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Sum rules for generalized electron-pair moments of Hartree—Fock orbitals

I. INTRODUCTION

Toshikatsu Koga
Department of Applied Chemistry, Muroran Institute of Technology, Muroran, Hokkaido 050-8585, Japan

(Received 17 January 2001; accepted 2 March 2001

For many-electron systems, the generalized electron-pair density fuiipa,b) represents the
probability density function for the magnitudar; + br;| of two-electron vectoar;+ br; to beq,
wherea and b are real-valued parameters. For Hartree—Fock wave functions, decomposition of
g(g;a,b) into spin—orbital-pair componentg! (q;a,b) shows that the second momem:z) (a.b) »
associated witly' (q;a,b), satisfy several rigorous sum rules which connect one- and two-electron
properties of spin—orbitalsandj. The same is also true in momentum space. As an illustrative
application, the orbital kinetic energies of the Rn atom are separated into the relative motion and
center-of-mass motion contributions of electrons in two relevant orbitals.20@1L American
Institute of Physics.[DOI: 10.1063/1.1367371

k k k N-1
) i (A 1,-1=(U), (a910= 2 (r,
In recent papers, we have studiéda generalized @
electron-pair density functiog(q;a,b) defined b 4
p y 0(g;a,b) y (@) 1.41,=25RY),
b)=(4 5(q Sbri]) ), corresponding to Eq(2), and all the single-electrofr®),
9(q:a.b)=(4mq’) Zl ,§|:+1 ~lar r]|) intracule(u") and extraculg/R) moments are generated

(1)  from the generalized electron-pair mome(rq§>(a by - In ad-
dition, it has been fourfthat there exists a rigorous sum rule

wherea andb are real-valued parameter(x) is the one-  for the second generalized electron-pair momeége a )
dimensional Dirac delta function, and the angular brackgts

stand for the expectation value over tNeelectron (N=2) (0¥ (am+{(a% @ —p=(a2+b?)(N=1)(r?), (5)
wave function¥ (x, ... Xy) With x;=(r;,o;) being the com-

bined position-spin coordinates of the electioffhe gener-
alized electron-pair densitg(q;a,b) represents the prob-

which is valid for both exact and approximate wave func-
tions of any atoms and molecules. It is interesting that the

ability density function for the magnitudar;+br;| of two-  fight-hand side of Eq(5) is a single-electron property, while
electron vectoar; + br; of any pair of electronsandj to be ~ the left-hand side is a two-electron propertyait-0 andb
g, and is normalized t?N(N—1)/2, the number of electron #0. For a special case af=b=1, Eq.(5) reads

pairs. It has been shownhat the functiong(q;a,b) con-
nects smoothly the single-electron density(r), the
electron-pair intraculérelative motion density~®h(u), and Namely, the sum of the second intracdlé?) and extracule

electron-pair  extracule (center-of-mass  motion
density 8 d(R). Namely,

the

(U?)+4(R%)=2(N—1)(r?). (6)

(R?) momentg(the latter multiplied by #is exactly identical
with the second single-electron moment) multiplied by
2(N—-1).

N—-1 , : .
1 -1)= . - - When we introduce the corresponding electron-pair den-
9(q;1,-1)=h(a), 9(q;1,0=-——p(q),

sity g(t;a,b) and associated momen(ts) , ) in momentum
(2 space, exactly the same discussion as in position space
results in the momentum-space counterparts of E§sand

1
9(q:1.+1)=§d(g)- (6).

If we define moment$qk>(a,b) of the densityg(q;a,b)

by

<qk><a,b>E4WL dq d*2g(q;a,b)

N—-1 N
=< DD |ari+brj|k>,
S5

we then find
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In the present paper, we discuss decomposition of the
generalized electron—pair densig(q;a,b) and its second
moment {q? )by into spin—orbital-pair contributions

g'(qg;a,b) and(qz)(a by, respectively, within the Hartree—

Fock framework. Several sum rules are derived which con-
nect one- and two-electron properties associated with spin—
orbitalsi andj. For atomic systems, sum rules for subshell

contributions are also obtained. The isomorphism of deter-
minantal wave functions in position and momentum spaces
leads that exactly the same sum rules hold in momentum
space as well. An application of the present results is illus-
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trated for the separation of the orbital kinetic energies of theshows that the sum of two symmetric electron-pair moments

Rn atom into the relative motion and center-of-mass motlor(q2>" b) and(qz)J

_p) Is equal to a single-electron property

contributions of electrons in two relevant orbitals. Hartree(rz),ﬂrZ)J multlphed by a®+b?. For any two sets of pa-

atomic units are used throughout.

II. SUM RULES FOR HARTREE-FOCK ORBITALS
A. Position space

For an N-electron determinantal wave function com-
posed of a set of orthonormal spin—orbitaigr) »;(o), the
electron-pair densitg(q;a,b), defined by Eq(1), is rewrit-
ten as

N—-1 N
gaab)=2 > d'(@ab), (72)

g'(g;a,b)=(47q%) "N hi(ro) ¢i(ro)| 3 8(q—|ar, +bry|)
+8(q—|bry+ar,|)]

X[ i(r) ¢ (ra) = 8s(1,)) j(r) ehi(r2)),  (7b)

. . . m
where the angular brackets abbreviate the integrations over

r, andr,, and the spin integrads(i,j) is unity if the spin—
orbitalsi andj have the same spin and is zero if they have the
opposite spins. Corresponding to E¢&) and(7b), the gen-
eralized electron-pair momen{tqk)(avb) are decomposed as

N-1 N

(0 (a)= |=21 j=§i;rl <qk>i(ja,b), (8a

<qk>i<ja,b>54ﬂf0 dq d2g'(g;a,b)

=(i(r) g(ro)| 3l |ary +bry/*+|bry+ar,|¥]

X[i(ro)j(ra) = 8s(i,)) ¢ (r1) ¢i(r5)). (8b)

For a particular case &= 2, the moment operator in Eq.
(8b) satisfies an identity

I |ar,+bry|2+|br;+ar,|?]

=4(a?+b?)(r2+r3)+2abry-r,, (9
wherer;=|r;|. We then find from Eq(8b) that
<q2>(a b =12(a 2+ b?)[(r2)i+(r?);]
+2ab[(r);i-(r);— 8(L.HIr)yl?l, (108
where
<r>ij:f dr i (r)ra(r). (10b)

Therefore, Eqs(10) for (g2){, ;) and(g?)(, _,, generate a
rigorous sum rule

(O H (A2 5y =(@%+DD[(r2)+(r?)], (1)

rameters ,b) and @’,b’), Eq.(11) also gives

(g? >(ab +<q2>(a —b) _ (9? >(a b') +(q? >(a —b")
2+b2 72+b/2 .

Note that Egs(11) and (12) are valid for both exact and
approximate Hartree—Fock wave functions, since they origi-
nate from the operator identity, E(Q), not from a particular
property of spin—orbitals.

For a special case @f=b=1, Eq.(11) reads

<U2>ij+4<R2>ij:2[<r2>i+<r2>1]- (13
Namely, the sum of the second intracti€?)!! and extracule
(R?)I moments(the latter multiplied by % associated with
the spin—orbitals and j, is exactly twice the sum of the
second single-electron momen(ts’); and (r?); of the rel-
evant two spin—orbitals. Equatigf3) enables us to separate
the sum of orbital single-electron moments into the relative
motion and center-of-mass motion contributions in a precise
anner.

When the system under consideration has spatial inver-
sion symmetry, we can also derive a direct relation between
(q )(a by» instead of the symmetric sum, and single-electron
orbital moments. If the spatial functiog;(r) has inversion
symmetry;(—r)=(—1)y;(r) specified by an index;,
the first term(r);;-(r);; in the brackets after the coefficient
2ab in Eq. (104 vanishes. The second temdy(i,j)|(r);;|? is
also zero, if the spin—orbitaisandj have different spins or
their spatial inversion symmetries are the sanig,—r)

X i(—r)=i(r)¢;(r). In this particular case, Eq103 is
simplified to

(12)

(020 = 3(@2+bH[(r?)+(r?);], (14a
which further yields
(u)T=4(R?)T=(r?);+(r?);, (14b

for the spin—orbital-pair intracule and extracule moments
whena=1 andb= *1. The relative motion and center-of-
mass motion contributions in Eq13) are the same in this
case. When the spin—orbitalsand j belong to the same
subshellnl of an atom, wheran and| are the principal and
azimuthal quantum numbers, Eqd4a and (14b) always
hold as well as an equalitfr?);=(r?); . We then have

<q2>(ab) 3(a?+b?)(Npy—1)(r?)p,, (153
(UM =4(RA)M=(Np—1)(r%)p, (15b
where our subshell normalization |$q°)(ab) Nni(Np

—1)/2 and(r® =Ny, in whichN,(=2) is the number of
electrons in the subsheﬂl. Equation (15b was also re-
ported in Ref. 10.

B. Momentum space

for the second generalized electron-pair moments associated The Hartree—Fock wave function in momentum space

with the spin—orbitals andj. Summation of Eq(11) over
1<i<j=N results in Eq(5). For any values of the param-
etersa andb and any pairs of spin—orbitalsandj, Eq. (11

has exactly the same determinantal structure as in position
space, provided the single-electron spatial functie(r) is
replaced with
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TABLE |. Ratios between the relative motion and center-of-mass motion
¢i(p)= (ZW)—S/ZJ’ dr eX[(— i p- r)lpi(r)_ (16) contributions in the orbital kinetic energies of the Rn atom. The magnetic
and spin quantum numbers are not specified for the spin—orbitals, since any
The.n the spin—orbital-pair componenEj (t;a,b) and allowed values give the identical result.
(t9{,p) Of the generalized electron-pair densityt;a,b) No. i i T 7l

K . . . int' 'ext No. ! J TELt/Tiejxt
and momentg(t*), p) I Momentum space satisfy various
relations discussed above in position space, if the variables * 1S~ 2p 112029 28 % 55 100268
d functions are replaced appropriately. An exception is 2 2p 3 106583 29 3 o0 L0022
an _ ep ppropriately. P 3 25 3p 106322 30 @ 4p  1.00207
that the orbital densityl;(p)=|¢i(p)|* in momentum space 4 3 4p 103353 31 $# 6s 100193
has even inversion symmetty; (—p) =1I1I;(p) for any atoms 5 3d 4f 1.03168 32 b 5d  1.00193
and molecules. Therefore, th@); - (p);; term is absent in 6 Is 3p 102348 33 p 4s 100189
the momentum-space counterpart of Fia). 7 % 4d 102300 34 8 3p 100165
Some explicit forms of the spin—orbital-pair sum rules in 8 s Op 102139 % ® 3d 100164
p p p 9 5p 5d 101817 36 4 6p 100164
momentum space are 10 2s 4p 101591 37 5 5p  1.00115
. i 11  4p 55 101408 38 4 5d 100110
2\ij 2\ij — (a2 2 2\ 2\
() ap T ()@ -n=(@+0)(pTi+(p9);l, (173 12 4 5p 101326 39 8 6p  1.00081
2] 2ij 2 2\ 13 3 4s 101268 40 p 55  1.00042
(U +A(PH)T=2[(p)i+(p);], (17D 14 2p 4d 101261 41 4 6p  1.00041
for any two spin—orbitals, and 15 5p 6s 1.01214 42 P 6s 1.000 38
) 16 5  5p 101144 43 @ 5p  1.00037
2\1 _ 1,52 2 2 2
()L b, =3@2+bA[(p?)i+(p?); 1, (1839 17 4d  4f 100854 44 2 6p 100035
° ) 18 2p 35 100773 45 2 2p 1.00033
(2 =4(P?)i=(p?);+ <|02>j , (18b 19 35 5p  1.00736 46 $ 6p  1.00012
. . ) . . 20 4p 4d 100694 47 p  6s  1.00006
for two spin—orbitals with the same inversion symmetry, 21 1s 4p 100578 48 8 6p  1.00004
wherep, v, andP are the momentum-space single-electron, 22 4 4p 100492 49 5 4f  1.00000
intracule, and extracule radii, respectively. Even when two 23 4 Sp 100406 50 3  4f  1.00000
spin-orbitals have different inversion symmetries, HG8a 24 % 6p 100400 51 8 4t 100000
; : 25 3 5d 10039 52 4  4f  1.00000
and (18b) are valid for Hartree wave functions W'her.e there 55 45 54 100394 53 4 55  1.00000
are no exchange terms. EquatidrY) is of our special inter- 27 2s 5p  1.00328 54 4 6s  1.00000

est, since the second single-electron mon{@A}; appearing
on the right-hand side is just twice the electronic kinetic
energyT,=(p?);/2 of the spin—orbital. When Eq.(17b) is

; . L 7 > If the Hartree orbitals are considered or if the Hartree—Fock
applied, the sunl;+T; of the orbital kinetic energies is

. . o orbitalsi andj have the same inversion symmetry in momen-
precisely decomposed into two contributions from the rela

tive (intracule and center-of-mas@xtracul¢ motions of an tum S_Pace_éi( P)¢;(=P)=i(P)¢;(p), then we have
electron pair. Some numerical results will be presented in the ~ Tiy=Td=3(Ti+T)), (200
next section.

We note that comparison of Eq4.1) and(173 gives an
additional rigorous relation

from Eg. (18b) and the intracule contribution is equal to the
extracule one. In atomic systems, E80c holds when the
sum Ii+1; of the azimuthal quantum numbers of two

[{(P?)i+ (P10 hp)+ (AP (h )] Hartree—Fock spin-orbitals is even. _
5 5 N N We have examined the intracule and extracule contribu-
=[{r i+ (r ) ooy D) (o — ) (193 tions in the orbital kinetic energies for the Rn atéatomic

which connects one- and two-electron moments in positiofiUmber 86, in which 15 subshelis, sto 6s, 2p to 6p, 3d
and momentum spaces. If we consider all the spin—orkitalst©© 5d, and 4, are fully occupied. We have 3655 electron
andj belonging to the same subshell of an atom, Eq(193 pairs in total, but the associated orbital kinetic energy pairs

is simplified to are classified into 120 different cases specified by two sub-
shellsnl andn’l’. Among them, 66 subshell pairs with
(P2 A (a6 = (T2 ni(2) (o) » (I19H  +|’=even haveT /Tl =1 due to Eq.(20¢. The 1807
for any values of andb. electron pairs in this category thus have exactly the same

kinetic energy contributions from the relative and center-of-
mass motions. For the remaining 54 subshell pairs With
ll. AN ILLUSTRATIVE APPLICATION +1"=o0dd (which include 1848 electron pajrsve have ob-

According to Eq.(17b), the sum of two orbital kinetic tained the ratidr}) /T, from numerical Hartree—Fock calcu-

energies is exactly decomposed into the intracule and extradtions. The results are summarized in Table | in the de-

cule contributions as scen(jiing i(_)rder of tha ) /T, values. We find in the table
—_— that T, /T =1 with no exceptions, which implies that the
Ti+Tj=Tint Teeo (209 relative motion contribution is never smaller than the center-
where of-mass motion contribution in any pairs of the orbital ki-

N . . netic energies. Though there are many exceptions, the ratio
Tin=a(v9)", Toe=(P9)". (200 T /T is generally larger whehi —1’|=1 and|n—n’| is

int
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small. The largest value is 1.120 29 for the2p electron cation of the present results has been illustrated for the rela-
pairs, and the intracule contribution occupies 52.8% of thdive motion and center-of-mass motion decomposition of the
orbital kinetic energy sunT,s+T,,. The exchange effect, orbital kinetic energies of the Rn atom.

appeared in the orbital kinetic energies, is largest for these

electron pairs. On the other harid) /T!l is essentially unit
P W Tex yumty =, Koga, Theor. Chem. AccL05, 96 (2000.

. e
for the.sf _electron pairs withl —1"|=3. When summed OVEI' 21 Koga, J. Chem. Phyd.14 72 (2001 Erratum(in press.
all 1<i<j=<N, the ratioT;, /Te, between the total intracule 3p_o. Lawdin, Phys. Rev97, 1474(1955.
Tint @nd extraculeT ., contributions is 1.008 91. “A. J. Coleman, Int. J. Quantum Chem., Syriip457 (1967.
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