the reoptimization of the
parameters { and {c,}. Very recently,'® an extensive optimi-
zation has been performed for the composition of N terms, as
well as ¢ and {c;}, of the Kinoshita expansion (2). The re-
sults for N=1-100 and Z=1-10 showed'” that the optimal
term selection (i.e., optimization of the powers {l;,m;,n;})
drastically improves the accuracy of the Kinoshita function.
In the present paper, we show that a generalization of the
powers from integers to half-integers, followed by the varia-
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tional optimization of these powers, improves much dramati-
cally the accuracy of the Kinoshita expansion. Namely, our
generalized Kinoshita expansion is

N t\™mily n;l2

v o

, =1 “\u) \s
It is important that the extension from integer to half-integer
values of the powers little loses the simplicity of the original
Kinoshita expansion (2) and yet does not cause any new
complexity in the evaluation of the Hamiltonian and overlap
matrix elements (see Sec. II). For the Hylleraas expansion
(1), the use of half-integer powers was studied by
Schwartz!®~'® and Schwartz!® with definite success. How-
ever, the essential difference of our approach from theirs is
the variational determination of optimal combination of these
powers. The exponent { and the mixing coefficients {c;}
have been optimized as well. The resultant optimal Kinoshita
functions with half-integer powers are reported here for
N=10, 20, 30, 50, 100 and for Z=1 (H~) through 10 (Ne®*)
in their ground state. The present best He energy from the
optimal 100-term function is —2.903 724 377 033 hartrees
which is only 1X107!2 hartrees above the most accurate lit-
erature value obtained by using more than 200 terms with

‘more complicated forms. Examination of the first

(1525,238) and second (152s,2 'S) excited states of He

TABLE 1. Optimal Kinoshita energies for the He atom in the ground (1 'S)
state.

Optimal Kinoshita - Optimal Kinoshita

N with half-integer powers with integer powers
5 —2.903 569 904 286 —2.903 384 915 45
10 —2.903 721 712 458 —2.903 707 688 14
20 —2.903 724 228 359 —2.903 723 608 39
30 —2.903 724 361 888 —2.903 724 249 24
40 —2.903 724 359 34
50 —2.903 724 376 757 —2.903 724 372 40
100 ~2.903 724 377 033 —2.903 724 376 95
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TABLE II. Optimal structure of some N-term Kinoshita functions for the ground-state He atom. Powers
(1;,m; ,n;) of Eq. (3) are shown together with the ‘exponent £.

N=5 (=1834382779 (E=-2.903569 904 286)
(0,0,0)(1,0,2)(2.0,3)(3,0,2)(4,2,3)
N=10 {=1.721032471 (E=-2.903721712458)

(0,0,0)(0,0,2)(1,0,0)(1,0,2)(2,0,2)(2,0,3)(3,2,1)(3,2,3)(5,2,4)(11,4,11)

N=20 (=1.995225276 (E=-—2.903 724 228 359)

(0,0,0)(0,0,5)(2,0,2)(2,0,4)(3,0,0)(3,0,3)(3,0,7)(5,0,2)(7,0,3)(8,0,0)
9,0,2)(2,2,4)(4,2,4)(4,2,5)(4,2,6)(8,2,4)(12,2,3)(6,4,6)(7,4,9)(15,4,8)

N=30 ({=1.717086 327 (E=—2.903 724 361 888)

(0,0,00(0,0,1)(1,0,0)(1,0,4)(2,0,0)(2,0,2)(2,0,4)(3,0,0)(3,0,2)(3,0,3)
(3.0,6)(3.0,8)(4,0,0)(4,0,3)(4,0,4)(5,0,0)(5,0,3)(7,0,2)(0,2,1)(1,2,2)
(2,2,6)(3,2,4)(3,2,5)(4,2,7)(5,2,8)(6,2,5)(3,4,7)(4,4,5)(8,4,10)(10,6,7)

- N=50 ¢=1952310118 (E=—2.903 724376 757)

(0,0,0)(0,0,3)(1,0,2)(1,0,3)(2,0,0)(2,0,2)(3,0,0)(3,0,4)(3,0,5)(3,0,9)
(4,0,0)(4,0,3)(4,0,5)(4,0,7)(4,0,14)(5,0,0)(5,0,2)(5,0,5)(7,0,4)(8,0,6)
(9,0,2)(11,0,0)(11,0,7)(15,0,8)(0,2,5)(1,2,4)(2,2,4)(2,2,6)(3,2,7)(4,2,4)
(4,2,6)(4,2,7)(4,2,8)(5,2,5)(5,2,7)(6,2,7)(8,2,4)(9,2,4)(9,2,8)(13,2,4)
(3,4,10)(4,4,9)(6,4,5)(6,4,6)(7,4,8)(13,4,9)(6,6,15)(8,6,7)(16,6,8)(16,8,5)

shows that the present generalization and optimization of the
Kinoshita function also work for excited states. Hartree
atomic units are used throughout this paper.

. COMPUTATIONAL DETAILS

The generalized Kinoshita wave function (3) includes
linear parameters {c;} and nonlinear parameters { and
{tim;.n}. 4 ,

For given values of ¢ and {I;,m;,n;}, the linear param-
eters {c;} were variationally determined by solving a gener-
alized eigenvalue equation HC=SCE, where all the Hamil-
tonian H; and overlap S;; matrix elements are expressed in
terms of a basic integral

f dsj dtj du exp(—2¢s)s'tiu*
0 0 t :

_ T(i+j+k+2) “)

CUFDGHEF2)(2TTE
Since i+ j+k is either integer or half-integer for the wave
function (3), the required gamma function can be precisely
calculated by -

I'(n+1)=n!,

(2n—1)!!
2”

(52)

T(n+3)= V. (5b)

The nonlinear parameter ¢ was determined by the scaling
procedure (see, €.g., Ref. 20) so that the virial theorem is
satisfied, i.e., V=—2T or E= — V*/4T holds, where T and V
are the kinetic and potential energies, respectively. Since the
optimal values for ¢ and {c;} are mutually dependent, the
determinations of ¢ and {c;}, for a given set of {I;,m;,n;},
were repeated alternately until our convergence threshold
|VRT+1|<1X10"'2 is satisfied.

The determination of the best set of powers {I;,m;,n;}
(i=1,...,N) is not simple. After various examinations, we
have employed in the present study an iterative local optimi-
zation which is outlined as follows.

(1) For a given N, we choose a set of powers {/;,m;,n;}
(i=1,...,N) as an initial value. (2) We locally optimize the
powers (] jsmj.n ) for the jth term, keeping the remaining
powers {l;,m;,n;} (i#j) fixed. The exponent { and the co-
efficients {c;} are always optimized by the methods described
earlier. (3) The local optimization of powers is applied to all
the N terms in turn to complete one cycle of power optimi-
zations. (4) Such a cycle is iterated until no further improve-
ment is obtained within one cycle of the local power optimi-
zation. '

All the aforementioned procedures (1)—(4) are repeated
starting from many different initial sets of powers in order to
find a best composition of powers for the N terms. We finally
obtain the optimal N-term Kinoshita function specified by

TABLE III. Comparison of some very accurate energies E and the numbers N of used terms for the He atom.

N E Remarks Reference
1078 —2.903 724 375 Perimetric: variables 21
1648 —2.903 724 376 707 Gaussian geminals 22

50 —2.903 724 376 757 Optimal Kinoshita with half-integer powers Present

100 —2.903 724 377 033 Optimal Kinoshita with half-integer powers Present
230 —2.903 7243770340 Hylleraas with log terms 23

616 —2.903 724 377 034 073 Hylleraas with double exponents plus hydrogenic 24

308 —2.903 724 377034 114 4 Kinoshita with fractional powers - 25
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TABLE IV. Optimal Kinoshita energies for the H™ ion.

Optimal Kinoshita

N with half-integer powers Literature

10 —0.527 743 228 813 1

20 —0.527 750 451 864 8

30 —0.527 750 960 781 8

44 —0.527 750 736 888 1*

50 —0.527 751 014652 5

68 ) —0.527 750 974 243 2*
100 —0.527 751016 5227 —0.527-751 009 126 5*
230 ' —0.527 751 015 3°
455 —0.527 751 016 544 240°
616 —0.527 751 016 544 203*

*Reference 24.
YReference 23.
‘Reference 25.

the best parameter values of ¢, {c;}, and {I;,m;,n;} for a
given Z.

lil. RESULTS AND DISCUSSION

Table I summarizes the energies E of the optimal N-term
Kinoshita functions (N=5-100) with half-integer powers
for the helium atom. The corresponding results obtained!’
with integer powers are also given there for comparison. The
accelerated energy convergence with increasing N is clear
for the use of half-integer powers. The 50-term energy from
half-integer powers compares well with the 100-term energy
from integer powers. In Table II, the detailed structures of
the optimal functions are exemplified for He. We find that the
optimal composition of N terms is not regular when N is
increased: The terms appeared in the optimal N-term func-
tion do not always appear in the optimal N'-term function
(N'>N). This makes the empirical determination of the op-
timal structure difficult, but at the same time makes signifi-
cant contribution to the energy improvement when the num-
ber of constituent terms is increased.

Toshikatsu Koga: Kinoshita functions with half-integer powers

TABLE V. Optimal 100-term Kinoshita energies for Li* (Z=3) through
Ne®* (Z=10). “Limit” shows the most accurate literature value taken from

Ref. 25.

z Ion Optimal Kinoshita Limit
3 Li* ~7.279 913 412 668 ~7.279 913 412 669
4 Be** —13.655 566 238 42 "~13.655 566 238 42
5 B> —22.030 971 580 24 —22.030 971 580 24
6 cH —32.406 246 601 89 —32.406 246 601 90
7 N>+ —44.781 445 148 77 —44.781 445 148 77
8 os* —59.156 595 122 75 '~59.156 595 12276
9 F* —75.531 712363 95 —75.531 712 363 96

10 Ne®* —93.906 806 515 03 —93.906 806 515 04

In Table III we collect some of very accurate He ener-
gies from the literature?’ > and compare them with the
present best results from the optimal 50- and 100-term Ki-
noshita functions with half-integer powers. If the employed
numbers of expansion terms are taken into account, we see
the efficiency of the optimal Kinoshita function. In particu-
lar, the present 50-term energy is already lower than the
famous Pekeris value?! obtained with 1078 terms. Moreover,
the present 100-term energy is only 1X107'2 hartrees higher
than the most accurate value? in spite of the smallness of the
present expansion.

The hydrogen anion (Z=1) is known? to be very diffi-
cult compared to the other two-electron atoms. Several opti-
mal Kinoshita energies for the H™ ion are listed in Table IV.
A few literature values?>~2> are also included there for com-
parison. The present Kinoshita functions composed of the
optimally selected terms are found to be also effective for
H™: The optimal 100-term energy, for example, is much bet-
ter than the 230-term energy reported by Freund et al.?® It
was also clarified® that for H~ (Z=1), the radial correlation
(represented mainly by the variables s and ¢) is more impor-
tant as opposed to the angular correlation (represented
mainly by the variable u) significant for Z=2. Although we
omit the details, comparison of the optimal structures for

TABLE VI. Optimal Kinoshita energies with half-integer powers for the He atom in the first excited

(1525,2 3S) state.

Pekeris
(Ref. 21)

Optimal Kinoshita "
N (Present)

Drake
(Ref. 24)

Thakkar-Smith
(Ref. 26)

10 —2.175 222 991 807
20 —2.175 229 239 802
30 —2.175229 368 131
40
44
50 —2.175 229 377 902
55
68

100 —2.175 229 378 225

125 —2.175 220 979 61

190

254 —2.175 229 258 88
444 —2.175 229 376 80

616

1078 —2.175 229 378 237

—2.175229 193
—2.175 229 343
—2.175 229 363
—2.175 229 368 965 6

~2.175 229 376
o —2.175229376 678 8
~2.175229 378 076 9

—2.175229378 2345

—2.175‘ 229378 236 790 7

J. Chem. Phys., ‘Vol. 104, No. 16, 22 April 1996
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TABLE VII. Optimal Kinoshita energies with half-integer powers for the He atom in the second excited

(1525,2 1) state.

Optimal Kinoshita Pekeris Thakkar-Smith- Drake

N (Present) (Ref. 21) (Ref. 26) (Ref. 24)

10 —2.145 859 283 017

20 —2.145 969 552 619 —2.145 966 060

30 —2.145 973 300 682 —2.145 971 291

40 ‘ —2.145972 811

44 —2.145 973 621 073.9

50 —2.145 974 036 113

55 —2.145 973 824

68 —2.145 973 998 274 1
100 —2.145 974 045 971 —2.145 974 036 279 9
190 —2.145 974 045 808 9
203 —2.145 958 989
308 ~2.145972 779
406 . —2.145 974 046 051 233
444 —2.145 973 945
615 —2.145 974 037

616 - —2.145 974 046 054 143

Z=1-10 has indeed shown that terms with m;#0 (i.e., the
radial correlation through the variable t) appear more fre-
quently for Z=1 than for the other cases. This is also a
reason that in the literature, applications of a single (and
empirical) selection rule for constituent terms to all Z values
yielded rather poor results for Z=1,

For the two-electron cations Li* through Ne%™, the op-
timal Kinoshita functions are again efficient, and the conver-
gence of the corresponding energies with increasing N is as
fast as it is for He and H™. In Table V, the present optimal
100-term Kinoshita energies are summarized. For the cations
Be?*, B**, and N>*, the present results coincide with the
most accurate literature value® to the given decimal places.
For the other cations, the deviations are 1X10™'2 hartrees
(Li*) and 1X107!! hartrees (C**, 0%, F’*, and Ne®*).

We have also examined the accuracy of the Kinoshita
function with half-integer powers for the first two excited
states. of the helium atom. To our knowledge, this is the first
application of the Kinoshita expansion to excited states.
Table VI summarizes the present results for the first excited
(152s,2 38) state and compares them with some literature
results.2%?2 It is immediately seen that the optimal Ki-
noshita function is also efficient for the excited state: When
we compare the energies from the same or similar number of
expansion terms, the Kinoshita energy is always lowest. The
present 100-term energy is much better than Pekeris’ 444-
term energy and close to Drake’s 190-term energy. Similar
accuracy of the Kinoshita expansion is found in Table VII for
the second excited (1s2s,2 1) state. For this state, the 100-
term Kinoshita energy is lower than Pekeris’ 615-term en-
ergy and Drake’s 190-term energy.

IV. CONCLUDING REMARKS

We have generalized the Kinoshita expansion using half-
integer powers and performed an extensive optimization of
these powers as well as the exponent and the mixing coeffi-
cients. The results for N=10-100 and Z=1-10 in the

ground state demonstrate that the. extension . to half-integer
powers combined with variational determination of their val-
ues substantially improves the accuracy of the Kinoshita
function. For instance, the optimal 50-term Kinoshita energy
is better than the Pekeris 1078-term energy for He. The same

is also true for the first two excited states of He.?’

The present success immediately suggests a further gen-
eralization of the powers from half-integers to quadrant inte-
gers (i.e., multiples of a quarter), for example. However, our
pilot computations showed that energy improvement ob-
tained did not appeal us compared to the complexity added
by moving from half- to quadrant integers.

In the present study, we have restricted ourselves to the
Kinoshita expansions with N<100, but we expect a similar
improvement for N>100 by the optimal term selection. In
our opinion, however, it would be most convenient if we
could further improve the accuracy without increasing the
number of terms. The present study shows that the varia-
tional selection of the powers of constituent terms replaces
the use of complicated functional forms for the terms and/or
the use of a huge number of the terms. We wish to continue

_our effort along this direction towards more accurate (yet

concise) description of helium and heliumlike atoms.
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