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Time-dependent variational principle with constraints for parametrized wave functions
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(Received 8 January 2004; published 9 August 2004

The time-dependent variational principle in the stationary action principle form is formulated with constraint
conditions for parametrized wave functions. The constraint conditions are classified into the first and the
second classes as in Dirac’s constrained classical mechanics based on the commutability of operators. If the
local bases in the parametrized wave functions construct a complete basis set, the classification of constraints
with the commutator becomes equivalent to that with the complex generalized Poisson b(&¢kEB.

However, in approximate wave functions with limited variational parameters, the equivalence between the
CGPB and the commutator of operators is lost. The first-class constraints and the constants of motion classified
with the commutator should be reconsidered as the pseudo-second-class constraints in the approximate wave
functions.

DOI: 10.1103/PhysRevA.70.022503 PACS nuniber31.15.Pf

I. INTRODUCTION kept in the CGPB. The classification of constraints to the

] ) . . first-class and the second-class constraints becomes not
In many dynamical processes in physics and chemistrysqivalent to that in exact wave functiof&0]. Some con-

the time-dependent picture enables an intuitive and vivid Ungiants of motion are also lost in the approximate wave func-
derstanding of the processes. Particularly for electrons angyns For example, even the norm of the wave functions,
nuclei in molecules, the time-dependent variational principl§yhich is a typical first-class quantity, is not always con-
(TDVP) [1-6] has become one of the most popular methods;eryeq, although the expectation values of physical quantities
to obtain the quantum-mechanical time-dependent WaVhay be obtained correctly by dividing with the norm. We

functions. Recent theoretical works have been reviewed ipeconsider such constraints in the approximate wave func-
Ref.[7]. From the viewpoint of the variational method, how- tions as the pseudo-second-class constraints.

ever, only the normalization condition for wave functions has |, sec. 11 we give the EOM for the TDVP parameters

been considered as the constraint in the TDVP in spite ofyith constraints. The Lagrange multipliers for the second-
various techniques in the variational methf&19]. In our (555 constraints are determined. In Sec. Ill, we show that the
previous work[10], the TDVP has been formulated with not ¢ompjete local bases in the parametrized wave functions can
only the normalization but also general constraint conditions;iord the equivalence between the CGPB and the commu-
for wave functions to extend the applicability of the TDVP, 4101 of operators. The classification of constraints to the first
e.g., to quantum dynamics in subspaces which are specifieghq the second classes with the CGPB is exactly the same as
by_some physical or art|f|9|.al cqnstramts._The constraint conyhat with the commutator. In Sec. IV, we discuss approximate
ditions have been classified into the first and the secondaye functions with limited variational parameters where the

classes according to the terminology of Dirac’s constraineqyc5| pases are incomplete. A brief summary is given in
classical mechanicgl1,12. Sec. V.

In this work, we formulate the TDVP with constraints by
introducing explicit variational parameters of wave func-
tions. In many investigations to use the TDVP, various pa—”' TIME-DEPENDENT VARIATIONAL PRINCIPLE WITH
rametrizations of wave functions have been considered as in CONSTRAINTS
the time-dependent Hartree-Fock wave functions, Gaussian A, Equations of motion of variational parameters
wave packets, and so g¢ii]. We adopt here a complex ana-

lytic parametrization of wave functions to keep the varia- L )
; ; " formulted to keep the variational independence betw&En
tional independence betwedt” and V™ [4,13. The Euler and sW* [4,13. A set of time-dependent variational param-

equations in the parametrized TDVP are written in the form . - . .
of the pseudo-classical-mechanids3] where the equations etersiz(t),z (V}i=ym is introduced to the trial wave function
of motion (EOM) are described by complex generalized as

A complex analytic parametrization of wave functions is

Poisson bracket€CGPB). All the rich apparatus developed W(z;%) =V (2,29, ... ZyiX),

for the study of classical mechanics can be applied to the

study of this motion. Unfortunately, however, in approximate TV(Z:X)

wave functions constructed with limited variational param- =0 (i=1,...M). (1)
eters, the commutability between operators is not always 9z,

The variation of the trial function is reduced to those of the
variational parameters in the expanded form with the local
*Email address: ohta@mmm.muroran-it.ac.jp basesd¥/dz}i-1 u as
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M M i 2L
av ) dEi av | ¥ ~ | ¥ d0;
SV = i—, (2 —ih <— —>: v H’—>+ N
%% 121 dt \ iz | 9z Iz Jzo Lz

where the “local bases” means that the vectt¥g 7z, as the (10)
bases in the Hilbert space, generally depend on the variasy introducing the new Hamiltonian operator with the con-
tional parametergz(t)}i-; v in nonlinear parametrizations. straints(4),
Here we consider the normalization constraint of the wave

function,

Oo(z.2* ) = (V|1W) - 1 =(W[1 - (w[¥) Ywy=0, (3)

2L

ﬁ,:ﬁ'i'z)\jgj, (11)
=1

and the expectation value also with the normalization condi-

and the independent constraints with the Hermitian operatorgop, (3),

9
gi(ZIZ*)=<‘P|gi|\P>:O (i:la "'12-)! (4)

where the number of the constraints in E¢) should be
even in order to avoid the singularity in the determination of

2
K=(W[H + N80l ¥) =H' +Nggo=H + >, AjG; + Moo,
=1

12

their Lagrange multiplier§10], as will be discussed in Sec. the EOM(9) and(10) are written simply in the matrix form

Il B. Areal Lagrangian is defined as

2L

.
L(z.2%) = (V|53 ~ 3 - Flw) - 3 hg (227,
i=0

i ] o iﬁM.*<lr7\If
R 2L
—(Y@H¥(2) - 2 Ngi(zz*), (5

i=0

including the constraints with the Lagrange multipliers,

as
K

('z)_l( 0 C'l) iz
z#) in\-cCcH o0 /| K

Jz*

(13

The Hermitian matrixC in the EOM (13) is the overlap
matrix between the local bases,

_(av|av
(C)ij—<‘ 7z &zj>' (14

No(t), and {\(D)};-1 x. An action functional is also defined The time development of a functiof(z,z*) is calculated

with the Lagrangian as

ty
Yzz*]=| L(zz*)dt,

to
oo\ ind [ aw
el __2'_*<_\p>
3Zi> 2i:12| 97

s
= |Z2z\ v
—[olzizl
2L

- (V@H[¥(2) - 2 Ngi(z,2* )]dt- (6)
i=0

By requiring the action to be stationaf§,10,13,
ty
55{2,2*]=J oL(z,z*)dt=0, (7
to

with the fixed boundary conditions,
87 (to) = 07 (ty) = 9z(ty) = dz(t) =0 (i=1,... M),
(8)

we obtain the equations of motiofcOM) for the TDVP
parameters{z(t) ,Zi*(t)}ilei as

M / {
pora ﬂ> (v
- dt\ 9z | 9z, \ 9Z

i

2L
q,> +SNE (9
=0 9%

with Eqg. (13) as

dF(z,z+) =§ {_*£+13F]

M M
oF K oK oF
= —C_l.. ——C_l =,
53| Fioy K- Koy, X
—i{F K} (15)
Tipt e

where the complex generalized Poisson bra¢gk&PB) [13]
is defined as

B
{AB}GP:(% ﬁ)( ° C_l) ”
' gz dz* J\-(CHt 0 JB
oz*
M M
= 2{%((3_1)”0_%‘@((:_1%]&_6]-
i=1j=1 L 9% dz; Jg 9z

(16)

B. Second-class constraints

In this section, we discuss the consistency conditions
[10-17 for the constraintg4) to determine their Lagrange

022503-2
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multipliers{\;}j-1 a . The normalization constraig8) willbe S, or the number of the constraints in E@), should be
considered in Secs. Il and IV. even, 2. The Lagrange multipliers can be uniquely deter-
A basic requirement for the constraints in the TDVP ismined from Eq.(20) as

that the constraints should be preserved in time on the “tra-
jectory” of the{z(t),Z(t)}iz m- This requirement is the same ~ ~
as the consistency Z(‘:ondition in Dirac’s constrained classical A== 2 (h);(S 1)Ji = ‘2 {H.g}er(S l)Ji
mechanics[11,12. By using Eq.(15) without Eq. (3), the = =

consistency conditions for the constraifdg are written as  |n Dirac’s constrained mechanidd1,13, the constraints

2
(21)

dg(zz*) 1 whose Lagrange multipliers can be uniquely determined
at = E{gi,H’}Gp, from their consistency conditions as the above are said to be
the second-class constraints. The expectation value of the
2L Hamiltonian(11) is written with Eq.(21) explicitly as

2L 2L

1 1
= E{giaH}GP'l' EE A{gi gitep=0
i=1 -
H' =(P|H'[W)=H- '21 _El{Hrgj}GP(S_l)jigi- (22)
i=1 j=

(i=1,...,2). (17
Equations(17) can be considered as the inhomogeneous
linear equations which determine the Lagrange multipliers 1. PARAMETRIZATION WITH COMPLETE
{\}j=1.2.. If we define a row vectoh, LOCAL BASES
(h); ={H,g}cp: (19 If the local base§d¥/dz}i-; v in the parametrized wave

functions(2) construct a complete system with the overlap
matrix (14), we can have a resolution of the unit operator as

(9;i ={g;,9i}cp, (19 "
av cY
9z > I]< 9z

the inhomogeneous linear equatiqdg) are rewritten in the 2
h+AS=0. (20 The completeness of the local bases is discussed briefly in

matrix form
Here we assume the nonsingularity of the skew-symmetriéPPendix 1. Using Eq(23), we have for any Hermitian op-
matrix S. This assumption requires that the dimension of theeratorsA andB,
ar
o 1\t el )
Y]] 2]

ofv)-(
AV . o ()
(2 5[ hen (2] Js

AW
Jfo)-[{v[ "]
= (W|ALB|W) - [(W]|ALB|W)]*,

= (W|[A,B]|W). (24)

and a skew-symmetric matrig,

=1. (23)

av
1
>(C )|]< 82

ij=1

M
{(W|AIP),(P[B[W)}gp= > [<q,

=\v

A(%

ij=1

The CGPB of the expectation values Afand B has been determine its Lagrange multiplier,. By using Eqs(15) and
proved to be equal to the expectation value of the commutd24), the time variation of the normalization condition is cal-
tor of those operators. Then, if the local bases construct gulated as

complete basis set, the classification of constraints with the g, R

CGPB becomes equivalent to that with the commutator of - "= E{<W|1|W>1K}GP1

the corresponding operatof$0].

= _{<q’|1|q’> <\I’|H |\P>}GP+ )\O{QngO}GH
A. Norm of wave functions: First-class constraints

For the complete local bases in Eg3), we consider the

1 IR
. i T " = —«(V|[1LH]]¥)=0. 25
consistency condition for the normalization conditi(®) to |ﬁ< [ ) @9

022503-3
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This equation always holds because the constraining operatarutator of the operators[10], should be generally

for the normalization is the unit operator which is commut-reconsidered as the pseudo-second-class constraints in the
able with any operators. Then we cannot determine uniquelgpproximate wave functions.

the Lagrange multipliek, from the consistency requirement

for the normalization condition. The constraints whose A. Norm of wave functions

Lagrange multipliers cannot be uniquely determined from

their consistency conditions are said to be the first-class con- . i ) .
straints [11,13. Then the normalization condition in the  Here we consider approximate wave functions which are

TDVP corresponds to the first-class constraint in Dirac'sdenerally parametrized. We call the wave functions Param-
constrained mechanics. We fix here the Lagrange multiplieftrization 1 to distinguish them from a special parametriza-

\o directly to a real functiom\ as a gauge-fixing condition tion scheme, which will be discussed in Sec. IV A 2.
[10-12, We first relax the normalization conditioB) to the

constant-norm condition of the wave function as

1. Parametrization 1: Pseudo-second-class constraints

No(t) = A(1), (26) A
where the real functiork can be selected arbitrarily. N=(¥[1[¥)-No=0, (29)
whereN, is a real constant given as the norm. By using Eg.
B. Constants of motion (15), the time variation of the constrai(®9) is calculated as
In this section, we summarize the constants of motion in dN 1 1 ,
our constrained system with the complete local bases in Eq. gt ~ Q{N'K}GP‘ ﬁ{N'H fopt ﬁ)‘o{N'N}GF"
(23). First, the norm of the wave function is conserved in
time as shown in Eq25). Using Eqs(15) and(24), the time - £{<‘1’|1|‘1’> <‘P|I:I’|‘I'>}
development of the expectation value of a Hermitian opera- in ’ P
tor Q) is calculated as % <\If|[i,|:|’]_|\lf> 0. (30)

dWO[P) 1

S For the lack of the completeness in EQ3), the norm of the
dt i

wave function will generally change in time. We should con-
1 A A 1 strain Eq.(30) to be zero as the consistency condition for the
= —{(W[|QP) (P|H' [P} gp+ —A(t) constant-norm condition. Consequently, the constré2dy

ifu ifu with the additional constraing30) can be considered as a

{(W|Q¥),Kgp

pair of the pseudo-second-class constraints. The new con-

X{(¥[QP), 9o} straints can be included in E@4) from the beginning as
1 " n 1 - - (2L +2) second-class constraints totally. For simplicity, how-
= E<\I’|[91H ) + EA(t)<‘I’|[Qvl]—|‘I’>’ ever, we take only the components which are independent of

the 2L constraints in Eq¢4) in order not to disturb the con-
strained Hamiltonian which is already determined in Eq.
(22). The component of the constrai(®9), which is “or-

. thogonal” to the already considered constraifg can be

If the Hermitian operatof) is commutable with the Hamil-  obtained by a Schmidt-like orthogonalization scheme using

tonianH’, the expectation valugV|Q[¥) will be a constant the CGPB as

= 0, Ar ). (27)

of motion with the normalization condition of the wave func- 2L 2L
tion. Next, in the case ofd=H in particular, we have 9o=N-2> > {N,gj}ce(S™;igi =0. (31
. . i=1 j=1
{(W[H|P),(P|H'[¥)}gp=0, (28)

The consistency condition for E¢31) is
from only the antisymmetric property of the CGRR6)
without Eq.(24). Then the energy of the system is also con- N’ = dgo - i{gO,K}sz i{gOiH/}GP"' iko{govgo}em
served with the normalization condition of the wave func- dt iA if if
tion. 1
= E{g@H,}GP: 0. (32
IV. PARAMETRIZATION WITH INCOMPLETE
LOCAL BASES By orthogonalizing Eq(32) to the already considered con-

straints(4) again, we have a new additional constraint
In this section, we consider approximate wave functions

with limited variational parameters. Incomplete local bases . , , o

with the limited variational parameters cannot afford the ho(zz*)=N _E Z{N Oiter(S7);igi=0. (33
equivalence between the CGPB and the commutator of op- ==

erators as shown in Eq&23) and(24). The first-class con- In fact, we have the “orthogonal” relations using the CGPB
straints and the constants of motion, classified with the comas

2L 2L

022503-4
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{90, 9itep=1{h0,gilep=0 (i=1,...,2). (34)

PHYSICAL REVIEW A 70, 022503(2004)

W(21,25;X) = x3(X) + Z4(1) x1.(X) + Z(1) x2(%) . (41)

The new Hamiltonian which includes the pseudo-secondfor the wave functiorf41), the matrixC in Eq. (14) is cal-

class constraint631) and(33) is defined as

K=H"+ \ggo + moho, (35

where \q and u, are the Lagrange multipliers for the new

constraints. Using Eq(15) with the Hamiltonian(35), we
have linear equations

{90.H}ep+ 10{90,hotcp=0, (36)

{ho,H}gp+ Ao{ho,9o}ap=0, (37)

as the consistency conditions for the constraif@$) and
(33). The Lagrange multipliers are determined like E2{)
for the second-class constraints,

{hO! H}GP
No==7— 1 38
° {ho,9o}cp (38)
{go.H}cp ifihg
=" == =0. 39
Ho {90, Nolap {90, ho}cp (39

culated to be a two-dimensional unit matrix, and the local
bases with the parametefs,z,} become incomplete in the
three-dimensional model space as

2

LAY
- (9Zi>( )|J<a_

2 2 X0l = 1= [xa)xal # 1.
1)

(42)

The Hamiltonian is also calculated with the wave function
(41) as

H = (W |H|w) =
+ZziH1o+ Zz9Hp1 + ZiHg1 + ZHgp + ZiH 3+ ZoHos,
(43

£ *
Has+2;z1H 11+ Z52H

where Hij:<Xi||:||Xj>- For simplicity, we consider only the
constant-norm conditio(29) as

9(z.Z) = <\If|i|\P> -No=1+7Z2z+72,-Ny=0. (44)

Now we show a simple example of Parametrization 1. WeThe additional constraint

consider a three-dimensional model space which is spanned
by an orthonormal basis sgt;(X)}i=; 3. The completeness of

the basis set in the model space is written as
3
> ol =1, (40)
i=1

We take a trial wave function parametrized Wjth,z,} as

R Zy(H1qHz1 + HogHzo) + Zo(HyHay + HopHao) T+ [Hagl? + [Haol?

dgo _

2
ImzH +2,H3,| =0
dt ik [z1H3; + ZH3,]

1
hy = {goa Higp=—

(45)

is considered as the partner of the pseudo-second-class con-
straint (44). The Lagrange multipliers are calculated with
Eqgs.(38) and(39) as

0:

and uy=0. The EOM(13) for the parameterg;,z,} is writ-
ten explicitly as

1
7= E[Hm*‘ z(Hy1+ No) + ZHyo], (47)

1
z,= E[Hza"' Z(Hgo+ No) + zyHo4]. (48)

2. Parametrization 2: First-class constraints

: (46)

R z;H3; + ZH3,)

norm of the wave functions constant even if the local bases
do not have the completeness in E23).

We consider a complex analytic parametrization of the
trial wave function as

\I,(Zl,22, e IZM ,X)

X)), (49

ZnX) =P (2, ...
=a,e%d(z, ...

where an independent variational parameies separated as
the prefactor of the wave functioh. For the wave function
(49), called Parametrization 2, the following equation always

In the preceding section we considered the normalizatiofolds:
condition generally with the incomplete local bases. The
constant-norm condition{29) has been calculated as the
pseudo-second-class constraint. Here we take a different pa-
rameterization for approximate wave functions. This speciaivhere B is an arbitrary operator. The proof of E¢0),
parametrization, called here Parametrization 2, can keep thehich is given in Appendix Il, does not need to use the

{(W]1[W),(¥[B[¥)}ep= 0, (50)

022503-5
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completeness of the local bases in E2Q). If we take the  B. Constants of motion as the pseudo-second-class constraints

operatorB as the HamiltoniaH’, we have In this section, we summarize the constants of motion in
- ~ approximate wave functions where E@3) does not hold.
{(W[1|W),(P|H'|¥)}ep=0. (51  First, the norm of the wave function can be conserved in

This equation keeps the norm of the wave functié8) con- both Parametrization 1 and Parametrization 2 as discussed in

stant as discussed in E@5) even without the completeness Secs. VA 1.and VA2, respectn./ely. és. shown in H8),
in Eq.(23). Therefore, the normalization conditi¢8) is kept ~ the expectation value of the Hamiltoniahis also conserved
as the first-class constraint for the approximate wave funcéven without Eq.(24). Then the energy of the system is

tion (49), and the corresponding Lagrange multiplgrwill conserved. R
be determined by the gauge-fixing conditio?6) as dis- Next we consider a Hermitian operatQr as a candidate
cussed in Sec. Il A. of the constant motion which is commutable with the Hamil-

Next we calculatez (t) explicitly. The Lagrangian5) for  tgnianH’ as
the wave function(49) is calculated as
Clin - . [Q,H']_=0. (59)
L(zz#) = Zz| — (([D) = (D[D)) —~ (D|H'|D) _
2 We hope the expectation value

in .. . A
+ {Ealzl -7z7) - xozlzl] (D|D) + N, Q= (W|Q|w) (59)

P I L P . is a constant of motion as in E@27). The already deter-
= +| —(Zn-72) - +No- : oo T ”

a7k { o Gz~ uz) )\Ozlzl]@'q» Mo mined Hamiltonian with the constant-norm condition, E3).
(52) or Eq. (31), is written as

The Euler equations faz;(t) andz,(t) are K=H"+\gQo, (60)

where), is determined by Eq(38) with uy=0 for Param-
etrization 1. The Lagrange multipliey, is determined also

. i . :
i12,(@|) + zl[u + (@) + (@) - xo<<1>|<b>} =0,
for Parametrization 2 by the gauge-fixing conditidn(26).

(53 From Eq.(15), the time variation of} is calculated as
o o, iR : : da 1 1 1
- Ihz]_<q)|(1)> + Z]_|:L - E(<<D|q)> + <(I)|CD>) - )\O<<D|(I)>:| = O a = E{Q,K}Gp: E{Q, H,}GP+ E)\o{ﬂ,go}ep, (61)
(54)

where the right-hand sidghs) of the equation is not always
Equations(53) and (54) are transformed to the EOM of the equal to zero because the rhs cannot be reduced to the com-

parametersy and 6, in Eq. (49) as mutator relationg58) and[€}, 1]_=0 without Eq.(24). Then
. . the expectation valu@ cannot be a constant of motion gen-
1 (D]D) +(D|D)) . . -

1= —————, (55)  erally. Here we consider the Hermitian operaferas an

2 (D|P) operator for the pseudo-second-class constraint. Considering
the normalization, we introduce the new constraint as
in . . -

fi (D|D) Now we consider the wave function with Parametrization
(56) 1 as discussed in Sec. IV A 1l. We extract only the compo-
nent which is “orthogonal” to the already considered con-

By using the normalization conditio(8), the second-class straints by the Schmidt-like scheme as in E2fl),
conditions(4), and also the gauge-fixing conditig@6), the

-012

variational parametez;(t) is calculated finally as follows: 2 2 {Aho}
i ga=A-> > {A,gj}GP(S_l)jigi - _{g : hO}GP o
| - < ~ i=1 j= I} P
o | t<c1> 5(@—@)—H—A‘<b> o v
_ A.9o}
z;(t) = ———ex —f dr|, _ 1AGoce =
' W(P|D) fily () {ho,Yo}cp ° 69

7
57 It is easy to show equation§a,ditep=0, {ga,dolcp=0, and

where the real constantis determined from the initial phase {ga,ho}cp=0. The consistency condition for E¢(63) is cal-
of z(t). culated as

022503-6
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dgA functions can be conserved by allocating an independent
at Cin {9A7 Klep= {QA-H }Gp+ No{9a Goler variational freedom to the prefactor of the wave functions,
the first-class constraints and the constants of motion should

A/

_ 1{ H'}ep=0 (64) be generally reconsidered as the pseudo-second-class con-
Tin 9T sep= - straints in the approximate wave functions.
By orthogonalizing Eq(64) to the already considered con-
straints again, we have APPENDIX A: COMPLETENESS OF LOCAL BASES
2L 2L :
) ) ~ {A" holep The completeness of the local bagé¥/dz}i-; v in Eq.
gs=A —2 E {A',9i}cr(S 1)jigi - —{g holap° (23) can be considered as follows. First we consider an or-
=1 1=1 ororep thonormal complete basis sg}i-1 v in the Hilbert space
A, with a resolution of the unit operator
A go}GPhO: 0, (65) p
{ho,Yo}cp .
and equation$gg, 9itep=0, {gs, Jo}cp=0, and{gs,hotcp=0. ;1 xiXoxil = 1. (A1)
The new Hamiltonian with the constrainté3) and (65) is -
defined as We note that the basdg;}i-; m are “nonlocal” because they
o do not depend on the variational paramei{ersz;}i:w. On
K=H"+ Moo+ Aaga* 180s- (66) the other hand, we can orthonormalize the local bases

From the consistency conditions for the pseudo-second-clagg¥V/dz}i=1m by an adequate transformation as
constraintg63) and(65), we have linear equations as
{ga.H}ep+ 1a{9a 9eter=0, (67) §zzr) = Si &z- [T(ZZ )i (A2)
i i
{9e,H}gp+ Ma{0g,9a}cp=0. (68)  where the transformation matrif(z,z*) should satisfy
TTCT=E for the Hermitian overlap matriC(z,z*) in Eq.

(14). If the orthonormalized but nonanalytical local bases
{&(z,z* )}i=1 m can be represented by the unitary transforma-

The Lagrange multipliers are determined like E2{) for the
second-class constraints,

{08 H}ap tion of the “nonlocal” base$y;}i-1 v as
M= (69) ’
{gs.9aler M
. §i(Z,Z*):2X1[U(Z,Z* )i (A3)
_ {gaHlep _ ifgs  _ 1=t
M= == =0. (70)
{0a08}ep  {9a.O8}cP we can show the completeness of the local bases

Finally, in the case of Parametrization 2 discussed in Sec{‘w/&z'}' 1M @s
IV A 2, the trial wave function49) always satisfies Eq51) M PG
and the norm of the wave function is conserved. Then we can, >( ‘1)”<
drop all the terms ofj, andh, from the above equations. The ij=1 | 9Z 9z
Lagrange multipliers\y and ug in Parametrization 2 are the M
i

same as Eqg69) and(70), respectively. =

M
k%|§k>(T-1>ki<c-l>i,-[(T-l)*]j.<§.|,

=1

V. SUMMARY M M
, o _ . = ) [&UTTCT) (&l = 2 |aXEl,

The TDVP with constraints is equivalent to solving the k=1 i=1
Schrddinger equation in restricted variational subspaces M M M M
which are identified by some physical or artificial con- - ) (ot - N\l
straints. In this study, we have given the EOM with con- z E} g'X’xU)“(U il 2|X'><X'|'
straints for parametrized wave functions. If the local bases in
the parametrized wave functions construct a complete basis = 1. (A4)

set, the classification of the constraints with the CGPB be-
comes equivalent to that with the commutator of the corre-
sponding operator$lQ]. The parametrization with such a 1oz},
complete local basis set can solve the Schrodinger equauciﬁw Zsi=1 M-

exactly in the subspaces identified by the constraints. In the

a_\pproximafce wave functions, however, the I(_)cal bases with APPENDIX B: PROOF OF EQ. (50)

limited variational parameters are generally incomplete and

cannot afford the equivalence between the CGPB and the To prove Eq.(50), we first calculate the following terms
commutator of operators. Although the norm of the wavefor a real functionA as

The unitarity of the “local” transformatiot)(z,z*) in Eq.
(A3) ensures the completeness of the local bases

022503-7
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M

M .
li=2 %(C_l)ji = [E (C™;j &A*] (i=
i=1 %

=1 9%

(B1)
By using the terms;, the CGPB(16) is written as

M
{ABlgp= >, [Ii(’—% @I*} (B2)

Sl ol
Multiplying Eg. (B1) by the overlap matrixC, we have
M
oA
2= (=1,...M). (B3)
i=1 C7ZJ
For the wave function49) in Parametrization 2, the local
bases are calculated as

oV
—=0, (B4)
iz,
av 0P
—=z—=z®d, (i=2,...M). BS
7 Zlazi z®; (i ) (BS)

The overlap matrixC in Eq. (14) between the local bases
(B4) and(B5) is calculated as

(D|D)
Z(D,|D)

7(D|Dy) 7 (D|Dy)

B 7 2(D;| D))
Z(Dy|P) -
(B6)

If we take the norm of the wave functio@9) as the real
function A in Eg. (B1), we have

A= (W|1|W) = Z2,(D|D), (B7)
A
Z = 2a|d
2 Z(D|D),

oA

E:z}zl@ldh% and c.c. (B8)

By calculating Eq.(B3) with Egs. (B6)«B8), we have, for
=1,

PHYSICAL REVIEW A 70, 022503(2004)

M

| (D|D) +Z; > 1(D|D) = Z(D|D),
i=2

(B9)

and forj=2,
M
112(P| D)) + 2> 1{Di| D)) = Z;2o(P|Dj).  (B1O)
i=2

The elimination ofl; from Egs.(B9) and(B10) leads to the
homogeneous linear equations fofi =2),

M

22 KPP Di| D)) —(Di|PNP[PH]=0 (j=2,... M).

(B11)
By introducing the matribD as
(D)jj = (P[DND;| D) (D DN P[P (,j=2,... M),

(B12)
we can rewrite Eq(B11) as
M
2 L(D);=0 (j=2,... M). (B13)
i=2

On the other hand, the determinant of the ma@ixB6) is
calculated by expanding in the first column as

|C| = (D|®)y " M2(Z;z))MI|D). (B14)

If we can assuméC|#0 as the nonsingularity of the local
basegB4) and(B5), Eq. (B14) leads directly to

ID| # 0. (B15)

From Eq.(B15), we have only the trivial solutions for Eg.
(B13) as

(=0 (i=2,...M). (B16)
By substituting Eq(B16) into Eq.(B9), we have
l,=27. (B17)

Finally, for any operatoé, the CGPB is calculated through
Eq. (B2) as

. . NZ'2,(D|B|P

{wum»,«m»@:zz—(zlziz*' =
1

NZ;z(D|B| D))

_ .
9z,

=0. (B18)
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