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For many-electron atoms, spherically averaged electron—electron coalesbg(iR®e and
counterbalancey(u) functions are studied which, respectively, represent the probability densities
that any electron pairs with zero interelectronic distance are located at a Riffius the nucleus

and that any electron pairs with zero center-of-mass radius have a relative dist&oceghe exact

and Hartree—FockHF) wave functions, cusp relations)(0)/ho(0)=—4Z and d;(0)/dy(0)

= —2Z are derived theoretically, where the prime denotes the first derivativeZasdnuclear
charge. At the Hartree—Fock limit level, both functiohg(R) and dy(u) are found to be
monotonically decreasing with a single maximuniRat 0 oru=0 for all the 102 atoms He through

Lr. The long-range asymptotic behavior of the coalescence and counterbalance functions is
governed in general by the orbital energy of the highest occupied atomic orbitaD0@ American
Institute of Physics.[DOI: 10.1063/1.1331104

I. INTRODUCTION AND DEFINITIONS motion of electron pairs, on the other hand, the integration of

) ) ] ) » Eqg. (1) over u gives the extraculécenter-of-mass motion
The motion of two particles in space is specified by thedensityL‘?’

relative and center-of-mass coordinates. ForNaalectron

system (N=2), the probability density that any electron

pairs have a relative vectorand a center-of-mass vectBr E(R)= f dul’(u,R), (3a)
is given by

whose spherical average is

N—-1 N
F(u,R)=< ;1 j;ﬂ 5[u—(ri—rj)]5[R—(ri+rj)/2]>
d(R)=(4ﬂ-)’1J dQRE(R), (3b)

M =z

N—1
=<E 5[ri—(R+u/2)]§[rj—(R—u/2)]>,
=1 j 1
1) where R,{R) is the polar coordinates of the vect@r The
extracule densitieE(R) and d(R) were used to study the

whered(x) is the three-dimensional Dirac delta function andshell structure in some atoms and bonding characteristics in
the angular bracketé) stand for the expectation value over simple moleculegsee Refs. 2, 3, 8-11 and the references
the wave function¥ (x,,...,xy) with x;=(r;,0;) being the therein.
combined position—spin coordinates of the electiroli we A special valuel (0) =h(0) of the intracule densities is
are interested in the relative motion of electron pairs, theknown?~%¢ as the electron—electron coalescence density,
integration of Eq.(1) over R yields the intraculgrelative ~ which is the probability density of finding any two electrons
motion) density“e’ i andj precisely at the same position in three-dimensional
space orri=r;. The coalescence density appears in the
evaluation of the relativisti¢ and radiativé® corrections for
I(U)ZJ dRI(u.R), (23 atoms and molecules. The coalescence or Fermi tae
zero probability density exists for two electrons with the
whose spherical average is same spin. Correspondingly, a special vai(@)=d(0) of
the extracule densities is knowr®!® as the electron—
h(u)=(4w)’lf dQ,l(u), (2b) ele_(?tron cognterb_ala_nce density, which _repre_sents the prob-
ability density of finding any two electronsandj exactly at
. . the opposite positions with respect to the coordinate origin
where (1,0, is the polar coordinates of the vector The ;o ' the nucleus in atomsr r;= —r; in three-dimensional
intracule densitie$(u) andh(u) have been used in several gna0e |n the Hartree—Fock theory, the presence of electron—
physical and chemical contexts particularly in relation to theg|actron counterbalance holes is knddbetween two elec-

electron correlation problertsee Refs. 27 and the refer- s in spin—orbitals with the same spin and the same spa-
ences therein If we are concerned with the center—of—masstia| inversion symmetry.

T

In the present paper, we study the mathematical structure
dElectronic mail: koga@mmm.muroran-it.ac.jp and properties of electron—electron coalescelng¢®) and
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counterbalancé=y(u) functions, as well as their spherical [N
averagedho(R) anddy(u), which appear as two particular lo(R)={ 5 | | doydoadxs:--dxy
cases of the electron-pair densltyu,R) given by Eq.(1)

X|’\I,(R,G'1,R,0'2,X3,...,XN)|2. (Sb)

Io(R)=T'(O,R), 4 .
o(RI=T'(0R) “a For a small value of;=|r;|, Bingel showef that Kato’s

. cusp conditior? due to the electron—nucleus Coulomb sin-
ho(R)=(4) f dQrlo(R) (4D gularity in the Schidinger equation, implies

a.nd \I,(r]_,...,rN):\P(rl,...,ri_l,o,ri+1,...,rN)(l_Zri)

Eo(w=T'(u,0), (59 +ri-g+0(rf), (92)

. a=a(ry,...Ni—1.Fis1,---In), (9b)
do(u)=(4m) fdQqu(U)- (5b) , _ .

where the spin variables have been suppressed. Combining

The coalescence functiong(R) andho(R) describe the spa- Ed- (9) fori=1 andi=2 and puttingry=*r,=r, we have

tial distribution of electron pairs with zero relative vector W(r,£r,ra,. . i) =Y(0,0,rs,.... ) (1—2Zr)
distancg as a function of the center-of-mass ved®or its e e
radiusR. By definitions, we have +r-[a,(0,r3,...,Mn)

o + 2

f dRIO(R)=4Trf dRRh,(R)=1(0)=h(0),  (6) 003, I)]+O(F). (59
0 Substituting Eq.(9¢) with the plus sign into Eq(8b) and

which implies that the coalescence functions detail out théakmg the spherical average of Hgh), we obtain

spatial origin of the electron—electron coalescence density h,(R)=C(1-4ZR)+O(R?), (103

[(0)=h(0). The coalescence functiony(R) has been

used'~?*in the analysis of some density functional approxi- Where

mations. Analogously, the counterbalance functi@gu)

and dg(u) represent the distribution of electron pairs with

zero center-of-mass vectdor radiug as a function of the

relative vectoru or its magnitudeu. We immediately find

N
C=(47T)_1(z)fdaldazdx3---dx,\,

X|‘“P(0,O’1,0,0'2,X3,...,XN)|2. (10b)

f dqu(u)=477f0 dutPdo(u)=E(0)=d(0), (7)  Thus the exact electron—electron coalescence funboR)
satisfies a cusp relation

and that the counterbalance functions clarify the spatial ori- ,
gin of the electron—electron counterbalance deni(Q) ho(0)/hg(0) =~ 42, (100
=d(0). In thenext section, we examine the mathematicalyhere the prime means the first derivative. The right-hand-
structure of the coalescence and counterbalance functions fg[ye of Eq.(109) is precisely twice the value of the electron—
atoms mainly in the Hartree—Fock theory. It will be found , ,cleus cusp constant—2Z) knowr?>27 for the single-
that these functions satisfy cusp conditionsRat0 or u  glectron density(r).

=0 characterized by nuclear charge The long-range  Eor g single determinant wave function composed of a
asymptotic behavior of the functions, on the other hand, it of orthonormal spin—orbitalg;(r) (o), the Condon—

governed by the orbital energy of the highest occupied orgjater rulegsee, e.g., Ref. 3&earrange Eq(8a as
bital. In Sec. Ill, the numerical results are presented and

discussed for the 102 atoms from H&=£2) to Lr (Z NEX o
=103) based on the numerical Hartree—Fock calculations. lo(R)= ;1 .;rl [1_5s("J)]Wi(RHZWj(RNZv (11)
Hartree atomic units are used throughout. :
where &4(i,j) is unity if the spin—orbitals andj have the
same spin and is zero if they have the opposite spins.

Il MATHEMATICAL STRUCTURE OF COALESCENCE Namely, the coalescence functibg(R) is the sum of prod-

AND COUNTERBALANCE FUNCTIONS ucts of two orbital densitiels;(r)|? and|;(r)|*. Moreover,
two electrons in spin—orbitals with parallel spins do not con-
A. Electron—electron coalescence function tribute to the coalescence function.
The electron—electron coalescence functig(R), de- _ For atomic systems, we can generally assume that the
fined by Eq.(4a), is explicitly written as single-electron spatial functiog;(r) is expressed by a prod-

uct of the radialR,(r) and spherical harmoni;,(£,)
functions, wheren, |, andm denote the principal, azimuthal,
lo(R)= ;1 lziEH o(ri—=R)8(rj—R) /, (8a) and magnetic quantum numbers, respectively. Then the
' spherical averagby(R) of the coalescence function is ob-
or tained as

N-1 N
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N—-1 N
ho(R)= 2, J_:iZH [1- 841, IAR(RPIR|(R)]?,
(123
where
Aij:(477)7lf dQ|Y|imi(Q)|2|Y|jmj(9)|2
min(2li+2lj)
=(4m~2 > (2+Daim;hm),  (12b

in which a“(Im;1’m’) is the Condon—Shortley parametér.
Some explicit values of #A;; can be found in Ref. 16.

For a small value ofr, the radial functionR,(r) is
expandetf as

Z
1— ——r+0(r?)

Rnl(r)zcnlrI I+1

: (13a

wherec,, is a nonzero real constant. We then obtain

IRIOPRy ()7 =cfy ey r2i 2

1
RN —

X
+1 7 0+1

1-27

r+O(r2)}.

(13b

Therefore, we find that the leading contribution to the coa-
lescence functioy(R) for a smallR comes from combina-

tions of s-type orbitals and
ho(R)=Cpe(1—4ZR)+O(R?),

where

(14a

N-1 N
Cur= 2, 2 diodol 1= 81D)IA G oCho. (14D

in which §;; is the Kronecker’s delta. From E¢l4a, we

Toshikatsu Koga
N-1
]

N
> > 5(ri—u/2)§(rj+u/2)>, (163

=1 jSi+1

Eo(U):<

or
N
Eo(u):( 2) f dO'ldU'de3“'dXN

u u 2

\I’ E,O’l,_i,o'z,X3,...,XN)

X (16b)

If we apply Eq.(9¢) with the minus sign to Eq(16b) and
take the spherical average of E46b), we then obtain

do(u)=C(1—2Zu)+0(u?), (173

where the constanC is defined by Eq.(10b. From Eq.
(173, a cusp relation

dg(0)/do(0)=—22Z, (17b

follows immediately for the exact electron—electron counter-

balance functiordy(u). Further, comparison of Eq$10a
and (173 gives

ho(0)=do(0)=C, (18

corresponding to the probability density that any two elec-

trons are coalescent at the nuclear position.
For single determinant wave functions, EG63 is re-
written as

N-1 N

Eo(u)= 21 jziEH U (ui2) g (—ul2)

X[ (Wl2) gy (—ul2) = 85(i,]) ihi(— ul2) ¢hy(ul2) ].
(193

If the orbital ¢;(r) has spatial inversion symmetiy;(—r)
=(—1)Mig;(r) specified by an index;, Eq. (198 is sim-

immediately find that the Hartree—Fock coalescence functioplified to

ho(R) also satisfies the cusp relation given by E0.
For a large value of, the radial functiorR,,(r) has'=33
an asymptotic decay

Ry(r)y~exp ——2¢&pr), (159

M =z

PONEEEXNIEE

+1

N—-1
EO(U):; |

X | i (ul2)|2] o (ul2)|2. (19b)

in general, where, is the orbital energy of the highest oc- Apart from the factor ¢ 1), Eq. (19D for the counter-
cupied atomic orbital. An exception is balance function is analogous to Eg1l) for the coalescence
function, andEg(u) is also the sum of products of orbital
Ry(r)~exp —+—2eyr), 15b " 0
ni(r) ri. enif) _ (150 densities| ;(u/2)|? and |;(u/2)|%. We note that two elec-
when onlys orbitals are occupied. As long as the ground-trons in spin—orbitals with the same spin and the same in-
state neutral atoms are concerned, we thus obtain the longersion symmetry give no contribution to the counterbalance

range asymptotic behavior of(R) as
ho(R)

exfd —2(V—2e;s+V—2¢,9R], for the Li atom

- exp —4+—2&yR), otherwise
(150

B. Electron—electron counterbalance function

From Egs.(1) and (5a), the electron—electron counter-

balance functiorEy(u) reads

function.

For atomic system withpi(r):Rni|i(r)Y,imi(Qr), the
azimuthal quantum numbeér plays a role of the inversion
symmetry indexX\;, and the spherically averaged counterbal-
ance functiordy(u) is obtained to be

N—-1 N
do(w)=2, > [1-8(i,j)(—1)]
=1 j=i+1
XA |Ri(u/2)?|R;(ul2)|?,
whereA|; is defined by Eq(12b).

(20



J. Chem. Phys., Vol. 114, No. 1, 1 January 2001 Electron—electron coalescence 105

Exactly the same discussion as the coalescence functiol 25
ho(R) applies to the smallr behavior of the Hartree—Fock
do(u), leading to the short-range expansion of the electron—
electron counterbalance function:

do(U)=CH|:(1—ZZu)+O(u2), (22) 20} ‘

where the constar@ is given by Eq.(14b). We, therefore,
find that the cusp condition given by Ed.7b) also holds for

-
o
T

o)~ exf — (V—2e,s+\V—2e,4)u], forthe Liatom
0 exp(—2+y—2epu), otherwise '

the Hartree—Fock counterbalance function. Equati®) is %15 h(R)
also valid provided that the constadtis replaced withCyg. 3
For the long-range asymptotic behavior of the counterbal- = |\ | dolw)
ance functiondy(u), we obtain 2 L

[=4

N

g

£

(22)

C. Approximate isomorphism

The relative and center-of-mass motions of two particles
are completely independent. For an atomic system, however
comparison of the Hartree—Fock expressionshgiR) and
do(u), Egs.(128 and(20), suggests an approximate isomor-
phism 0 0.005 001 0015 0.02 0025

ho(R)=do(2R), (23 R or u/2

between the coalescence and counterbalance functions, pfgS: 1+ The electron—electron coalescehgéR) and counterbalana(u)
vided that the contributions of spin—orbital pairs with the tinctions for the Te atom4=52).

same spin any +1;=odd are small. The equality in E3)

is rigorous forR=0 as shown by Eq(18). All the cusp

relations [Egs. (100 and (17b)], short-range expansions )

[Egs.(10a, (143, (178, and(213], and long-range behav- tions Rn,6(£7) were generated by the num3e8r|cal ngtree_—Fock
iors [Egs. (150 and(22)] of hy(R) andd,(u) are consistent r_netho& : bas_ed on_theACHF72 program:® The discretiza-
with the relation(23). When Eq.(23) is combined with Egs. tion of the radial variable was performed by ;= exfXnin

(6) and (7), we have +(i—1)h)/Z (i= 1,2,...Np), where X,i,= — 6, h=3/100, _
ande=29=512. The moments were computed by numeri-
d(0)=8h(0), (249 cal integrations.
which was reported previousty:*® If we introduce coales- Examination of the electron—electron coalescence func-

Cenee(Rn> and COU”terba'ano@J”) moments defined by tionS ho(R) fOI’ the 102 atoms ShOWS that a” the fUnCtionS
are monotonically decreasing with increasiRgthe coales-

(R”)=4wfwdRR‘+2ho(R)/h(0), (253 cent electrpn pa_irs are most likely at t_he nuclear_ pqsition.
0 The result is mainly due to the predominant contribution of
. the innermost & orbital, as expected from E¢l29. More-
<un>:477f duu*2dy(u)/d(0), (250  over, the coalescence functidm(R) is more condensed
0 around the nucleus as the nuclear chaZgmcreases. The
cusp relation, Eq(100), is precisely fulfilled, since the nu-

then Egs.(23) and(24) suggest an approximate proportion-
0s(23) (24) sugg PP prop merical Hartree—Fock proceddfeé® imposes Eq.(13a in

ality relation ; ] . )
. - the construction of atomic radial functioi, (r). Exactly
(uM=2"(R"), (26)  the same is true for the counterbalance functidg&u) of

mum atu=0 and satisfies the cusp relatioh7b). An ex-
ample of the functionby(R) anddy(u) is given in Fig. 1 for
the Te atom Z=52) which lies approximately at the center
of the 102 atoms examined. Figure 1 also exemplifies the
Using Egs.(128 and(20), we have calculated the accu- approximate isomorphising(R)=dy(2R) between the coa-
rate Hartree—Fock values of the electron—electron coaledescence and counterbalance functions observed in all the
cencehy(R) and counterbalanag,(u) functions, as well as atoms. In particular, the equality is rigorous for the first three
the associated momen¢(R") and(u"), for the 102 neutral atoms He, Li, and Be, where onfyorbitals are occupied.
atoms from He Z=2) to Lr (Z=103). For all the atoms, the The peak valuehy(0)=dy(0) of the coalescence and
experimental ground electronic configurations ah&d  counterbalance functions corresponds to the probability den-
terms*3® were considered. The Hartree—Fock radial func-sity for the electron—electron—nucleus coalescence. Figure 2

IIl. NUMERICAL RESULTS FOR ATOMS HE
THROUGH LR
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FIG. 2. TheZ-dependence of the electron—electron—nucleus coalescen

densityho(0) = do(0). %iG. 3. TheZ-dependence of the average radig® of the coalescent elec-

trons and of the average interelectronic distafigeof the counterbalanced
electrons.

plots hy(0) as a function ofZ. If we consider two electrons  oms, but is always greater than 2 for the remaining 99 atoms.

in an unscreened hydrogenis brbital with nuclear charge The average over the 102 atoms is 2.48, and the approximate

Z, thehy(0) value is found from Eq(124 to be proportional  proportionality relation, Eq(26), is not very accurate.

to Z8. On the other hand, our regression analysis of the data

in Fig. 2 giveshy(0)=0.064 2Z%%with a correlation co- |y SUMMARY

efficient 1.0000. The result again supports the significance of

two electrons in the 4 orbital for the electron—electron coa- Mathematical structure of the spherically averaged

lescence and counterbalance functions. electron—electron coalescendg(R) and counterbalance
The first momentR) of the coalescence functidm(R) do(u) functions has been studied for many-electron atoms.

represents the average radius of coalescent electron paif both the exact and Hartree—Fock frameworks, the short-

from the nucleus. As shown in Fig. 3, the average radRjs ~ range behaviors of the functiohg(R) anddy(u) have been

decreases monotonically with increasifigr nuclear atrac-  clarified. In particular, the cusp relation(0)/ho(0)

tion; it is maximum (0.424 bohrs at Z=2 and minimum = —4Z anddg(0)/dy(0)=—2Z have been derived theoreti-

(0.024 bohrsat Z=103. The hydrogenic £ model predicts ~ cally. An approximate isomorphic relatidm(R)=d,(2R)
that (R) is proportional toZ~1. However, a regression has also been obtained. Numerical examination of the 102

analysis yieldg R)=0.4747Z %514 with a correlation coef- Neutral atoms from He to Lr has shown that both the coales-

ficient 0.9965, and the contributions of coalescent electro§€nceho(R) and counterbalancey(u) functions are mono-
pairs other than theslelectrons are not negligible. The cor- fonically decreasing with a single maximum Rt=0 or u
responding momentu) of the counterbalance function =0 for all the cases, due to the predominant contribution of
do(u) represents the average interelectronic distance ohe innermost & electrons. TheZ-dependence of the
counterbalanced electrons. Figure 3 shows thaizas-  electron—electron—nucleus coalescence denstty(0)
creases, the average distar{e® decreases monotonically =do(0), theaverage radiu¢R) of the coalescent electrons,
with the maximum 0.849 bohrs a@=2 and the minimum @and the average interelectronic distafoe of the counter-
0.061 bohrs aZ=103. The increased nuclear binding re- balanced electrons has also been discussed.
duces the relative distance of the counterbalanced electrons.
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