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In many-electron systems, the interelectronic angle deAgity,) represents the probability density
function for the interelectronic angig; spanned by position vectorsandr; of any two electrons

to be#,,. Itis shown that in general the interelectronic angle dems{g;,) is expressed by a linear
combination of Legendre polynomiai,(cos6,,). Explicit formulas for the expansion coefficients

are presented for atoms described by determinantal wave functions. The results are applied to the
102 atoms He through Lr in their ground states within the Hartree—Fock framework, and the
expansion coefficients as well as the average interelectronic af@jgsare reported. €2002
American Institute of Physics[DOI: 10.1063/1.1521433

I. INTRODUCTION In the present paper, we first clarify the general math-
. ematical structure of the interelectronic angle den&ify,)

For anN-electron N=2) system described by a wave o atoms and molecules: The density can be expressed as a
funct!on W(Xz,....Xn), the spinless two-electron density |inear combination of Legendre polynomiaR,(cos6;,).
function (see, e.g., Ref.)1 Detailed formulas for the expansion coefficients are pre-

N(N—1) sented for atoms described by multideterminantal wave func-
F(rl,rz)z—f ds; ds, dx...dxy| W (Xq,.... x| % tions, such as Hartree—Fock and configuration interaction

2 . ;
(1) wave functlon_s. Thg results are then gpplled to the 102 atoms
from He to Lr in their ground states within the Hartree—Fock

is a convenient starting point to examine the electron-framework, and the expansion coefficients as well as the av-
electron interaction in an explicit manner, whete=(r;,s;)  erage interelectronic angleéf,, are reported. Hartree
is the combined position-spin coordinates of the electron atomic units are used throughout.
The density functionI'(rq,r,) is normalized to N(N
—1)/2, the number of electron pairs. In the study of electron
correlations in few-electron atoms, Banyard and|. MATHEMATICAL STRUCTURE
co-workeré~® (see also Ref. )7introduced the interelectronic OF INTERELECTRONIC ANGLE DENSITIES

angle densityA(64,) defined by
' For the study of the interelectronic angle dengi,,)

INC, 2)Ej drydry I'(ry,rp) @ defined by Eq.(2), it appears simplest to introduce a new
! do, sinfy, ’ variablex=cosé,, (—1<x<+1) and a new functio(x)
. . . such that
wheredr, dr,/d#,, means symbolically that the integration
is performed over five variables exceft, after one of the A(612) =B(x) (5a)

four angular variables of the vectorg=(rq,60;,¢1) and  gng
r,=(r,,05,,) is appropriately replaced with the intervec-
tor angled;, through the relation fﬂdx B(x) = N(N—-1) 5
€0S6,,=C0Sf, COSH,+Sinh, SiNnh, COS P — dy).  (3) o 2
. , . . . corresponding to Ed4). We implicitly assume that the func-
The interelectronic angle densi#(6,,) is the probability i, g(x) and its first derivative are continuous functions of
density function that the anglg; (0= ¢;;<) subtended by , i the interval— 1<x< + 1.

the position vecto_rsi and ry of any two electrons and j Since the Legendre polynomia®s,(x) constitute a com-
becomesf,, and is normalized as plete seft in this interval, we expand the functid(x) in a

w N(N—1) Legendre series,
J;) d0128in 012 A( 012): T (4) %
. . . B(X)= 2, CPn(X). ()
The density functionA(6,,) is a useful tool to know n=0

explicitly the distribution of the interelectronic angle in at- By virtue of the orthonormality of the Legendre

oms and molecules. However, the examinatiolA(b1,) in polynomials®

the literature is very limited. Only for the He, Li, Be atoms

and some of their isoelectronic ions, the correlation contri- +1dx P (X)P(X) = 5 @)
bution in A(6;,) was studied in an ad hoc manref. ~1 mesn 2n+1 M

0021-9606/2002/117(23)/10493/6/$19.00 10493 © 2002 American Institute of Physics
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the expansion coefficients, in Eq. (6) are obtained as

2n+1 2n+1
| axpioosoo- T,

8

Cn
where é,,,,, is the Kronecker’s delta and

qn=<Pn(c05012))Efdr1dr2 PL(cosf ) (rq,r5).
9

Particular cases of Eq(8) are co=N(N—1)/4 andc,
= 3(c0s6;,)/2, becaus®y(x) =1 andP,(x) =x. The expec-

tation value(cosé@,, was often examined in the literature

(see Ref. 9 and the references therein

Combining Egs(5a), (6), and(8), we obtain the desired

result,

A(br5)= go 5 " GnPo(costy), (10

which shows that the interelectronic angle deng\®;,)

can be expressed as a linear combination of the Legendre

polynomials P,(cosé;,). An alternative derivation of Eqg.

(10) is given in the Appendix. Note that we did not set any
restrictions to the form of the parent wave function

W(Xq,....Xy). Therefore, the summation in E@L0) runs

from n=0 to « in general. However, we will soon find that

the summation terminates at some finitein the case of

Toshikatsu Koga

+1
In=f dxarccosxPp(x), (13b)
wherel, is evaluated to be
| om— 7T5m0, (13(:)
m .
o (2m+2i+ )N
_ _ m—i
'2"‘*1_”;0( D G 2iem=ann
(2i + 1)1 12
iz (139

for non-negative integens.

We next examine the detailed expression of the expecta-
tion valueq,=(P,(cosé;,)) appearing in Eq(10) for deter-
minantal wave functions of atoms. For a multideterminant
wave functionW(x,,...,Xy) composed of a set of orthonor-
mal spin—orbitals ,(r) na(s), the two-electron density
functionI'(rq,r,) is given by

2 Cabedls (1) ¥ (o) e(r 1) (T 2),
(14

L(rq,rp)=

whereC,.q are expansion coefficients. Then the most gen-
eral two-electron integral occurring in the calculatiorggfis

atomic systems described by a finite number of Slater detel(abIPn(c03012)|cd)Ef drydrogs (ry) g (ry)

minants. We also note that the first=0 term on the right-
hand side of Eq(10) is a constanN(N—1)/4 and gives a
uniform distribution independent of);,. The remaining
terms withn=1 are responsible for thé,, dependence of
the interelectronic angle densi®y(6.,).

For particular values of=—1, 0, and+1, the Legendre
polynomials have valuesP, (—1)=(—1)", Py,y(0)
=(—=1)"2m-=-1)1/(2m)!!, Pyy,+1(0)=0, andP,(1)=1.
Therefore, special cases of Eq.0) for 6,,=0, #/2, and
are

“. 2n+1

A(0)= Z ann, (119
” Am+1 (2m—-1)!!

Alml2)= 2 (= 1)"—5— — G dam, (11D
- 2n+1

A(w)=n=0(—1)” > On. (119

where onlyq,, with evenn contribute toA(/2).
From Eq.(10), the average interelectronic and|é;,),
defined by

2 T
(012)= N(N—1) fo d615SiN 01,01,A(01)), (12
is obtained as
1
(012= Gin=T) 2 2 (2n+1)qql . (133

Pn(00501z)¢c(f1) lr//d(rz)v (15)

which includes four different orbitalg,, ¢y, ., andiyy.

In atomic systems, we can generally assume that the spatial
function ¢,(r) is a product of the radidR,(r) and spherical
harmonicYa(Q)EY|ama(Q) functions, where 1(,Q}) with

QO =(6,¢) is the polar coordinates of the vectorThen, Eq.

(15) reduces to

(ab|P,(coshy,)|cd)=S(a,c)S(b,d)A,(a,b;c,d), (169
where
S(a,b)EJ:drrzRg(r)Rb(r)=S*(b,a), (16b
A.(ab:c, d)—J dQ, dQ, Y (Q)YE(Qy)
X PL(€0S012) Yo (1) Y4(Q5). (160
Since an addition theoréfh!! states that
Pn(cosf) = 2 Yin( Q1) Yam(Q2), (17)

2n+1n
the two-electron angular integrél6¢) is calculated to be
(183

An(a,b;c,d)= 6 _+m, m +m,C"(a,c)c(d,b),

where c"(a,b)=c"(I,m,,l,m,) is the Condon-Shortley
paramete®!! defined by
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TABLE |. Nonzeroq,, values for the atoms witd=5-54. Note thatjy=N(N—1)/2. ForZ=2-4, onlyq is
nonvanishing.

z O P ds Q4

5 —0.325 630

6 —0.655 956 —0.200 000

7 —0.987 024 —0.600 000

8 —1.308 649 —0.600 000

9 —1.632 680 —0.800 000
10 —1.958 681 —1.200 000
1 —1.980422 —1.200 000
12 —1.989 237 —1.200 000
13 —2.289 028 —1.200 000
14 —2.610932 —1.400 000
15 —2.939924 —1.800 000
16 —3.258 081 —1.800 000
17 —3.582 797 —2.000 000
18 —3.911 468 —2.400 000
19 —3.944 916 —2.400 000
20 —3.964 762 —2.400 000
21 —4.305 206 —2.588 200 —0.217 089
22 —4.676 045 —2.940 186 —0.454512 —0.020 408
23 —5.052 497 —3.273 280 —0.695 844 —0.163 265
24 —5.691 390 —4.056 751 —1.109 594 —0.714 286
25 —5.817 697 —4.064 451 —1.186 966 —0.714 286
26 —6.184 605 —4.256 521 —1.422 477 —0.714 286
27 —6.558 435 —4.612129 —1.662 570 —0.734 694
28 —6.934 005 —4.947 472 —1.903 851 —0.877 551
29 —7.562 663 —5.619 296 —2.310 036 —1.428571
30 —7.691 604 —5.740 843 —2.390 725 —1.428571
31 —8.075 758 —5.768 693 —2.452 234 —1.428571
32 —8.454 398 —5.985 353 —2.492174 —1.428571
33 —8.820481 —6.396 421 —2.518 429 —1.428571
34 —9.161 796 —6.404 304 —2.535928 —1.428571
35 —9.502 447 —6.609 850 —2.547 886 —1.428571
36 —9.842167 —7.013855 —2.556 075 —1.428571
37 —9.889 905 —7.017 884 —2.560 254 —1.428571
38 —9.922331 —7.020 856 —2.562871 —1.428571
39 —10.208 603 —7.207 798 —2.743070 —1.428571
40 —10.547 981 —7.552276 —2.958 952 —1.448 980
41 —11.131 044 —8.193 109 —3.338 640 —1.857 143
42 —11.515259 —8.660473 —3.583711 —2.142857
43 —11.654 278 —8.653 008 —3.666 128 —2.142857
44 —12.265 397 -9.112713 —4.062 687 —2.163 265
45 —12.650 618 —9.414 194 —4.309 158 —2.306 122
46 —13.258 868 —9.941 820 —4.702 473 —2.857 143
47 —13.432539 —10.160 290 —4.810 030 —2.857 143
48 —13.551225 —10.314 096 —4.882 168 —2.857 143
49 —13.948 270 —10.348 400 —4.948 229 —2.857 143
50 —14.341524 —10.570 048 —4.997 079 —2.857 143
51 —14.723014 —10.985 429 —5.033435 —2.857 143
52 —15.080 339 —10.997 292 —5.060 749 —2.857 143
53 —15.435185 —11.206 316 —5.081 830 —2.857 143
54 —15.787 279 —11.613380 —5.098 191 —2.857 143
A Therefore, the summation in E(LO) runs over a finite num-

c"(lamy,lpmy) = nF1 J’ dQ Y§ 1 () ber ofn in the case of atoms.
In a particular case of Hartree—Fock wave functions,
XY nm,-m, ()Y, m (). (18p only two types of integrals(ab|P,(cos#;,)|ab) and

ab|P,(cos#;,)|ba) appear. From the general expressions
It is important to note that due to the propéfy! of §16L) ;gd(lsl;)Hwe)im?r?ediately find thagt] P
c"(a,b), the integralA,(a,b;c,d) vanishes unless the fol- ’

lowing four conditions are satisfied simultaneously: (ab|Pn(cosb;,)|aby=a"(a,b), (209
n+l,+l.=even integer, n+l,+14=even integer, for the direct term and
la—llsn<l +l., [lp—lgsnsly+Iq4. (19 (ab|P,(cos#;,)|ba)=|S(a,b)|?b"(a,b), (20D
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TABLE Il. Nonzerogq, values for the atoms witd=55—103. Note thatjo=N(N—1)/2.

z 1 2 ds Qs Qs Js
55 —15.838 101 —11.622 148 —5.106 825 —2.857 143
56 —15.875 383 —11.629 446 —5.112841 —2.857 143
57 —16.181 314 —11.813556 —5.305932 —2.857 143
58 —16.593 217 —12.210834 —5.609 698 —3.077 688 —0.185 302
59 —16.976 061 —12.684 907 —6.029 841 —3.552180 —0.553 197 —0.030 020
60 —17.360 985 —13.072579 —6.343 290 —3.830977 —0.747 146 —0.146 571
61 —17.747 886 —13.415802 —6.657 593 —4.118 093 —0.942 191 —0.351416
62 —18.140 040 —13.825 253 —6.974 122 —4.440 767 —1.140013 —0.582 751
63 —18.537532 —14.345 298 —7.292 885 —4.809 953 —1.340 644 —0.815851
64 —18.951614 —14.526 985 —7.533683 —4.809 464 —1.395525 —0.815851
65 —19.302 908 —14.967 293 —7.918 264 —5.234515 —1.726 764 —0.817617
66 —19.692 223 —15.399 837 —8.233746 —5.505 600 —1.923 306 —0.845871
67 —20.081 681 —15.788 001 —8.549 309 —5.785022 —2.119 956 —0.962421
68 —20.471158 —16.131789 —8.864 902 —6.072780 —2.316 647 —1.167 267
69 —20.863 247 —16.541 962 —9.181 596 —6.396 173 —2.514711 —1.398 601
70 —21.258 591 —17.062 861 —9.499 652 —6.766 143 —2.714 475 —1.631702
71 —21.670114 —17.246 557 —9.731 638 —6.764 946 —2.785 640 —1.631702
72 —22.100 965 —17.588 905 —9.984 362 —6.785778 —2.839915 —1.631702
73 —22.526 089 —17.912 432 —10.239 286 —6.930021 —2.881518 —1.631 702
74 —22.945 654 —18.217 005 —10.494 925 —7.197 201 —2.913841 —1.631702
75 —23.364713 —18.684 890 —10.753 435 —7.484971 —2.939272 —1.631702
76 —23.760 057 —18.874 210 —10.999 018 —7.487 155 —2.959231 —1.631702
77 —24.159 203 —19.225575 —11.248 886 —7.509 646 —2.975 249 —1.631702
78 —24.817919 —19.703 900 —11.669 830 —7.919 206 —2.991 219 —1.631 702
79 —25.226 378 —20.154 234 —11.928 054 —8.206 774 —3.001 311 —1.631702
80 —25.357 000 —20.341 298 —12.006 008 —8.208 947 —3.006 961 —1.631702
81 —25.772918 —20.380 162 —12.083831 —8.211 147 —3.011 380 —1.631702
82 —26.184 448 —20.606 168 —12.144 741 —8.213186 —3.014 757 —1.631702
83 —26.583 329 —21.025709 —12.192774 —8.215012 —3.017 387 —1.631702
84 —26.956 896 —21.041542 —12.230 954 —8.216 584 —3.019474 —1.631702
85 —27.326 853 —21.254 207 —12.262 266 —8.217 956 —3.021 134 —1.631 702
86 —27.692 907 —21.664 601 —12.288 151 —8.219 141 —3.022 465 —1.631702
87 —27.752 775 —21.678 481 —12.302 230 —8.220 040 —3.023563 —1.631 702
88 —27.798 735 —21.690734 —12.312618 —8.220770 —3.024 455 —1.631702
89 —28.100 108 —21.875 669 —12.502 433 —8.221338 —3.025232 —1.631702
90 —28.434 984 —22.219128 —12.714 975 —8.242 210 —3.025 866 —1.631702
91 —28.880574 —22.401574 —13.108 915 —8.650 846 —3.353504 —1.633468
92 —29.234 812 —22.888 969 —13.423577 —8.918 289 —3.536 532 —1.661 722
93 —29.597 915 —23.350 150 —13.737 913 —9.186 259 —3.725512 —1.778 272
94 —29.884 289 —23.881527 —14.093 055 —9.796 633 —4.066 455 —2.214 452
95 —30.273 450 —24.397 502 —14.406 926 —10.162 393 —4.262 096 —2.447 552
96 —30.725223 —24.575 479 —14.665 446 —10.161 108 —4.332520 —2.447 552
97 —31.096 132 —24.733811 —14.969 892 —10.343 225 —4.523 569 —2.447 552
98 —31.429 793 —25.441 898 —15.344 944 —10.849 441 —4.843 569 —2.477573
99 —31.824 801 —25.826 053 —15.661 500 —11.125586 —5.042 446 —2.594 123
100 —32.222194 —26.165 718 —15.979 056 —11.410004 —5.242 598 —2.798 969
101 —32.623602 —26.571516 —16.298 192 —11.729 888 —5.444 863 —3.030 303
102 —33.029 195 —27.087 780 —16.618 936 —12.096 173 —5.649 324 —3.263 403
103 —33.455 959 —27.270507 —16.861 009 —12.097 061 —5.720015 —3.263 403

for the exchange term, wheeg(a,b)=c"(a,a)c"(b,b) and  merical Hartree—Fock method based on a modified version
b"(a,b) El[lc”(a,b)]2 are the Condon—Shortley para- of the MCHF72 program Equations(208 and (20b) were
meters:>*' Because of the conditiofi9), Eq.(208 has non-  ysed to compute the contributions of two spin—orbitals to

zero values only for even integers ranging from O to (P, (cosfy,)), where thea"(a,b) andb"(a,b) values were
min(2,,2lp), while Eq.(20b) only for every other integers -1 from Refs. 10 and 11.

- +1y. .
betweenil,—Iy| andla+1y The numerical results of nonzerp, values are summa-

rized in Table | for the second through fifth period atoms and
lll. NUMERICAL RESULTS FOR ATOMS in Table Il for the sixth and seventh period atoms. The
The experimental ground electronic configurations and/@lué is not given, because it B(N—1)/2, the number of
LS term2213 were considered for all the 102 atoms He electron pairs. When we consider the ground states of the
(atomic numberZ=2) through Lr €=103). For these 102 atoms, the occupied orbitals have the azimuthal quantum
states, the radial functiori?,(r) were generated by the nu- numbers|=0-3 in the Hartree—Fock theory. Due to the
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§ ! ——27=10 FIG. 1. The interelectronic angle densitié$6,,) for
= -0.04 J—a—2Z=18 the five rare-gas atoms Ne, Ar, Kr, Xe, and Rn. The
L  l-a—-7=36] densities are normalized to unity, instead N{N
iy 0.06 —e—7=54 —1)/2, and the uniform contribution from the
P-4 -0.08 —o—7=86 | Po(cosfy,) =1 term is excluded.

-0.10

=012

-0.14
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6 o/ degrees

condition(19), the maximah of nonzerog, is therefore 6 at atoms, though the degree of the deformation decreasgs as
most. The first three atoms He, Li, and Be do not appear ifincreases. Thus two electrons in an atom have a tendency to
Table I, since onlys(1=0) orbitals are occupied and aj},, be on opposite sides of the nucleus without exceptions. The
exceptqq, vanish for these atoms. We find in Tables | and Il minimum inA(#,,) is observed a#,,=0 degrees for all the
that the nonzerq,, are negative for alh exceptn=0. For a five atoms, while the maximum is at;,=109, 109, 124,
givenZ, the magnitudel,| decrease with increasing For 129, and 136 degrees for the Ne, Ar, Kr, Xe, and Rn atoms,
a givenn, |g,| increase with increasing in general. Some respectively.
atoms with analogous valence electron configurations have Using Eq.(13), we have also calculated the average in-
the sameg,, value for the largesn, since it originates from terelectronic angl€ 6,,). The results for the 102 atoms are
the contribution of two electrons in the outermost subshelplotted in Fig. 2 as a function &. For the first three atoms
with the maximall. with Z=2-4,(#6,,) is 90 degrees precisely and the position
The interelectronic angle densitiég 6,,) are exempli- vectorsr; andr; of two electrons are perpendicular in an
fied in Fig. 1 for the five rare-gas atoms Ne, Ar, Kr, Xe, andaverage sense. For the remaining 99 atoms, on the other
Rn, where A(6;,) are renormalized to unity, instead of hand, the average ang{#,,) is always greater than 90 de-
N(N—1)/2, to compare the atoms with different numbers ofgrees. WherZ increases from 5 to 1034,,) first increases,
electron pairs. Moreover, we have excluded in the figure théakes a maximun(93.2 degreesat Z=7, and then decreases
contribution from the firsPy(cosé;,) =1 term of Eq.(10) to  towards a minimun{90.5 degreesat Z= 103. As anticipated
clarify the deformation ofA(6,,) from the uniform distribu-  from Fig. 1, the secon®,(cosé,,) =cosb;, term in Eq.(10)
tion. In Fig. 1, we find that the interelectronic angle densitygives a predominant contribution to the deformation of the
is small for a smalle®,, and large for a largeé,, in all the  densityA(#,,) from the uniformity and hence to the increase

93.5

i

<@ ,,>/degrees
[{=] © ©
o o (4]
g @ S S
v

FIG. 2. The average interelectronic angdle;, as a
function of atomic numbeE.
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of {#;,) from 90 degrees. A previous stutighowed that the
major contributions to the coefficierd;=(cos6é;,) come A( 6’12)=J drydr;8(601,— 07,)
from sp electron pairs in the same shell, and thelepen-
dence of{ 81, in Fig. 2 is roughly explained by the relative
significance of these electron pairs in the possiblgN ~ Whereds, is the angle between the vectarsandr; . Using
—1)/2 electron pairs. In fact, th& dependence of6;,) an identity
shows a close parallelism with that of arcdes&6,,)) given
in Ref. 9. 8(6—6')=5(cosf—cosh’)siné, (A2)

The inclusion of the electron correlation changes the in-
terelectronic angle densities(6,,) from the Hartree—Fock
results. In the literature, correlatéd 6,,) is found only for
the He and Be atoms. In both atoms, the electron correlation
works to modify the u_niform Hartree—Fock density in such a A(0) = j dr} dr}8(cosip— cosdl)T(r] . ry). (A3)
manner that the density migrates from a sniq)l (< 7/2) to
a large 61, (>m/2). On the other hand, the correlated
(cosb,,) =q, values are reported to be0.0642,—0.0641, We next apply the formal expansion of the Dirac delta func-
and —0.3582 for the Hé>~" Li,'® and B&® atoms, respec- tion §(x—x') in terms of a complete set of Legendre poly-
tively. The values for the He and Be atoms are consistenhomialsP,(x),
with the correlation effect observed #(6,,), if we recall
that the corresponding Hartree—Fock values are zero. S

. . n+1

Clearly, the correlated average interelectronic angis) S(x—x")= 2 Tpn(X)Pn(X'), (A4)
are greater than 90 degrees, though the values are not re- n=0
ported in the literaturé®~*°Since the Hartree—Focld;,)
values are 90 degrees for the atoms, the electron correlatian Eq. (A3) together with the substitutions=cos#é,, and
works to increase the interelectronic angles. x"=cosby,. Then we arrive at Eq(10) again.

I'(ry.ra)

—, Al
sinéy, A

we first obtain

IV. SUMMARY
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