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For many-electron atoms, spherically averaged electron–electron coalescenceh0(R) and
counterbalanced0(u) functions are studied which, respectively, represent the probability densities
that any electron pairs with zero interelectronic distance are located at a radiusR from the nucleus
and that any electron pairs with zero center-of-mass radius have a relative distanceu. For the exact
and Hartree–Fock~HF! wave functions, cusp relationsh08(0)/h0(0)524Z and d08(0)/d0(0)
522Z are derived theoretically, where the prime denotes the first derivative andZ is nuclear
charge. At the Hartree–Fock limit level, both functionsh0(R) and d0(u) are found to be
monotonically decreasing with a single maximum atR50 oru50 for all the 102 atoms He through
Lr. The long-range asymptotic behavior of the coalescence and counterbalance functions is
governed in general by the orbital energy of the highest occupied atomic orbital. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1331104#
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I. INTRODUCTION AND DEFINITIONS

The motion of two particles in space is specified by t
relative and center-of-mass coordinates. For anN-electron
system (N>2), the probability density that any electro
pairs have a relative vectoru and a center-of-mass vectorR
is given by

G~u,R!5K (
i 51

N21

(
j 5 i 11

N

d@u2~r i2r j !#d@R2~r i1r j !/2#L
5K (

i 51

N21

(
j 5 i 11

N

d@r i2~R1u/2!#d@r j2~R2u/2!#L ,

~1!

whered(x) is the three-dimensional Dirac delta function a
the angular bracketŝ& stand for the expectation value ov
the wave functionC(x1 ,...,xN) with xi[(r i ,s i) being the
combined position–spin coordinates of the electroni. If we
are interested in the relative motion of electron pairs,
integration of Eq.~1! over R yields the intracule~relative
motion! density1–3

I ~u!5E dRG~u,R!, ~2a!

whose spherical average is

h~u!5~4p!21E dVuI ~u!, ~2b!

where (u,Vu) is the polar coordinates of the vectoru. The
intracule densitiesI (u) andh(u) have been used in sever
physical and chemical contexts particularly in relation to
electron correlation problem~see Refs. 2–7 and the refe
ences therein!. If we are concerned with the center-of-ma

a!Electronic mail: koga@mmm.muroran-it.ac.jp
1020021-9606/2001/114(1)/102/6/$18.00
e

e

motion of electron pairs, on the other hand, the integration
Eq. ~1! over u gives the extracule~center-of-mass motion!
density1–3

E~R!5E duG~u,R!, ~3a!

whose spherical average is

d~R!5~4p!21E dVRE~R!, ~3b!

where (R,VR) is the polar coordinates of the vectorR. The
extracule densitiesE(R) and d(R) were used to study the
shell structure in some atoms and bonding characteristic
simple molecules~see Refs. 2, 3, 8–11 and the referenc
therein!.

A special valueI (0)5h(0) of the intracule densities is
known12–16 as the electron–electron coalescence dens
which is the probability density of finding any two electron
i and j precisely at the same position in three-dimensio
space orr i5r j . The coalescence density appears in
evaluation of the relativistic17 and radiative18 corrections for
atoms and molecules. The coalescence or Fermi hole~i.e.,
zero probability density! exists for two electrons with the
same spin. Correspondingly, a special valueE(0)5d(0) of
the extracule densities is known15,16,19 as the electron–
electron counterbalance density, which represents the p
ability density of finding any two electronsi and j exactly at
the opposite positions with respect to the coordinate ori
~i.e., the nucleus in atoms! or r i52r j in three-dimensional
space. In the Hartree–Fock theory, the presence of electr
electron counterbalance holes is known20 between two elec-
trons in spin–orbitals with the same spin and the same s
tial inversion symmetry.

In the present paper, we study the mathematical struc
and properties of electron–electron coalescenceI 0(R) and
© 2001 American Institute of Physics
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counterbalanceE0(u) functions, as well as their spherica
averagesh0(R) and d0(u), which appear as two particula
cases of the electron-pair densityG(u,R) given by Eq.~1!

I 0~R!5G~0,R!, ~4a!

h0~R!5~4p!21E dVRI 0~R! ~4b!

and

E0~u!5G~u,0!, ~5a!

d0~u!5~4p!21E dVuE0~u!. ~5b!

The coalescence functionsI 0(R) andh0(R) describe the spa
tial distribution of electron pairs with zero relative vector~or
distance! as a function of the center-of-mass vectorR or its
radiusR. By definitions, we have

E dRI 0~R!54pE
0

`

dRR2h0~R!5I ~0!5h~0!, ~6!

which implies that the coalescence functions detail out
spatial origin of the electron–electron coalescence den
I (0)5h(0). The coalescence functionI 0(R) has been
used21–24 in the analysis of some density functional appro
mations. Analogously, the counterbalance functionsE0(u)
and d0(u) represent the distribution of electron pairs wi
zero center-of-mass vector~or radius! as a function of the
relative vectoru or its magnitudeu. We immediately find

E duE0~u!54pE
0

`

duu2d0~u!5E~0!5d~0!, ~7!

and that the counterbalance functions clarify the spatial
gin of the electron–electron counterbalance densityE(0)
5d(0). In the next section, we examine the mathematic
structure of the coalescence and counterbalance function
atoms mainly in the Hartree–Fock theory. It will be foun
that these functions satisfy cusp conditions atR50 or u
50 characterized by nuclear chargeZ. The long-range
asymptotic behavior of the functions, on the other hand
governed by the orbital energy of the highest occupied
bital. In Sec. III, the numerical results are presented a
discussed for the 102 atoms from He (Z52) to Lr (Z
5103) based on the numerical Hartree–Fock calculatio
Hartree atomic units are used throughout.

II. MATHEMATICAL STRUCTURE OF COALESCENCE
AND COUNTERBALANCE FUNCTIONS

A. Electron–electron coalescence function

The electron–electron coalescence functionI 0(R), de-
fined by Eq.~4a!, is explicitly written as

I 0~R!5K (
i 51

N21

(
j 5 i 11

N

d~r i2R!d~r j2R!L , ~8a!

or
e
ty

i-

l
for

is
r-
d

s.

I 0~R!5S N
2 D E ds1ds2dx3•••dxN

3uC~R,s1 ,R,s2 ,x3 ,...,xN!u2. ~8b!

For a small value ofr i5ur i u, Bingel showed25 that Kato’s
cusp condition,26 due to the electron–nucleus Coulomb si
gularity in the Schro¨dinger equation, implies

C~r1 ,...,rN!5C~r1 ,...,r i 21 ,0,r i 11 ,...,rN!~12Zri !

1r i•ai1O~r i
2!, ~9a!

ai5ai~r1 ,...,r i 21 ,r i 11 ,...,rN!, ~9b!

where the spin variables have been suppressed. Comb
Eq. ~9! for i 51 andi 52 and puttingr156r25r , we have

C~r ,6r ,r3 ,...,rN!5C~0,0,r3 ,...,rN!~122Zr !

1r•@a1~0,r3 ,...,rN!

6a2~0,r3 ,...,rN!#1O~r 2!. ~9c!

Substituting Eq.~9c! with the plus sign into Eq.~8b! and
taking the spherical average of Eq.~8b!, we obtain

h0~R!5C~124ZR!1O~R2!, ~10a!

where

C5~4p!21S N

2 D E ds1ds2dx3 •••dxN

3uC~0,s1 ,0,s2 ,x3 ,...,xN!u2. ~10b!

Thus the exact electron–electron coalescence functionh0(R)
satisfies a cusp relation

h08~0!/h0~0!524Z, ~10c!

where the prime means the first derivative. The right-ha
side of Eq.~10c! is precisely twice the value of the electron
nucleus cusp constant (22Z) known25–27 for the single-
electron densityr(r ).

For a single determinant wave function composed o
set of orthonormal spin–orbitalsc i(r )h i(s), the Condon–
Slater rules~see, e.g., Ref. 28! rearrange Eq.~8a! as

I 0~R!5 (
i 51

N21

(
j 5 i 11

N

@12ds~ i , j !#uc i~R!u2uc j~R!u2, ~11!

whereds( i , j ) is unity if the spin–orbitalsi and j have the
same spin and is zero if they have the opposite sp
Namely, the coalescence functionI 0(R) is the sum of prod-
ucts of two orbital densitiesuc i(r )u2 anduc j (r )u2. Moreover,
two electrons in spin–orbitals with parallel spins do not co
tribute to the coalescence function.

For atomic systems, we can generally assume that
single-electron spatial functionc i(r ) is expressed by a prod
uct of the radialRnl(r ) and spherical harmonicYlm(V r)
functions, wheren, l, andm denote the principal, azimutha
and magnetic quantum numbers, respectively. Then
spherical averageh0(R) of the coalescence function is ob
tained as
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h0~R!5 (
i 51

N21

(
j 5 i 11

N

@12ds~ i , j !#Ai j uRi~R!u2uRj~R!u2,

~12a!

where

Ai j 5~4p!21E dVuYl imi
~V!u2uYl jmj

~V!u2

5~4p!22 (
l 50

min(2l i12l j )

~2l 11!al~ l imi ; l jmj !, ~12b!

in which ak( lm; l 8m8) is the Condon–Shortley parameter29

Some explicit values of 4pAi j can be found in Ref. 16.
For a small value ofr, the radial functionRnl(r ) is

expanded30 as

Rnl~r !5cnlr
lF12

Z

l 11
r 1O~r 2!G , ~13a!

wherecnl is a nonzero real constant. We then obtain

uRi~r !u2uRj~r !u25cni l i
2 cnj l j

2 r 2l i12l j

3F122ZS 1

l i11
1

1

l j11D r 1O~r 2!G .
~13b!

Therefore, we find that the leading contribution to the co
lescence functionh0(R) for a smallR comes from combina-
tions of s-type orbitals and

h0~R!5CHF~124ZR!1O~R2!, ~14a!

where

CHF5 (
i 51

N21

(
j 5 i 11

N

d l i0
d l j0

@12ds~ i , j !#Ai j cni0
2 cnj0

2 , ~14b!

in which d i j is the Kronecker’s delta. From Eq.~14a!, we
immediately find that the Hartree–Fock coalescence func
h0(R) also satisfies the cusp relation given by Eq.~10c!.

For a large value ofr, the radial functionRnl(r ) has31–33

an asymptotic decay

Rnl~r !'exp~2A22«hr !, ~15a!

in general, where«h is the orbital energy of the highest oc
cupied atomic orbital. An exception is

Rnl~r !'exp~2A22«nlr !, ~15b!

when onlys orbitals are occupied. As long as the groun
state neutral atoms are concerned, we thus obtain the l
range asymptotic behavior ofh0(R) as

h0~R!

'H exp@22~A22«1s1A22«2s!R#, for the Li atom

exp~24A22«hR!, otherwise
.

~15c!

B. Electron–electron counterbalance function

From Eqs.~1! and ~5a!, the electron–electron counte
balance functionE0(u) reads
-

n

-
g-

E0~u!5K (
i 51

N21

(
j 5 i 11

N

d~r i2u/2!d~r j1u/2!L , ~16a!

or

E0~u!5S N
2 D E ds1ds2dx3 •••dxN

3UCS u

2
,s1 ,2

u

2
,s2 ,x3 ,...,xND U2

. ~16b!

If we apply Eq.~9c! with the minus sign to Eq.~16b! and
take the spherical average of Eq.~16b!, we then obtain

d0~u!5C~122Zu!1O~u2!, ~17a!

where the constantC is defined by Eq.~10b!. From Eq.
~17a!, a cusp relation

d08~0!/d0~0!522Z, ~17b!

follows immediately for the exact electron–electron count
balance functiond0(u). Further, comparison of Eqs.~10a!
and ~17a! gives

h0~0!5d0~0!5C, ~18!

corresponding to the probability density that any two ele
trons are coalescent at the nuclear position.

For single determinant wave functions, Eq.~16a! is re-
written as

E0~u!5 (
i 51

N21

(
j 5 i 11

N

c i* ~u/2!c j* ~2u/2!

3@c i~u/2!c j~2u/2!2ds~ i , j !c i~2u/2!c j~u/2!#.

~19a!

If the orbital c i(r ) has spatial inversion symmetryc i(2r )
5(21)l ic i(r ) specified by an indexl i , Eq. ~19a! is sim-
plified to

E0~u!5 (
i 51

N21

(
j 5 i 11

N

@12ds~ i , j !~21!l i1l j #

3uc i~u/2!u2uc j~u/2!u2. ~19b!

Apart from the factor (21)l i1l j , Eq. ~19b! for the counter-
balance function is analogous to Eq.~11! for the coalescence
function, andE0(u) is also the sum of products of orbita
densitiesuc i(u/2)u2 and uc j (u/2)u2. We note that two elec-
trons in spin–orbitals with the same spin and the same
version symmetry give no contribution to the counterbalan
function.

For atomic system withc i(r )5Rni l i
(r )Yl imi

(V r), the
azimuthal quantum numberl i plays a role of the inversion
symmetry indexl i , and the spherically averaged counterb
ance functiond0(u) is obtained to be

d0~u!5 (
i 51

N21

(
j 5 i 11

N

@12ds~ i , j !~21! l i1 l j #

3Ai j uRi~u/2!u2uRj~u/2!u2, ~20!

whereAi j is defined by Eq.~12b!.
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Exactly the same discussion as the coalescence func
h0(R) applies to the small-u behavior of the Hartree–Foc
d0(u), leading to the short-range expansion of the electro
electron counterbalance function:

d0~u!5CHF~122Zu!1O~u2!, ~21!

where the constantCHF is given by Eq.~14b!. We, therefore,
find that the cusp condition given by Eq.~17b! also holds for
the Hartree–Fock counterbalance function. Equation~18! is
also valid provided that the constantC is replaced withCHF.
For the long-range asymptotic behavior of the counterb
ance functiond0(u), we obtain

d0~u!'H exp@2~A22«1s1A22«2s!u#, for the Li atom

exp~22A22«hu!, otherwise
.

~22!

C. Approximate isomorphism

The relative and center-of-mass motions of two partic
are completely independent. For an atomic system, howe
comparison of the Hartree–Fock expressions forh0(R) and
d0(u), Eqs.~12a! and~20!, suggests an approximate isomo
phism

h0~R!>d0~2R!, ~23!

between the coalescence and counterbalance functions,
vided that the contributions of spin–orbital pairs with t
same spin andl i1 l j5odd are small. The equality in Eq.~23!
is rigorous forR50 as shown by Eq.~18!. All the cusp
relations @Eqs. ~10c! and ~17b!#, short-range expansion
@Eqs.~10a!, ~14a!, ~17a!, and~21a!#, and long-range behav
iors @Eqs.~15c! and~22!# of h0(R) andd0(u) are consistent
with the relation~23!. When Eq.~23! is combined with Eqs.
~6! and ~7!, we have

d~0!>8h~0!, ~24!

which was reported previously.15,16 If we introduce coales-
cence^Rn& and counterbalancêun& moments defined by

^Rn&54pE
0

`

dRRn12h0~R!/h~0!, ~25a!

^un&54pE
0

`

duun12d0~u!/d~0!, ~25b!

then Eqs.~23! and ~24! suggest an approximate proportio
ality relation

^un&>2n^Rn&, ~26!

between the two sets of moments.

III. NUMERICAL RESULTS FOR ATOMS HE
THROUGH LR

Using Eqs.~12a! and~20!, we have calculated the accu
rate Hartree–Fock values of the electron–electron coa
cenceh0(R) and counterbalanced0(u) functions, as well as
the associated moments^Rn& and ^un&, for the 102 neutral
atoms from He (Z52) to Lr (Z5103). For all the atoms, the
experimental ground electronic configurations andLS
terms34,35 were considered. The Hartree–Fock radial fun
on

–

l-

s
er,

ro-

s-

-

tions Rnl(r ) were generated by the numerical Hartree–Fo
method36,37 based on theMCHF72 program.38 The discretiza-
tion of the radial variabler was performed byr i5exp@xmin

1( i 21)h#/Z ( i 51,2,...,Np), where xmin526, h53/100,
andNp5295512. The moments were computed by nume
cal integrations.

Examination of the electron–electron coalescence fu
tions h0(R) for the 102 atoms shows that all the functio
are monotonically decreasing with increasingR; the coales-
cent electron pairs are most likely at the nuclear positi
The result is mainly due to the predominant contribution
the innermost 1s orbital, as expected from Eq.~12a!. More-
over, the coalescence functionh0(R) is more condensed
around the nucleus as the nuclear chargeZ increases. The
cusp relation, Eq.~10c!, is precisely fulfilled, since the nu
merical Hartree–Fock procedure37,38 imposes Eq.~13a! in
the construction of atomic radial functionsRnl(r ). Exactly
the same is true for the counterbalance functionsd0(u) of
the 102 atoms;d0(u) is a unimodal function with a maxi-
mum atu50 and satisfies the cusp relation~17b!. An ex-
ample of the functionsh0(R) andd0(u) is given in Fig. 1 for
the Te atom (Z552) which lies approximately at the cente
of the 102 atoms examined. Figure 1 also exemplifies
approximate isomorphismh0(R)>d0(2R) between the coa-
lescence and counterbalance functions observed in all
atoms. In particular, the equality is rigorous for the first thr
atoms He, Li, and Be, where onlys orbitals are occupied.

The peak valueh0(0)5d0(0) of the coalescence an
counterbalance functions corresponds to the probability d
sity for the electron–electron–nucleus coalescence. Figu

FIG. 1. The electron–electron coalescenceh0(R) and counterbalanced0(u)
functions for the Te atom (Z552).
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plots h0(0) as a function ofZ. If we consider two electrons
in an unscreened hydrogenic 1s orbital with nuclear charge
Z, theh0(0) value is found from Eq.~12a! to be proportional
to Z6. On the other hand, our regression analysis of the d
in Fig. 2 givesh0(0)>0.064 22Z6.164 with a correlation co-
efficient 1.0000. The result again supports the significanc
two electrons in the 1s orbital for the electron–electron coa
lescence and counterbalance functions.

The first moment̂ R& of the coalescence functionh0(R)
represents the average radius of coalescent electron
from the nucleus. As shown in Fig. 3, the average radius^R&
decreases monotonically with increasingZ or nuclear attrac-
tion; it is maximum ~0.424 bohrs! at Z52 and minimum
~0.024 bohrs! at Z5103. The hydrogenic 1s model predicts
that ^R& is proportional to Z21. However, a regression
analysis yieldŝ R&>0.4747Z20.6514with a correlation coef-
ficient 0.9965, and the contributions of coalescent elect
pairs other than the 1s electrons are not negligible. The co
responding moment̂ u& of the counterbalance functio
d0(u) represents the average interelectronic distance
counterbalanced electrons. Figure 3 shows that asZ in-
creases, the average distance^u& decreases monotonicall
with the maximum 0.849 bohrs atZ52 and the minimum
0.061 bohrs atZ5103. The increased nuclear binding r
duces the relative distance of the counterbalanced electr
As in the case of̂R&, the hydrogenic 1s model predictsZ21

dependence for̂u&, but our regression analysis results
^u&>1.003Z20.6088with a correlation coefficient 0.9980. W
have also examined the ratio^u&/^R& between the two aver
age distances. The ratio is 2 precisely for the first three

FIG. 2. TheZ-dependence of the electron–electron–nucleus coalesc
densityh0(0)5d0(0).
ta

of

irs

n

of

ns.

t-

oms, but is always greater than 2 for the remaining 99 ato
The average over the 102 atoms is 2.48, and the approxim
proportionality relation, Eq.~26!, is not very accurate.

IV. SUMMARY

Mathematical structure of the spherically averag
electron–electron coalescenceh0(R) and counterbalance
d0(u) functions has been studied for many-electron atom
In both the exact and Hartree–Fock frameworks, the sh
range behaviors of the functionsh0(R) andd0(u) have been
clarified. In particular, the cusp relationsh08(0)/h0(0)
524Z andd08(0)/d0(0)522Z have been derived theoret
cally. An approximate isomorphic relationh0(R)>d0(2R)
has also been obtained. Numerical examination of the
neutral atoms from He to Lr has shown that both the coa
cenceh0(R) and counterbalanced0(u) functions are mono-
tonically decreasing with a single maximum atR50 or u
50 for all the cases, due to the predominant contribution
the innermost 1s electrons. TheZ-dependence of the
electron–electron–nucleus coalescence densityh0(0)
5d0(0), theaverage radiuŝR& of the coalescent electrons
and the average interelectronic distance^u& of the counter-
balanced electrons has also been discussed.
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