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For many-electron atoms, we discuss a generalized electron-pair density functiong(q;a,b) that
represents the probability density function for the magnitudeuar i1br j u of the two-electron vector
ar i1br j to be q, wherea and b are real-valued parameters. It is pointed out that the function
g(q;a,b) connectssmoothlythe single-electron densityr(r ), the electron-pair intracule~relative
motion! density h(r 12), and the electron-pair extracule~center-of-mass motion! density d(R).
Moreover,r(r ) is found to be a local extremum function ofg(q;1,b) with respect to the parameter
b. Analogously, the single-electron moments^r n& are local extrema of the moments^qn& (a,b)

associated withg(q;a,b). An illustrative example is given for the helium atom within the Kellner
approximation. ©2001 American Institute of Physics.@DOI: 10.1063/1.1328750#
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I. INTRODUCTION

The potential energyV of an N-electron atom (N>2)
consists of two different contributions: the electron–nucle
attraction energyVen52^Z/r & and the electron–electron re
pulsion energyVee5^1/r 12&, whereZ is nuclear charge. Fo
the evaluation ofVen, we need the spherically averaged ele
tron density functionr(r ) defined by

r~r ![~4pr 2!21K (
i 51

N

d~r 2ur i u!L , ~1!

whered(x) is the one-dimensional Dirac delta function a
the angular bracketŝ& stand for the expectation value ov
the wave functionC(x1 , . . . ,xN) with xi[(r i ,s i) being the
combined position–spin coordinates of the electroni. The
electron densityr(r ) represents the probability density fun
tion for the distanceur i u of any electroni from the nucleus to
be r, and is normalized toN, the number of electrons.1 For
the evaluation ofVee, on the other hand, the spherically a
eraged electron-pair intracule~relative motion! density
h(r 12) is required, which is defined by

h~r 12![~4pr 12
2 !21K (

i 51

N21

(
j 5 i 11

N

d~r 122ur i2r j u!L . ~2!

The intracule densityh(r 12) is the probability density func-
tion for the relative distanceur i2r j u of any pair of electrons
i and j to ber 12, and is normalized toN(N21)/2, the num-
ber of electron pairs.2–4 Apparently, the two density func
tionsr(r ) andh(r 12) are different quantities in the sense th
they result from one- and two-electron operators,d(r 2ur i u)
andd(r 122ur i2r j u), respectively.

In the present article, however, we point out that ap
from a constant factor, the electronr(r ) and electron-pair
intraculeh(r 12) densities are two particular cases of a ge
eralized electron-pair densityg(q;a,b) introduced very
recently,5 and appear below. In other words, there exist
smooth connection between the two densitiesr(r ) and
h(r 12), which determine the potential energyV5Ven1Veeof
atoms. In the next section, the implication of the functi
g(q;a,b) and the associated moments^qn& (a,b) is discussed.
720021-9606/2001/114(1)/72/4/$18.00
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An illustrative example is given in Sec. III for the helium
atom. Hartree atomic units are used throughout.

II. GENERALIZED ELECTRON-PAIR DENSITY

The motion of two particles in space is characterized
the relative and center-of-mass coordinates. Correspo
ingly, the electron-pair extracule~center-of-mass motion!
density,

d~R![~4pR2!21K (
i 51

N21

(
j 5 i 11

N

d~R2ur i1r j u/2!L , ~3!

was introduced2–4 as a partner of the intracule densityh(r 12)
defined by Eq.~2!. The extracule densityd(R) represents the
probability density function for the center-of-mass radi
ur i1r j u/2 of any pair of electronsi and j to beR. Based on a
systematic examination of the 102 ground-state neutral
oms from He~Z52! to Lr ~Z5103!, an approximate isomor
phism has been reported6–8 between the intracule and extra
cule densities of atoms.

For deeper understanding of the observed isomorphi
a generalized electron-pair density function,

g~q;a,b![~4pq2!21K (
i 51

N21

(
j 5 i 11

N

d~q2uar i1br j u!L ,

~4!

has been introduced in a recent article,5 where parametersa
andb are assumed to be nonzero real numbers. The den
g(q;a,b) represents the probability density function for th
magnitudeuar i1br j u of the two-electron vectorar i1br j of
any pair of electronsi and j to be q, and is normalized to
N(N21)/2. Clearly, the intraculeh(r 12) and extraculed(R)
densities are two special cases ofg(q;a,b):

h~r 12!5g~r 12;1,21!, ~5a!

d~R!5g~R; 1
2,

1
2!58g~2R,1,1!, ~5b!

where the second equality in Eq.~5b! follows from a scaling
relation5
© 2001 American Institute of Physics
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g~q;a,b!5ucu3g~ ucuq;ac,bc!, ~6!

in which c is any nonzero real number.
Originally, the generalized electron-pair density functi

g(q;a,b) is defined5 for nonzero values ofa and b. How-
ever, if we allow the parameterb to be zero, we obtain

g~q;a,0!5~4pq2!21
N21

2 K (
i 51

N

d~q2uar i u!L
5~4puauq2!21

N21

2 K (
i 51

N

dS q

uau
2ur i u D L

5
1

uau3

N21

2
rS q

uau D . ~7!

Namely, a particular case of the densityg(q;a,b) for b50
~andaÞ0) reduces to the electron densityr(r ) scaled byuau
and multiplied by a constant (N21)/2.

When Eqs.~5a!, ~5b!, and~7! are combined together, w
find that the generalized electron-pair densityg(q;a,b) with
a51 connects the three separately-defined densities,r(r ),
h(r 12), andd(R), in a smooth manner as a function of th
parameterb. Explicitly, we have

g~q;1,21!5h~q!, ~8a!

g~q;1,0!5
N21

2
r~q!, ~8b!

g~q;1,11!5
1

8
dS q

2D . ~8c!

The electron-pair densityg(q;a,b) defined by Eq.~4! can be
rewritten5 as

g~q;a,b!5~2p2!21E
0

`

dss2 j 0~qs!X~s;a,b!, ~9a!

where j l(x) is the spherical Bessel function of the first kin
and

X~s;a,b![~4p!21E dVsK (
j 51

N21

(
k5 j 11

N

exp~2 ias•r j !

3exp~2 ibs•r k!L , ~9b!

in which (s,Vs) with Vs[(us ,fs) are the polar coordinate
of the vectors. Then we obtain

]

]a
g~q;a,b!U

a50
bÞ0

5
]

]b
g~q;a,b!U

b50
aÞ0

50, ~10!

which implies that apart from a constant (N21)/2, the elec-
tron density r(r ) is a local extremum function of the
electron-pair densityg(q;1,b) with respect to the paramete
b. We could not determine whetherr(r ) is a local maximum
or minimum based on the analysis of the second derivat
However, the densityg(q;1,0)5@(N21)/2#r(q) should
have bothq regions where it is local maximum and min
mum of g(q;1,b) with respect tob, since the function
g(q;a,b) is always normalized toN(N21)/2, independent
e.

of the values of the parametersa andb. The densityg(q;1,0)
can be neither a local maximum nor minimum ofg(q;1,b)
for all values of the variableq.

We define momentŝqn& (a,b) of the electron-pair density
g(q;a,b) by

^qn& (a,b)[4pE
0

`

dqqn12g~q;a,b!. ~11!

We then find

^qn& (1,21)5^r 12
n &, ~12a!

^qn& (1,0)5
N21

2
^r n&, ~12b!

^qn& (1,11)52n^Rn&, ~12c!

corresponding to Eqs.~8a!, ~8b!, and ~8c!, where single-
electron^r n&, intracule^r 12

n &, and extraculê Rn& moments
are defined by equations analogous to Eq.~11!. Combination
of Eq. ~11! with Eqs.~9a! and ~9b! gives

]

]a
^qn& (a,b)U

a50
bÞ0

5
]

]b
^qn& (a,b)U

b50
aÞ0

50, ~13!

which corresponds to Eq.~10!. For given values ofn(Þ0)
and a51, the single-electron moment^r n& is thus a local
extremum of the electron-pair moment^qn& (1,b) with respect
to b, apart from a constant (N21)/2. We expect that the
maximum and minimum characteristics of the mome
^qn& (1,0)5@(N21)/2#^r n& switch depending on whethern is
positive or negative. For example, the moments^qn& (1,0) are
local maxima whenn,0 and local minima whenn.0 of
the generalized moments^qn& (1,b) , if the densityg(q;1,0) is
a local maximum for a smallq and a local minimum for a
largeq of the functiong(q;1,b).

Since

Ven52
2Z

N21
^q21& (1,0) , ~14a!

Vee5^q21& (1,21) , ~14b!

the potential energyV can be expressed as

V5E
0

`

dqG~q!, ~15a!

where the ‘‘potential energy density’’G~q! is given by

G~q!54pqF2
2Z

N21
g~q;1,0!1g~q;1,21!G , ~15b!

which is the radial distribution of the sum of the electron
nucleus attraction and electron–electron repulsion contr
tions.

III. AN ILLUSTRATION

Some analytical and numerical results for a simple s
tem are helpful to grasp the relations and properties of
densities and moments discussed in Sec. II. For this purp
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we examine the ground-state helium atom~N5Z52! within
the Kellner approximation.9 The Kellner wave function for a
helium-like atom is given by

c~r1 ,r2!5~z3/p!exp@2z~r 11r 2!#, ~16!

where we have suppressed the two-electron singlet spin f
tion. The variationally optimum value of the exponentz is
Z2(5/16).

For Eq. ~16!, the generalized electron-pair densi
g(q;a,b) is obtained after some manipulation as

g~q;a,b!5~z2/p!~B22A2!23$2A2B2q21

3@exp~22zq/A!2exp~22zq/B!#

1z~B22A2!@Aexp~22zq/A!

1Bexp~22zq/B!#%, ~17a!

whereA5uau andB5ubu. In this case, the densityg(q;a,b)
is an even function both for the parametersa and b, and
hence the intracule (a51 and b521) and extracule (a
51 and b511) densities satisfy an equalityd(R)
58h(2R) precisely. Appropriate limiting procedures give

g~q;a,0!5
1

p S z

AD 3

exp~22zq/A!, ~17b!

g~q;a,6a!5
1

24p S z

AD 3S 31
6zq

A
1

4z2q2

A2 D
3exp~22zq/A!, ~17c!

FIG. 1. Examples of the generalized electron-pair densityg(q;a,b) for the
helium atom.
c-

as special cases of Eq.~17a! for b50 anduau5ubu. WhenZ
52 anda51, Fig. 1 depicts the densityg(q;a,b) for several
values ofb with ubu<1. Sinceb521, 0, and11 correspond
to the intracule, single-electron, and extracule densit
~apart from constant factors!, respectively, Fig. 1 shows how
these different densities are connected as a smooth func
of the parameterb. Also, we find in the figure that the elec-
tron densityr(r ) ~corresponding tob50! is an extremum
function of g(q;a,b), when b is varied for a51. A finer
analysis shows thatg(q;1,0)5@(N21)/2#r(q) is a local
maximum for 0<q,0.59 and a local minimum forq
.0.59 of the functiong(q;1,b).

The potential energy densityG(q) is plotted in Fig. 2.
The density is negative for 0,q,2.45 with a minimum
27.78 atq50.28, due to the predominant nuclear attractio
contribution. Forq.2.45, however, the electron repulsio
contribution is larger than the nuclear attraction andG(q) is
positive. A very small maximum 4.3531023 is found at
q52.80.

From Eq. ~17a!, the momentŝ qn& (a,b) of the density
g(q;a,b) are found to be

^q22& (a,b)5
2z2

~B22A2!3 @B42A414A2B2ln~A/B!#,

~18a!

for n 5 22, and

^qn& (a,b)5
~n11!!

2~2z!n~B22A2!3 @~n12!~Bn162An16!

2~n16!A2B2~Bn122An12!#, ~18b!

FIG. 2. The potential energy densityG~q! for the helium atom.
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for n>21 in general. A few particular cases of Eq.~18b!
are

^q21& (a,b)5z
A213AB1B2

~A1B!3 , ~18c!

^q0& (a,b)51, ~18d!

^q& (a,b)5
1

2z

3A419A3B111A2B219AB313B4

~A1B!3 , ~18e!

^q2& (a,b)5
3

z2

A513A4B14A3B214A2B313AB41B5

~A1B!3 .

~18f!

When appropriate limiting procedures are applied, Eqs.~18a!
and ~18b! reduce to

^qn& (a,0)5
~n12!!

2 S A

2z D n

~n>22! ~19a!

for b 5 0 and

^qn& (a,6a)5
~n12!!

48
~n2110n124!S A

2z D n

~n>22!

~19b!

for uau5ubu.
In the case ofZ52 anda51, the momentŝqn& (a,b) are

depicted in Fig. 3 forn561 and62 as a function of the
parameterb. We find in the figure that the generalized m
ments ^qn& (1,b) smoothly connect the intracule~when b
521), single-electron~when b50), and extracule~when
b511) moments apart from the constant factors mentio

FIG. 3. Examples of the generalized electron-pair moments^qn& (a,b) for the
helium atom.
d

in Eqs.~12b! and ~12c!. For the helium atom in the Kellne
approximation, the moments are even functions ofb, and
therefore the intracule moments^r 12

n & ~when b521) are
exactly the same as the extracule moments^Rn& ~when b
511) multiplied by a factor 2n. As discussed in Sec. II, the
momentŝ qn& (1,b) take extremum values atb50, which cor-
respond to the single-electron moments^r n&. Moreover, the
numerical results for the helium atom show that^qn& (1,b) at b
5 0 are maximum ifn,0 and minimum ifn.0. When the
case ofn521 is examined, in particular, we find that th
nuclear attraction̂ q21& (1,0)52Ven/(2Z) is the maximum
whereas the electron repulsion^q21& (1,21)5Vee is the mini-
mum of ^q21& (1,b) in the region21<b<11. On the other
hand, the average electron–nucleus distance^q& (1,0)5^r &/2
is the minimum whereas the average electron–electron
tance^q& (1,21)5^r 12& is the maximum of the first momen
^q& (1,b) for 21<b<11.

IV. CONCLUDING REMARKS

We have discussed a generalized electron-pair den
function g(q;a,b) that represents the probability densi
function for the magnitudeuar j1br ku of the two-electron
vector ar j1br k of any pair of electronsj and k to be q,
where a and b are real-valued parameters. The functi
g(q;a,b) connects smoothly the single-electron dens
r(r ), the electron-pair intracule densityh(r 12), and the
electron-pair extracule densityd(R). The associated mo
ments ^r n&, ^r 12

n &, and ^Rn& are also obtained as speci
cases of the generalized moments^qn& (a,b) . Both the single-
electron density and moments have been found to be l
extrema of the generalized density and moments with res
to the parameterb. An illustrative example has been give
for the helium atom within the Kellner approximation.

For the exact and some approximate wave functions,
electronr(r ) and intraculeh(r 12) densities are known10–14

to satisfy the cusp conditions dr/drur 50

522Zr(0) and dh/dr12ur 12505h(0), respectively. These
relations imply dg(q;1,0)/dquq50522Zg(0;1,0) and
dg(q;1,21)/dquq505g(0;1,21) for the generalized
electron-pair densityg(q;a,b). We could not derive a gen
eral relation fordg(q;a,b)/dquq50 in the present study, bu
the examination of the derivative as a function of the para
etersa andb would be useful for a unified understanding
the single-electron and electron-pair densities.
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