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For many-electron systems, the generalized electron-pair density functiong(q;a,b) represents the
probability density function for the magnitudeuar i1br j u of two-electron vectorar i1br j to beq,
where a and b are real-valued parameters. For Hartree–Fock wave functions, decomposition of
g(q;a,b) into spin–orbital-pair componentsgi j (q;a,b) shows that the second moments^q2& (a,b)

i j ,
associated withgi j (q;a,b), satisfy several rigorous sum rules which connect one- and two-electron
properties of spin–orbitalsi and j. The same is also true in momentum space. As an illustrative
application, the orbital kinetic energies of the Rn atom are separated into the relative motion and
center-of-mass motion contributions of electrons in two relevant orbitals. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1367371#
-

d

le

c-
the

en-

ace

the

on-
in–
ell
ter-
ces
tum
us-
I. INTRODUCTION

In recent papers, we have studied1,2 a generalized
electron-pair density functiong(q;a,b) defined by

g~q;a,b![~4pq2!21K (
i 51

N21

(
j 5 i 11

N

d~q2uar i1br j u!L ,

~1!

wherea and b are real-valued parameters,d(x) is the one-
dimensional Dirac delta function, and the angular brackets^ &
stand for the expectation value over theN-electron (N>2)
wave functionC(x1 ,...,xN) with xi[(r i ,s i) being the com-
bined position-spin coordinates of the electroni. The gener-
alized electron-pair densityg(q;a,b) represents the prob
ability density function for the magnitudeuar i1br j u of two-
electron vectorar i1br j of any pair of electronsi andj to be
q, and is normalized toN(N21)/2, the number of electron
pairs. It has been shown2 that the functiong(q;a,b) con-
nects smoothly the single-electron density3 r(r ), the
electron-pair intracule~relative motion! density4–8 h(u), and
the electron-pair extracule ~center-of-mass motion!
density4–8 d(R). Namely,

g~q;1,21!5h~q!, g~q;1,0!5
N21

2
r~q!,

~2!

g~q;1,11!5
1

8
dS q

2D .

If we define momentŝqk& (a,b) of the densityg(q;a,b)
by

^qk&~a,b![4pE
0

`

dq qk12g~q;a,b!

5K (
i 51

N21

(
j 5 i 11

N

uar i1br j ukL , ~3!

we then find
8380021-9606/2001/114(19)/8382/4/$18.00
^qk&~1,21!5^uk&, ^qk&~1,0!5
N21

2
^r k&,

~4!
^qk&~1,11!52k^Rk&,

corresponding to Eq.~2!, and all the single-electron̂r k&,
intracule ^uk&, and extraculê Rk& moments are generate
from the generalized electron-pair moments^qk& (a,b) . In ad-
dition, it has been found9 that there exists a rigorous sum ru
for the second generalized electron-pair moments^q2& (a,b) :

^q2&~a,b!1^q2&~a,2b!5~a21b2!~N21!^r 2&, ~5!

which is valid for both exact and approximate wave fun
tions of any atoms and molecules. It is interesting that
right-hand side of Eq.~5! is a single-electron property, while
the left-hand side is a two-electron property ifaÞ0 andb
Þ0. For a special case ofa5b51, Eq. ~5! reads

^u2&14^R2&52~N21!^r 2&. ~6!

Namely, the sum of the second intracule^u2& and extracule
^R2& moments~the latter multiplied by 4! is exactly identical
with the second single-electron moment^r 2& multiplied by
2(N21).

When we introduce the corresponding electron-pair d
sity ḡ(t;a,b) and associated moments^tn& (a,b) in momentum
space, exactly the same discussion as in position sp
results9 in the momentum-space counterparts of Eqs.~5! and
~6!.

In the present paper, we discuss decomposition of
generalized electron-pair densityg(q;a,b) and its second
moment ^q2& (a,b) into spin–orbital-pair contributions
gi j (q;a,b) and ^q2& (a,b)

i j , respectively, within the Hartree–
Fock framework. Several sum rules are derived which c
nect one- and two-electron properties associated with sp
orbitals i and j. For atomic systems, sum rules for subsh
contributions are also obtained. The isomorphism of de
minantal wave functions in position and momentum spa
leads that exactly the same sum rules hold in momen
space as well. An application of the present results is ill
2 © 2001 American Institute of Physics
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trated for the separation of the orbital kinetic energies of
Rn atom into the relative motion and center-of-mass mot
contributions of electrons in two relevant orbitals. Hartr
atomic units are used throughout.

II. SUM RULES FOR HARTREE–FOCK ORBITALS

A. Position space

For an N-electron determinantal wave function com
posed of a set of orthonormal spin–orbitalsc i(r )h i(s), the
electron-pair densityg(q;a,b), defined by Eq.~1!, is rewrit-
ten as

g~q;a,b!5 (
i 51

N21

(
j 5 i 11

N

gi j ~q;a,b!, ~7a!

gi j ~q;a,b!5~4pq2!21^c i~r1!c j~r2!u 1
2@d~q2uar11br2u!

1d~q2ubr11ar2u!#

3uc i~r1!c j~r2!2ds~ i , j !c j~r1!c i~r2!&, ~7b!

where the angular brackets abbreviate the integrations
r1 and r2 , and the spin integralds( i , j ) is unity if the spin–
orbitalsi andj have the same spin and is zero if they have
opposite spins. Corresponding to Eqs.~7a! and~7b!, the gen-
eralized electron-pair moments^qk& (a,b) are decomposed as

^qk&~a,b!5 (
i 51

N21

(
j 5 i 11

N

^qk&~a,b!
i j , ~8a!

^qk&~a,b!
i j [4pE

0

`

dq qk12gi j ~q;a,b!

5^c i~r1!c j~r2!u 1
2@ uar11br2uk1ubr11ar2uk#

3uc i~r1!c j~r2!2ds~ i , j !c j~r1!c i~r2!&. ~8b!

For a particular case ofk52, the moment operator in Eq
~8b! satisfies an identity
1
2@ uar11br2u21ubr11ar2u2#

5 1
2~a21b2!~r 1

21r 2
2!12abr1•r2 , ~9!

wherer i5ur i u. We then find from Eq.~8b! that

^q2&~a,b!
i j 5 1

2~a21b2!@^r 2& i1^r 2& j #

12ab@^r & i i •^r & j j 2ds~ i , j !u^r & i j u2#, ~10a!

where

^r & i j 5E dr c i* ~r !rc j~r !. ~10b!

Therefore, Eqs.~10! for ^q2& (a,b)
i j and ^q2& (a,2b)

i j generate a
rigorous sum rule

^q2&~a,b!
i j 1^q2&~a,2b!

i j 5~a21b2!@^r 2& i1^r 2& j #, ~11!

for the second generalized electron-pair moments assoc
with the spin–orbitalsi and j. Summation of Eq.~11! over
1< i , j <N results in Eq.~5!. For any values of the param
etersa andb and any pairs of spin–orbitalsi and j, Eq. ~11!
e
n

er

e

ted

shows that the sum of two symmetric electron-pair mome
^q2& (a,b)

i j and^q2& (a,2b)
i j is equal to a single-electron proper

^r 2& i1^r 2& j multiplied by a21b2. For any two sets of pa-
rameters (a,b) and (a8,b8), Eq. ~11! also gives

^q2&~a,b!
i j 1^q2&~a,2b!

i j

a21b2 5
^q2&~a8,b8!

i j
1^q2&~a8,2b8!

i j

a821b82 . ~12!

Note that Eqs.~11! and ~12! are valid for both exact and
approximate Hartree–Fock wave functions, since they or
nate from the operator identity, Eq.~9!, not from a particular
property of spin–orbitals.

For a special case ofa5b51, Eq. ~11! reads

^u2& i j 14^R2& i j 52@^r 2& i1^r 2& j #. ~13!

Namely, the sum of the second intracule^u2& i j and extracule
^R2& i j moments~the latter multiplied by 4!, associated with
the spin–orbitalsi and j, is exactly twice the sum of the
second single-electron moments^r 2& i and ^r 2& j of the rel-
evant two spin–orbitals. Equation~13! enables us to separat
the sum of orbital single-electron moments into the relat
motion and center-of-mass motion contributions in a prec
manner.

When the system under consideration has spatial in
sion symmetry, we can also derive a direct relation betw
^q2& (a,b)

i j , instead of the symmetric sum, and single-electr
orbital moments. If the spatial functionc i(r ) has inversion
symmetryc i(2r )5(21)l ic i(r ) specified by an indexl i ,
the first term^r & i i •^r & j j in the brackets after the coefficien
2ab in Eq. ~10a! vanishes. The second termds( i , j )u^r & i j u2 is
also zero, if the spin–orbitalsi and j have different spins or
their spatial inversion symmetries are the same,c i(2r )
3c j (2r )5c i(r )c j (r ). In this particular case, Eq.~10a! is
simplified to

^q2&~a,b!
i j 5 1

2~a21b2!@^r 2& i1^r 2& j #, ~14a!

which further yields

^u2& i j 54^R2& i j 5^r 2& i1^r 2& j , ~14b!

for the spin–orbital-pair intracule and extracule mome
when a51 andb561. The relative motion and center-o
mass motion contributions in Eq.~13! are the same in this
case. When the spin–orbitalsi and j belong to the same
subshellnl of an atom, wheren and l are the principal and
azimuthal quantum numbers, Eqs.~14a! and ~14b! always
hold as well as an equalitŷr 2& i5^r 2& j . We then have

^q2&~a,b!
nl 5 1

2~a21b2!~Nnl21!^r 2&nl , ~15a!

^u2&nl54^R2&nl5~Nnl21!^r 2&nl , ~15b!

where our subshell normalization iŝq0& (a,b)
nl 5Nnl(Nnl

21)/2 and^r 0&nl5Nnl , in which Nnl(>2) is the number of
electrons in the subshellnl. Equation ~15b! was also re-
ported in Ref. 10.

B. Momentum space

The Hartree–Fock wave function in momentum spa
has exactly the same determinantal structure as in pos
space, provided the single-electron spatial functionc i(r ) is
replaced with
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f i~p!5~2p!23/2E dr exp~2 ip•r !c i~r !. ~16!

Then the spin–orbital-pair componentsḡi j (t;a,b) and
^tk& (a,b)

i j of the generalized electron-pair densityḡ(t;a,b)
and momentŝ tk& (a,b) in momentum space satisfy variou
relations discussed above in position space, if the varia
and functions are replaced appropriately. An exception
that the orbital densityP i(p)[uf i(p)u2 in momentum space
has even inversion symmetryP i(2p)5P i(p) for any atoms
and molecules. Therefore, the^p& i i •^p& j j term is absent in
the momentum-space counterpart of Eq.~10a!.

Some explicit forms of the spin–orbital-pair sum rules
momentum space are

^t2&~a,b!
i j 1^t2&~a,2b!

i j 5~a21b2!@^p2& i1^p2& j #, ~17a!

^v2& i j 14^P2& i j 52@^p2& i1^p2& j #, ~17b!

for any two spin–orbitals, and

^t2&~a,b!
i j 5 1

2~a21b2!@^p2& i1^p2& j #, ~18a!

^v2& i j 54^P2& i j 5^p2& i1^p2& j , ~18b!

for two spin–orbitals with the same inversion symmet
wherep, v, andP are the momentum-space single-electro
intracule, and extracule radii, respectively. Even when t
spin-orbitals have different inversion symmetries, Eqs.~18a!
and ~18b! are valid for Hartree wave functions where the
are no exchange terms. Equation~17! is of our special inter-
est, since the second single-electron moment^p2& i appearing
on the right-hand side is just twice the electronic kine
energyTi5^p2& i /2 of the spin–orbitali. When Eq.~17b! is
applied, the sumTi1Tj of the orbital kinetic energies is
precisely decomposed into two contributions from the re
tive ~intracule! and center-of-mass~extracule! motions of an
electron pair. Some numerical results will be presented in
next section.

We note that comparison of Eqs.~11! and~17a! gives an
additional rigorous relation

@^p2& i1^p2& j #@^q
2&~a,b!

i j 1^q2&~a,2b!
i j #

5@^r 2& i1^r 2& j #@^t
2&~a,b!

i j 1^t2&~a,2b!
i j #, ~19a!

which connects one- and two-electron moments in posi
and momentum spaces. If we consider all the spin–orbitai
andj belonging to the same subshellnl of an atom, Eq.~19a!
is simplified to

^p2&nl^q
2&~a,b!

nl 5^r 2&nl^t
2&~a,b!

nl , ~19b!

for any values ofa andb.

III. AN ILLUSTRATIVE APPLICATION

According to Eq.~17b!, the sum of two orbital kinetic
energies is exactly decomposed into the intracule and ex
cule contributions as

Ti1Tj5Tint
i j 1Text

i j , ~20a!

where

Tint
i j 5 1

4^v2& i j , Text
i j 5^P2& i j . ~20b!
es
is

,
,
o

-

e

n

a-

If the Hartree orbitals are considered or if the Hartree–Fo
orbitalsi andj have the same inversion symmetry in mome
tum space,f i(2p)f j (2p)5f i(p)f j (p), then we have

Tint
i j 5Text

i j 5 1
2~Ti1Tj !, ~20c!

from Eq. ~18b! and the intracule contribution is equal to th
extracule one. In atomic systems, Eq.~20c! holds when the
sum l i1 l j of the azimuthal quantum numbers of tw
Hartree–Fock spin–orbitals is even.

We have examined the intracule and extracule contri
tions in the orbital kinetic energies for the Rn atom~atomic
number 86!, in which 15 subshells, 1s to 6s, 2p to 6p, 3d
to 5d, and 4f , are fully occupied. We have 3655 electro
pairs in total, but the associated orbital kinetic energy pa
are classified into 120 different cases specified by two s
shells nl and n8l 8. Among them, 66 subshell pairs withl
1 l 85even haveTint

i j /Text
i j 51 due to Eq.~20c!. The 1807

electron pairs in this category thus have exactly the sa
kinetic energy contributions from the relative and center-
mass motions. For the remaining 54 subshell pairs witl
1 l 85odd ~which include 1848 electron pairs!, we have ob-
tained the ratioTint

i j /Text
i j from numerical Hartree–Fock calcu

lations. The results are summarized in Table I in the
scending order of theTint

i j /Text
i j values. We find in the table

that Tint
i j /Text

i j >1 with no exceptions, which implies that th
relative motion contribution is never smaller than the cent
of-mass motion contribution in any pairs of the orbital k
netic energies. Though there are many exceptions, the
Tint

i j /Text
i j is generally larger whenu l 2 l 8u51 and un2n8u is

TABLE I. Ratios between the relative motion and center-of-mass mo
contributions in the orbital kinetic energies of the Rn atom. The magn
and spin quantum numbers are not specified for the spin–orbitals, since
allowed values give the identical result.

No. i j Tint
i j /Text

i j No. i j Tint
i j /Text

i j

1 1s 2p 1.120 29 28 3p 5s 1.002 68
2 2p 3d 1.065 83 29 5s 6p 1.002 22
3 2s 3p 1.063 22 30 3d 4p 1.002 07
4 3s 4p 1.033 53 31 4p 6s 1.001 93
5 3d 4f 1.031 68 32 2p 5d 1.001 93
6 1s 3p 1.023 48 33 2p 4s 1.001 89
7 3p 4d 1.023 00 34 3s 3p 1.001 65
8 6s 6p 1.021 39 35 3p 3d 1.001 64
9 5p 5d 1.018 17 36 4s 6p 1.001 64

10 2s 4p 1.015 91 37 1s 5p 1.001 15
11 4p 5s 1.014 08 38 4f 5d 1.001 10
12 4s 5p 1.013 26 39 3s 6p 1.000 81
13 3p 4s 1.012 68 40 2p 5s 1.000 42
14 2p 4d 1.012 61 41 4d 6p 1.000 41
15 5p 6s 1.012 14 42 3p 6s 1.000 38
16 5s 5p 1.011 44 43 3d 5p 1.000 37
17 4d 4f 1.008 54 44 2s 6p 1.000 35
18 2p 3s 1.007 73 45 2s 2p 1.000 33
19 3s 5p 1.007 36 46 1s 6p 1.000 12
20 4p 4d 1.006 94 47 2p 6s 1.000 06
21 1s 4p 1.005 78 48 3d 6p 1.000 04
22 4s 4p 1.004 92 49 1s 4f 1.000 00
23 4d 5p 1.004 06 50 2s 4f 1.000 00
24 5d 6p 1.004 00 51 3s 4f 1.000 00
25 3p 5d 1.003 96 52 4s 4f 1.000 00
26 4p 5d 1.003 94 53 4f 5s 1.000 00
27 2s 5p 1.003 28 54 4f 6s 1.000 00
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small. The largest value is 1.120 29 for the 1s2p electron
pairs, and the intracule contribution occupies 52.8% of
orbital kinetic energy sumT1s1T2p . The exchange effect
appeared in the orbital kinetic energies, is largest for th
electron pairs. On the other hand,Tint

i j /Text
i j is essentially unity

for thes f electron pairs withu l 2 l 8u53. When summed ove
all 1< i , j <N, the ratioTint /Text between the total intracule
Tint and extraculeText contributions is 1.008 91.

IV. SUMMARY

For Hartree–Fock wave functions, the generaliz
electron-pair density functiong(q;a,b) has been decom
posed into spin–orbital-pair componentsgi j (q;a,b). Then
the second momentŝq2& (a,b)

i j , associated withgi j (q;a,b),
have been shown to satisfy several rigorous sum rules w
connect one- and two-electron properties of spin–orbitai
and j. The same is also true in momentum space. An ap
e

e

d

ch

i-

cation of the present results has been illustrated for the r
tive motion and center-of-mass motion decomposition of
orbital kinetic energies of the Rn atom.
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