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A generalized electron-pair density function for atoms

Toshikatsu Koga
Department of Applied Chemistry, Muroran Institute of Technology, Muroran, Hokkaido 050-8585, Japan

(Received 3 August 2000; accepted 5 October 2000

For many-electron atoms, we discuss a generalized electron-pair density fugtdicnb) that
represents the probability density function for the magnitade+ br;| of the two-electron vector
ar;j+br; to be g, wherea and b are real-valued parameters. It is pointed out that the function
g(q;a,b) connectssmoothlythe single-electron density(r), the electron-pair intraculéelative
motion) density h(r,,), and the electron-pair extraculeenter-of-mass motigndensity d(R).
Moreover,p(r) is found to be a local extremum function @fq;1,b) with respect to the parameter
b. Analogously, the single-electron momenis') are local extrema of the momen{§") a p)
associated witly(q;a,b). An illustrative example is given for the helium atom within the Kellner
approximation. ©2001 American Institute of Physic§DOI: 10.1063/1.1328750

I. INTRODUCTION An illustrative example is given in Sec. lll for the helium

i atom. Hartree atomic units are used throughout.
The potential energy of an N-electron atom =2)

consists of two different contributions: the electron—nucleus
attraction energ¥.,= —(Z/r) and the electron—electron re-

pulsion energy.=(1/r 1), whereZ is nuclear charge. For !l. GENERALIZED ELECTRON-PAIR DENSITY
the evaluation o¥/.,,, we need the spherically averaged elec-

tron density functiorp(r) defined by The motion of two particles in space is characterized by

the relative and center-of-mass coordinates. Correspond-
N ingly, the electron-pair extraculécenter-of-mass motion
p(I’)E(47TI‘2)_l<E 5(r—|ri|)>, (1)  density,
- N—1 N
where §(x) is the one-dimensional Dirac delta function and d(R)=(47R? 1! 2 Z 5(R—|ri+rj|/2) ., 3
the angular bracket§ stand for the expectation value over =1 j=i+1
the wave functionV (x4, . . . Xy) with x;=(r;,o;) being the
combined position—spin coordinates of the electroihe
electron density(r) represents the probability density func-
tion for the distancér;| of any electrori from the nucleus to
ber, and is normalized td\, the number of electrorisFor
the evaluation o/, on the other hand, the spherically av-
eraged electron-pair intraculérelative motion density
h(r ) is required, which is defined by

was introduceti as a partner of the intracule densftfr ;,)
defined by Eq(2). The extracule densitg(R) represents the
probability density function for the center-of-mass radius
|ri+rj|/2 of any pair of electronsandj to beR. Based on a
systematic examination of the 102 ground-state neutral at-
oms from He(Z=2) to Lr (Z=103), an approximate isomor-
phism has been report&d between the intracule and extra-
cule densities of atoms.
N-1 N For deeper understanding of the observed isomorphism,

h(r12)5(477r§2)*1 z E 5(f12—|ri—rj|)>- 2) a generalized electron-pair density function,

i=1 j=i+1 Ne1 N

The intracule densiti(r,,) is the probability density func- g(q;a,b)E(4wq2)‘1< E _ z s(q—|ari+brj|) ),
tion for the relative distanclr;—r;| of any pair of electrons =1g=i+1 @
i andj to ber,, and is normalized tl(N—1)/2, the num-
ber of electron pairé-* Apparently, the two density func- has been introduced in a recent artit\where parametera
tionsp(r) andh(r,,) are different quantities in the sense thatandb are assumed to be nonzero real numbers. The density
they result from one- and two-electron operatai@,—|r;|) g(q;a,b) represents the probability density function for the
and 5(r ;,—|ri—rj|), respectively. magnitudear; + br;| of the two-electron vectoar; + br; of

In the present article, however, we point out that apariany pair of electrons andj to be g, and is normalized to
from a constant factor, the electrgr{r) and electron-pair N(N—1)/2. Clearly, the intraculé(r,,) and extraculal(R)
intraculeh(r,,) densities are two particular cases of a gen-densities are two special casesggfy;a,b):
eralized electron-pair densitg(q;a,b) introduced very _ )
recently> and appear below. In other words, there exists a h(ri =g(riz;1,-1), (53
smooth connection between the two densitigs) and _ 11
h(r,), which determine the potential energy= V g+ Ve Of d(R)=9(Ri2,2)=89(2R 1.0), (5b)
atoms. In the next section, the implication of the functionwhere the second equality in EGb) follows from a scaling
g(g;a,b) and the associated momexits') ) is discussed. relatior?
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g(g;a,b)=|c|3g(|c|q;ac,bc), (6) of the valugs of the paramet.eaandb. Thg Qensit)g(q;l,O)
can be neither a local maximum nor minimum g(fg; 1,b)
for all values of the variable.

We define moment&") , ) of the electron-pair density

in which c is any nonzero real number.
Originally, the generalized electron-pair density function
g(q;a,b) is defined for nonzero values of andb. How-

- . 9(g;a,b) by
ever, if we allow the parametdrto be zero, we obtain
2o N—1 . <qn>(a,b)E47Tf dqq"?g(q;a,b). 11
9(a;8,0)=(4m*) ' ——( 2, a(q=lari]) °

N We then find
_(47T|a|q2) l <z |a| |r |)> <qn>(l,*l):<r22>v (12@
_ 1 N-17q @ (A ao=—5—(", (12b)

“faf 2 Plal)

(M 1+1)=2%(R"), (120

Namely, a particular case of the densit{q;a,b) for b=0

(anda#0) reduces to the electron densityr) scaled by a| corresponding to Egs8a), (8b), and (8c), where single-

and multiplied by a constantN(—1)/2. electron(r"), intracule(r’,), and extraculgR") moments
When Egs(5a), (5b), and(7) are combined together, we are defined by equations analogous to @d). Combination

find that the generalized electron-pair densgjfy;a,b) with of Eq. (11) with Egs.(9a) and(9b) gives

a=1 connects the three separately-defined densitiés),

. - d
h(r,,), andd(R) , ina smooth manner as a function of the £<qn>(a b, o= b<q ), b, =0, (13)
parameteb. Explicitly, we have 00 a#,
9(q;1,—1)=h(q), (8@  which corresponds to Eq10). For given values of(#0)
N—1 and a=1, the single-electron momeijt") is thus a local
g(q;1,0= Tp(q)' (8b)  extremum of the electron-pair momefat”) ; ) with respect

to b, apart from a constantN—1)/2. We expect that the
1 /q maximum and minimum characteristics of the moments
9(g;1,+1)= §d(§)' (80 (q”)_(_l,o)Z[(N— 1)/2](r”) switch depending on whetheris
positive or negative. For example, the momem$) ; o) are
The electron-pair density(qg;a,b) defined by Eq(4) can be local maxima whem<0 and local minima whem>0 of

rewritter? as the generalized momentg") 1, , if the densityg(q;1,0) is
a local maximum for a smalj and a local minimum for a
g(q;a,b):(2w2)’1f ds2jo(qs)X(s:a,b), (93 Iargeq of the functiong(q;1,b).
0 Since
wherej,(x) is the spherical Bessel function of the first kind 2Z
and Ven= — <q >(1 0)1 (1439
— -1
X(s;a,b)E(47T)_1f < 2 2 exp(—ias-r;) Vee= (A -1, (14D
=1 k=j+1

the potential energy can be expressed as
XeXp(—ibS-rk)>, (9b) vzf dqG(q), (153
0

in which (s,()s) with Q=(6s, ¢) are the polar coordinates \here the “potential energy densityG(q) is given by
of the vectors. Then we obtain

z
G(q)=4mq| — g(q 1,0+9(g;1,-1)|, (15b)

J
aeo_ gpd(@ab)l (10)
b#0 a#0 which is the radial distribution of the sum of the electron—
which implies that apart from a constam € 1)/2, the elec- nucleus attraction and electron—electron repulsion contribu-
tron density p(r) is a local extremum function of the tions.
electron-pair densitg(q;1,b) with respect to the parameter
b. We could not determine whethg(r) is a local maximum
or minimum based on the analysis of the second derivativgy; AN |LLUSTRATION
However, the densityg(q;1,0)=[(N—1)/2]p(q) should
have bothq regions where it is local maximum and mini- Some analytical and numerical results for a simple sys-
mum of g(qg;1,b) with respect tob, since the function tem are helpful to grasp the relations and properties of the
0(q;a,b) is always normalized ttN(N—1)/2, independent densities and moments discussed in Sec. Il. For this purpose,

Jd ab
gg(q,a, )
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FIG. 1. Examples of the generalized electron-pair derty; a,b) for the
helium atom.

we examine the ground-state helium at¥=Z=2) within
the Kellner approximatiof.The Kellner wave function for a
helium-like atom is given by

P(ry,r)= (3 mexd —{(ri+ry)], (16)

Toshikatsu Koga
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FIG. 2. The potential energy densi®(q) for the helium atom.

as special cases of E(L79 for b=0 and|a|=|b|. WhenZ

=2 anda=1, Fig. 1 depicts the density(q;a,b) for several
values ofb with |b|=<1. Sinceb=—1, 0, and+1 correspond

to the intracule, single-electron, and extracule densities
(apart from constant factorgrespectively, Fig. 1 shows how
these different densities are connected as a smooth function

where we have suppressed the two-electron singlet spin funef the parameteb. Also, we find in the figure that the elec-

tion. The variationally optimum value of the exponehts
Z—(5/16).

tron densityp(r) (corresponding tdo=0) is an extremum
function of g(qg;a,b), whenb is varied fora=1. A finer

For Eq. (16), the generalized electron-pair density analysis shows thag(q;1,0)=[(N—1)/2]p(q) is a local

0(q;a,b) is obtained after some manipulation as
g(a;a,b)=(¢?/m)(B?—A?)~3{2A’B%q*
X[exp—2Lq/A)—exp(—2g/B)]
+{(B2— A?)[ Aexp(—2£q/A)
+Bexp(—2£q9/B) ]}, (179

whereA=|a| andB=|b|. In this case, the density(q;a,b)
is an even function both for the parametersand b, and
hence the intraculea=1 andb=—1) and extracule
=1 and b=+1) densities satisfy an equalitd(R)
=8h(2R) precisely. Appropriate limiting procedures give

. _1(53
g(q,a,O)—; a exp(—2qg/A), (17b
o L8\, 6ga 4rq?
9<q'a'—a>—ﬂ(z) (3+T+T)
Xexp(—2q/A), (179

maximum for 0=q<0.59 and a local minimum forg
>0.59 of the functiorg(q;1,b).

The potential energy densit@(q) is plotted in Fig. 2.
The density is negative for€©q<2.45 with a minimum
—7.78 atq=0.28, due to the predominant nuclear attraction
contribution. Forg>2.45, however, the electron repulsion
contribution is larger than the nuclear attraction &1d) is
positive. A very small maximum 4.3510 % is found at
g=2.80.

From Eg. (178, the momentsq") ) Of the density
g(g;a,b) are found to be

2
(q2)(ayb)=(BZ‘2_4A2)3[B4—A4+4AZBZIn(A/B)],
(183
forn = -2, and
(n+1)!

(@) an=3zpmEz_azal(N2(BTE-ATY)

—(n+6)A%B3(B"T2—-A"*?)], (18b)
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FIG. 3. Examples of the generalized electron-pair momgity. o for the
helium atom.

for n=—1 in general. A few particular cases of Ed.8b
are

. A2+ 3AB+B?

(g >(a,b):§—(A+B)3 \ (180
(0% @pn=1, (180
1 3A*+9A%B+11A%B%+9AB%+3B*
<q>(a,b):2_§ (A"’ B)S ’ (186
) 3 AS+3AB+4A3%B2+4A%B3+3AB*+B°

<q >(a,b):? (A+ B)S .
(18f)

When appropriate limiting procedures are applied, Et89
and (18b) reduce to

(n+2)! [ A\
<qn>(a,0):T 2—§) (n=-2) (193
forb = 0 and
] C(n+2) A\"
(A" (a,+a)= 18 (n“+10n+24) 2—§> (n=-2)
(19b)

for |a|=|b|.
In the case oZ=2 anda=1, the momentgq"),p are
depicted in Fig. 3 fom==*=1 and+2 as a function of the
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in Egs.(12b) and(129. For the helium atom in the Kellner
approximation, the moments are even functionsbpfand
therefore the intracule moments’,) (whenb=—1) are
exactly the same as the extracule momeR8) (whenb
=+1) multiplied by a factor 2. As discussed in Sec. Il, the
moments(q") (1) take extremum values &t=0, which cor-
respond to the single-electron momefit8). Moreover, the
numerical results for the helium atom show that) ;) atb

= 0 are maximum in<0 and minimum ifn>0. When the
case ofn=—1 is examined, in particular, we find that the
nuclear attractionq 1) ; 0= — Ven/(2Z) is the maximum
whereas the electron repulsi()q*)(l,,l):Vee is the mini-
mum of<q‘1>(l,b) in the region—1<b=<+1. On the other
hand, the average electron—nucleus distafupe; o= (r)/2

is the minimum whereas the average electron—electron dis-
tance(q)(;-1)=(r12 is the maximum of the first moment
(d)ap) for —1sb=+1.

IV. CONCLUDING REMARKS

We have discussed a generalized electron-pair density
function g(qg;a,b) that represents the probability density
function for the magnitudéar;+br,| of the two-electron
vector ar; +br, of any pair of electrong and k to be g,
where a and b are real-valued parameters. The function
g(g;a,b) connects smoothly the single-electron density
p(r), the electron-pair intracule densitly(r,,), and the
electron-pair extracule densitg(R). The associated mo-
ments(r"), (ri,, and (R") are also obtained as special
cases of the generalized mome(ds$) . ) - Both the single-
electron density and moments have been found to be local
extrema of the generalized density and moments with respect
to the parameteb. An illustrative example has been given
for the helium atom within the Kellner approximation.

For the exact and some approximate wave functions, the
electronp(r) and intraculeh(r,,) densities are knowfi~4
to satisfy the cusp conditions dp/dr|,_,
=—-2Zp(0) and dh/dr12|r12:0= h(0), respectively. These
relations imply dg(q;1,0)/dql|q-o=—2Z9(0;1,0) and
dg(q;1,—1)/dglq-0=9(0;1,—1) for the generalized
electron-pair densitg(qg;a,b). We could not derive a gen-
eral relation fordg(q;a,b)/dq|q=0 in the present study, but
the examination of the derivative as a function of the param-
etersa andb would be useful for a unified understanding of
the single-electron and electron-pair densities.
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