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Time-dependent variational principle with constraints for parametrized wave functions
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The time-dependent variational principle in the stationary action principle form is formulated with constraint
conditions for parametrized wave functions. The constraint conditions are classified into the first and the
second classes as in Dirac’s constrained classical mechanics based on the commutability of operators. If the
local bases in the parametrized wave functions construct a complete basis set, the classification of constraints
with the commutator becomes equivalent to that with the complex generalized Poisson brackets(CGPB).
However, in approximate wave functions with limited variational parameters, the equivalence between the
CGPB and the commutator of operators is lost. The first-class constraints and the constants of motion classified
with the commutator should be reconsidered as the pseudo-second-class constraints in the approximate wave
functions.

DOI: 10.1103/PhysRevA.70.022503 PACS number(s): 31.15.Pf

I. INTRODUCTION

In many dynamical processes in physics and chemistry,
the time-dependent picture enables an intuitive and vivid un-
derstanding of the processes. Particularly for electrons and
nuclei in molecules, the time-dependent variational principle
(TDVP) [1–6] has become one of the most popular methods
to obtain the quantum-mechanical time-dependent wave
functions. Recent theoretical works have been reviewed in
Ref. [7]. From the viewpoint of the variational method, how-
ever, only the normalization condition for wave functions has
been considered as the constraint in the TDVP in spite of
various techniques in the variational method[8,9]. In our
previous work[10], the TDVP has been formulated with not
only the normalization but also general constraint conditions
for wave functions to extend the applicability of the TDVP,
e.g., to quantum dynamics in subspaces which are specified
by some physical or artificial constraints. The constraint con-
ditions have been classified into the first and the second
classes according to the terminology of Dirac’s constrained
classical mechanics[11,12].

In this work, we formulate the TDVP with constraints by
introducing explicit variational parameters of wave func-
tions. In many investigations to use the TDVP, various pa-
rametrizations of wave functions have been considered as in
the time-dependent Hartree-Fock wave functions, Gaussian
wave packets, and so on[7]. We adopt here a complex ana-
lytic parametrization of wave functions to keep the varia-
tional independence betweendC anddC* [4,13]. The Euler
equations in the parametrized TDVP are written in the form
of the pseudo-classical-mechanics[13] where the equations
of motion (EOM) are described by complex generalized
Poisson brackets(CGPB). All the rich apparatus developed
for the study of classical mechanics can be applied to the
study of this motion. Unfortunately, however, in approximate
wave functions constructed with limited variational param-
eters, the commutability between operators is not always

kept in the CGPB. The classification of constraints to the
first-class and the second-class constraints becomes not
equivalent to that in exact wave functions[10]. Some con-
stants of motion are also lost in the approximate wave func-
tions. For example, even the norm of the wave functions,
which is a typical first-class quantity, is not always con-
served, although the expectation values of physical quantities
may be obtained correctly by dividing with the norm. We
reconsider such constraints in the approximate wave func-
tions as the pseudo-second-class constraints.

In Sec. II, we give the EOM for the TDVP parameters
with constraints. The Lagrange multipliers for the second-
class constraints are determined. In Sec. III, we show that the
complete local bases in the parametrized wave functions can
afford the equivalence between the CGPB and the commu-
tator of operators. The classification of constraints to the first
and the second classes with the CGPB is exactly the same as
that with the commutator. In Sec. IV, we discuss approximate
wave functions with limited variational parameters where the
local bases are incomplete. A brief summary is given in
Sec. V.

II. TIME-DEPENDENT VARIATIONAL PRINCIPLE WITH
CONSTRAINTS

A. Equations of motion of variational parameters

A complex analytic parametrization of wave functions is
formulted to keep the variational independence betweendC
anddC* [4,13]. A set of time-dependent variational param-
etershzistd ,zi

pstdji=1,M is introduced to the trial wave function
as

Csz;xd = Csz1,z2, . . . ,zM ;xd,

]Csz;xd
]zi

* = 0 si = 1, . . . ,Md. s1d

The variation of the trial function is reduced to those of the
variational parameters in the expanded form with the local
basesh]C /]ziji=1,M as*Email address: ohta@mmm.muroran-it.ac.jp
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dC = o
i=1

M

dzi
]C

]zi
, s2d

where the “local bases” means that the vectors]C /]zi, as the
bases in the Hilbert space, generally depend on the varia-
tional parametershzistdji=1,M in nonlinear parametrizations.
Here we consider the normalization constraint of the wave
function,

g0sz,z* d = kCu1̂uCl − 1 = ŠCu1̂ − kCuCl−1uC‹ = 0, s3d

and the independent constraints with the Hermitian operators
ĝi,

gisz,z* d = kCuĝiuCl = 0 si = 1, . . . ,2Ld, s4d

where the number of the constraints in Eq.(4) should be
even in order to avoid the singularity in the determination of
their Lagrange multipliers[10], as will be discussed in Sec.
II B. A real Lagrangian is defined as

Lsz,z* d = kCu
i"

2
s]Wt − ]Qtd − ĤuCl − o

i=0

2L

ligisz,z* d,

=
i"

2 o
i=1

M

żiKCU ]C

]zi
L −

i"

2 o
i=1

M

żi
*KU ]C

]zi
UCL

− kCszduĤuCszdl − o
i=0

2L

ligisz,z* d, s5d

including the constraints with the Lagrange multipliers,
l0std, and hlistdji=1,2L. An action functional is also defined
with the Lagrangian as

Sfz,z* g =E
t0

t1

Lsz,z* ddt,

=E
t0

t1F i"

2 o
i=1

M

żiKCU ]C

]zi
L −

i"

2 o
i=1

M

żi
pKU ]C

]zi
UCL

− kCszduĤuCszdl − o
i=0

2L

ligisz,z* dGdt. s6d

By requiring the action to be stationary[6,10,13],

dSfz,z* g =E
t0

t1

dLsz,z* ddt = 0, s7d

with the fixed boundary conditions,

dzi
pst0d = dzi

pst1d = dzist0d = dzist1d = 0 si = 1, . . . ,Md,

s8d

we obtain the equations of motion(EOM) for the TDVP
parameters,hzistd ,zi

*stdji=1,M, as

i"o
j=1

M
dzj

dt
KU ]C

]zi
U ]C

]zj
L =KUU ]C

]zi
UĤUCL + o

j=0

2L

l j
]gj

]zi
p , s9d

− i"o
j=1

M
dzj

*

dt
KU ]C

]zj
U ]C

]zi
L =KCUĤU ]C

]zi
L + o

j=0

2L

l j
]gj

]zi
.

s10d

By introducing the new Hamiltonian operator with the con-
straints(4),

Ĥ8 = Ĥ + o
j=1

2L

l jĝj , s11d

and the expectation value also with the normalization condi-
tion (3),

K = kCuĤ8 + l0ĝ0uCl = H8 + l0g0 = H + o
j=1

2L

l jgj + l0g0,

s12d

the EOM(9) and(10) are written simply in the matrix form
as

S ż

ż*
D =

1

i"
S 0 C−1

− sC−1dt 0
D1

]K

]z

]K

]z*
2 . s13d

The Hermitian matrixC in the EOM (13) is the overlap
matrix between the local bases,

sCdi j =KU ]C

]zi
U ]C

]zj
L . s14d

The time development of a functionFsz,z* d is calculated
with Eq. (13) as

dFsz,zp d
dt

= o
i=1

M Fżi
* ]F

]zi
p + żi

]F

]zi
G

= o
i=1

M

o
j=1

M F ]F

]zi
sC−1di j

]K

]zj
p −

]K

]zi
sC−1di j

]F

]zj
* G,

=
1

i"
hF,KjGP, s15d

where the complex generalized Poisson bracket(CGPB) [13]
is defined as

hA,BjGP= S ]A

]z

]A

]z*
DS 0 C−1

− sC−1dt 0
D1

]B

]z

]B

]z*
2,

= o
i=1

M

o
j=1

M F ]A

]zi
sC−1di j

]B

]zj
* −

]B

]zi
sC−1di j

]A

]zj
pG .

s16d

B. Second-class constraints

In this section, we discuss the consistency conditions
[10–12] for the constraints(4) to determine their Lagrange
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multipliershl jj j=1,2L. The normalization constraint(3) will be
considered in Secs. III and IV.

A basic requirement for the constraints in the TDVP is
that the constraints should be preserved in time on the “tra-
jectory” of thehzistd ,zi

pstdji=1,M. This requirement is the same
as the consistency condition in Dirac’s constrained classical
mechanics[11,12]. By using Eq.(15) without Eq. (3), the
consistency conditions for the constraints(4) are written as

dgisz,z* d
dt

=
1

i"
hgi,H8jGP,

=
1

i"
hgi,HjGP+

1

i"
o
j=1

2L

l jhgi,gjjGP= 0

si = 1, . . . ,2Ld. s17d

Equations(17) can be considered as the inhomogeneous
linear equations which determine the Lagrange multipliers
hl jj j=1,2L. If we define a row vectorh,

shdi = hH,gijGP, s18d

and a skew-symmetric matrixS,

sSd ji = hgj,gijGP, s19d

the inhomogeneous linear equations(17) are rewritten in the
matrix form

h + lS= 0. s20d

Here we assume the nonsingularity of the skew-symmetric
matrix S. This assumption requires that the dimension of the

S, or the number of the constraints in Eq.(4), should be
even, 2L. The Lagrange multipliers can be uniquely deter-
mined from Eq.(20) as

li = − o
j=1

2L

shd jsS−1d ji = − o
j=1

2L

hH,gjjGPsS−1d ji . s21d

In Dirac’s constrained mechanics[11,12], the constraints
whose Lagrange multipliers can be uniquely determined
from their consistency conditions as the above are said to be
the second-class constraints. The expectation value of the
Hamiltonian(11) is written with Eq.(21) explicitly as

H8 = kCuĤ8uCl = H − o
i=1

2L

o
j=1

2L

hH,gjjGPsS−1d jigi . s22d

III. PARAMETRIZATION WITH COMPLETE
LOCAL BASES

If the local basesh]C /]ziji=1,M in the parametrized wave
functions (2) construct a complete system with the overlap
matrix (14), we can have a resolution of the unit operator as

o
i,j=1

M U ]C

]zi
LsC−1di jK ]C

]zj
U = 1̂. s23d

The completeness of the local bases is discussed briefly in
Appendix I. Using Eq.(23), we have for any Hermitian op-

eratorsÂ and B̂,

hkCuÂuCl,kCuB̂uCljGP= o
i,j=1

M FKCUÂU ]C

]zi
LsC−1di jKUU]C

]zj
UB̂UCL −KUU]C

]zi
UÂUCLfsC−1dtgi jKCUB̂U ]C

]zj
LG,

=KCUÂSo
i,j=1

M U ]C

]zi
LsC−1di jK ]C

]zj
UDB̂UCL − FKCUÂSo

i,j=1

M U ]C

]zi
LsC−1di jK ]C

]zj
UDB̂UCLG*

,

= kCuÂ1̂B̂uCl − fkCuÂ1̂B̂uClg*,

= kCufÂ,B̂g−uCl. s24d

The CGPB of the expectation values ofÂ and B̂ has been
proved to be equal to the expectation value of the commuta-
tor of those operators. Then, if the local bases construct a
complete basis set, the classification of constraints with the
CGPB becomes equivalent to that with the commutator of
the corresponding operators[10].

A. Norm of wave functions: First-class constraints

For the complete local bases in Eq.(23), we consider the
consistency condition for the normalization condition(3) to

determine its Lagrange multiplierl0. By using Eqs.(15) and
(24), the time variation of the normalization condition is cal-
culated as

dg0

dt
=

1

i"
hkCu1̂uCl,KjGP,

=
1

i"
hkCu1̂uCl,kCuĤ8uCljGP+

1

i"
l0hg0,g0jGP,

=
1

i"
kCuf1̂,Ĥ8g−uCl = 0. s25d
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This equation always holds because the constraining operator
for the normalization is the unit operator which is commut-
able with any operators. Then we cannot determine uniquely
the Lagrange multiplierl0 from the consistency requirement
for the normalization condition. The constraints whose
Lagrange multipliers cannot be uniquely determined from
their consistency conditions are said to be the first-class con-
straints [11,12]. Then the normalization condition in the
TDVP corresponds to the first-class constraint in Dirac’s
constrained mechanics. We fix here the Lagrange multiplier
l0 directly to a real functionL as a gauge-fixing condition
[10–12],

l0std = Lstd, s26d

where the real functionL can be selected arbitrarily.

B. Constants of motion

In this section, we summarize the constants of motion in
our constrained system with the complete local bases in Eq.
(23). First, the norm of the wave function is conserved in
time as shown in Eq.(25). Using Eqs.(15) and(24), the time
development of the expectation value of a Hermitian opera-

tor V̂ is calculated as

dkCuV̂uCl
dt

=
1

i"
hkCuV̂uCl,KjGP,

=
1

i"
hkCuV̂uCl,kCuĤ8uCljGP+

1

i"
Lstd

3hkCuV̂uCl,g0jGP,

=
1

i"
kCufV̂,Ĥ8g−uCl +

1

i"
LstdkCufV̂,1̂g−uCl,

=
1

i"
kCufV̂,Ĥ8g−uCl. s27d

If the Hermitian operatorV̂ is commutable with the Hamil-

tonianĤ8, the expectation valuekCuV̂uCl will be a constant
of motion with the normalization condition of the wave func-

tion. Next, in the case ofV̂=Ĥ in particular, we have

hkCuĤuCl,kCuĤ8uCljGP= 0, s28d

from only the antisymmetric property of the CGPB(16)
without Eq.(24). Then the energy of the system is also con-
served with the normalization condition of the wave func-
tion.

IV. PARAMETRIZATION WITH INCOMPLETE
LOCAL BASES

In this section, we consider approximate wave functions
with limited variational parameters. Incomplete local bases
with the limited variational parameters cannot afford the
equivalence between the CGPB and the commutator of op-
erators as shown in Eqs.(23) and (24). The first-class con-
straints and the constants of motion, classified with the com-

mutator of the operators[10], should be generally
reconsidered as the pseudo-second-class constraints in the
approximate wave functions.

A. Norm of wave functions

1. Parametrization 1: Pseudo-second-class constraints

Here we consider approximate wave functions which are
generally parametrized. We call the wave functions Param-
etrization 1 to distinguish them from a special parametriza-
tion scheme, which will be discussed in Sec. IV A 2.

We first relax the normalization condition(3) to the
constant-norm condition of the wave function as

N = kCu1̂uCl − N0 = 0, s29d

whereN0 is a real constant given as the norm. By using Eq.
(15), the time variation of the constraint(29) is calculated as

dN

dt
=

1

i"
hN,KjGP=

1

i"
hN,H8jGP+

1

i"
l0hN,NjGP,

=
1

i"
hkCu1̂uCl,kCuĤ8uCljGP,

Þ kCuf1̂,Ĥ8g−uCl = 0. s30d

For the lack of the completeness in Eq.(23), the norm of the
wave function will generally change in time. We should con-
strain Eq.(30) to be zero as the consistency condition for the
constant-norm condition. Consequently, the constraint(29)
with the additional constraint(30) can be considered as a
pair of the pseudo-second-class constraints. The new con-
straints can be included in Eq.(4) from the beginning as
s2L+2d second-class constraints totally. For simplicity, how-
ever, we take only the components which are independent of
the 2L constraints in Eq.(4) in order not to disturb the con-
strained Hamiltonian which is already determined in Eq.
(22). The component of the constraint(29), which is “or-
thogonal” to the already considered constraints(4), can be
obtained by a Schmidt-like orthogonalization scheme using
the CGPB as

g0 = N − o
i=1

2L

o
j=1

2L

hN,gjjGPsS−1d jigi = 0. s31d

The consistency condition for Eq.(31) is

N8 =
dg0

dt
=

1

i"
hg0,KjGP=

1

i"
hg0,H8jGP+

1

i"
l0hg0,g0jGP,

=
1

i"
hg0,H8jGP= 0. s32d

By orthogonalizing Eq.(32) to the already considered con-
straints(4) again, we have a new additional constraint

h0sz,z* d = N8 − o
i=1

2L

o
j=1

2L

hN8,gjjGPsS−1d jigi = 0. s33d

In fact, we have the “orthogonal” relations using the CGPB
as
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hg0,gijGP= hh0,gijGP= 0 si = 1, . . . ,2Ld. s34d

The new Hamiltonian which includes the pseudo-second-
class constraints(31) and (33) is defined as

K = H8 + l0g0 + m0h0, s35d

wherel0 and m0 are the Lagrange multipliers for the new
constraints. Using Eq.(15) with the Hamiltonian(35), we
have linear equations

hg0,HjGP+ m0hg0,h0jGP= 0, s36d

hh0,HjGP+ l0hh0,g0jGP= 0, s37d

as the consistency conditions for the constraints(31) and
(33). The Lagrange multipliers are determined like Eq.(21)
for the second-class constraints,

l0 = −
hh0,HjGP

hh0,g0jGP
, s38d

m0 = −
hg0,HjGP

hg0,h0jGP
= −

i"h0

hg0,h0jGP
= 0. s39d

Now we show a simple example of Parametrization 1. We
consider a three-dimensional model space which is spanned
by an orthonormal basis sethxisxdji=1,3. The completeness of
the basis set in the model space is written as

o
i=1

3

uxilkxiu = 1̂. s40d

We take a trial wave function parametrized withhz1,z2j as

Csz1,z2;xd = x3sxd + z1stdx1sxd + z2stdx2sxd. s41d

For the wave function(41), the matrixC in Eq. (14) is cal-
culated to be a two-dimensional unit matrix, and the local
bases with the parametershz1,z2j become incomplete in the
three-dimensional model space as

o
i,j=1

2 U ]C

]zi
LsC−1di jK ]C

]zj
U = o

i=1

2

uxilkxiu = 1̂ − ux3lkx3u Þ 1̂.

s42d

The Hamiltonian is also calculated with the wave function
(41) as

H = kCuĤuCl = H33 + z1
pz1H11 + z2

pz2H22

+ z1
pz1H12 + z2

pz1H21 + z1H31 + z2H32 + z1
pH13 + z2

pH23,

s43d

whereHij =kxi u Ĥ ux jl. For simplicity, we consider only the
constant-norm condition(29) as

g0sz,zpd = kCu1̂uCl − N0 = 1 +z1
pz1 + z2

pz2 − N0 = 0. s44d

The additional constraint

h0 =
dg0

dt
=

1

i"
hg0,HjGP= −

2

"
Imfz1H31 + z2H32g = 0

s45d

is considered as the partner of the pseudo-second-class con-
straint (44). The Lagrange multipliers are calculated with
Eqs.(38) and (39) as

l0 =
Refz1sH11H31 + H21H32d + z2sH12H31 + H22H32dg + uH31u2 + uH32u2

Refz1H31 + z2H32g
, s46d

andm0=0. The EOM(13) for the parametershz1,z2j is writ-
ten explicitly as

ż1 =
1

i"
fH13 + z1sH11 + l0d + z2H12g, s47d

ż2 =
1

i"
fH23 + z2sH22 + l0d + z1H21g. s48d

2. Parametrization 2: First-class constraints

In the preceding section we considered the normalization
condition generally with the incomplete local bases. The
constant-norm condition(29) has been calculated as the
pseudo-second-class constraint. Here we take a different pa-
rameterization for approximate wave functions. This special
parametrization, called here Parametrization 2, can keep the

norm of the wave functions constant even if the local bases
do not have the completeness in Eq.(23).

We consider a complex analytic parametrization of the
trial wave function as

Csz1,z2, . . . ,zM ;xd = z1Fsz2, . . . ,zM ;xd

= a1e
iu1Fsz2, . . . ,zM ;xd, s49d

where an independent variational parameterz1 is separated as
the prefactor of the wave functionF. For the wave function
(49), called Parametrization 2, the following equation always
holds:

hkCu1̂uCl,kCuB̂uCljGP= 0, s50d

where B̂ is an arbitrary operator. The proof of Eq.(50),
which is given in Appendix II, does not need to use the
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completeness of the local bases in Eq.(23). If we take the

operatorB̂ as the HamiltonianĤ8, we have

hkCu1̂uCl,kCuĤ8uCljGP= 0. s51d

This equation keeps the norm of the wave function(49) con-
stant as discussed in Eq.(25) even without the completeness
in Eq. (23). Therefore, the normalization condition(3) is kept
as the first-class constraint for the approximate wave func-
tion (49), and the corresponding Lagrange multiplierl0 will
be determined by the gauge-fixing condition(26) as dis-
cussed in Sec. III A.

Next we calculatez1std explicitly. The Lagrangian(5) for
the wave function(49) is calculated as

Lsz,zp d = z1
pz1F i"

2
skFuḞl − kḞuFld − kFuĤ8uFlG

+ F i"

2
sz1

pż1 − ż1
*z1d − l0z1

pz1GkFuFl + l0,

= z1
pz1L8 + F i"

2
sz1

pż1 − ż1
*z1d − l0z1

pz1GkFuFl + l0.

s52d

The Euler equations forz1
pstd andz1std are

i"ż1kFuFl + z1FL8 +
i"

2
skFuḞl + kḞuFld − l0kFuFlG = 0,

s53d

− i"ż1
*kFuFl + z1

pFL8 −
i"

2
skFuḞl + kḞuFld − l0kFuFlG = 0.

s54d

Equations(53) and (54) are transformed to the EOM of the
parametersa1 andu1 in Eq. (49) as

ȧ1 = −
1

2
a1

skFuḞl + kḞuFld
kFuFl

, s55d

u̇1 =
1

"

F i"

2
skFuḞl − kḞuFld − kFuĤ8uFl − l0kFuFlG

kFuFl
.

s56d

By using the normalization condition(3), the second-class
conditions(4), and also the gauge-fixing condition(26), the
variational parameterz1std is calculated finally as follows:

z1std =
eic

ÎkFuFl
exp3 i

"
E

t0

t KFU i"

2
s]Wt − ]Qtd − Ĥ − LUFL

kFuFl
dt4 ,

s57d

where the real constantc is determined from the initial phase
of z1std.

B. Constants of motion as the pseudo-second-class constraints

In this section, we summarize the constants of motion in
approximate wave functions where Eq.(23) does not hold.
First, the norm of the wave function can be conserved in
both Parametrization 1 and Parametrization 2 as discussed in
Secs. IV A 1 and IV A 2, respectively. As shown in Eq.(28),
the expectation value of the HamiltonianĤ is also conserved
even without Eq.(24). Then the energy of the system is
conserved.

Next we consider a Hermitian operatorV̂ as a candidate
of the constant motion which is commutable with the Hamil-

tonianĤ8 as

fV̂,Ĥ8g− = 0̂. s58d

We hope the expectation value

V = kCuV̂uCl s59d

is a constant of motion as in Eq.(27). The already deter-
mined Hamiltonian with the constant-norm condition, Eq.(3)
or Eq. (31), is written as

K = H8 + l0g0, s60d

wherel0 is determined by Eq.(38) with m0=0 for Param-
etrization 1. The Lagrange multiplierl0 is determined also
for Parametrization 2 by the gauge-fixing conditionL (26).
From Eq.(15), the time variation ofV is calculated as

dV

dt
=

1

i"
hV,KjGP=

1

i"
hV,H8jGP+

1

i"
l0hV,g0jGP, s61d

where the right-hand side(rhs) of the equation is not always
equal to zero because the rhs cannot be reduced to the com-

mutator relations(58) andfV̂ , 1̂g−=0̂ without Eq.(24). Then
the expectation valueV cannot be a constant of motion gen-

erally. Here we consider the Hermitian operatorV̂ as an
operator for the pseudo-second-class constraint. Considering
the normalization, we introduce the new constraint as

A = kCuÂuCl = kCuV̂ − VuCl = 0. s62d

Now we consider the wave function with Parametrization
1 as discussed in Sec. IV A 1. We extract only the compo-
nent which is “orthogonal” to the already considered con-
straints by the Schmidt-like scheme as in Eq.(31),

gA = A − o
i=1

2L

o
j=1

2L

hA,gjjGPsS−1d jigi −
hA,h0jGP

hg0,h0jGP
g0

−
hA,g0jGP

hh0,g0jGP
h0 = 0. s63d

It is easy to show equations,hgA,gijGP=0, hgA,g0jGP=0, and
hgA,h0jGP=0. The consistency condition for Eq.(63) is cal-
culated as
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A8 =
dgA

dt
=

1

i"
hgA,KjGP=

1

i"
hgA,H8jGP+

1

i"
l0hgA,g0jGP,

=
1

i"
hgA,H8jGP= 0. s64d

By orthogonalizing Eq.(64) to the already considered con-
straints again, we have

gB = A8 − o
i=1

2L

o
j=1

2L

hA8,gjjGPsS−1d jigi −
hA8,h0jGP

hg0,h0jGP
g0

−
hA8,g0jGP

hh0,g0jGP
h0 = 0, s65d

and equationshgB,gijGP=0, hgB,g0jGP=0, andhgB,h0jGP=0.
The new Hamiltonian with the constraints(63) and (65) is
defined as

K = H8 + l0g0 + lAgA + mBgB. s66d

From the consistency conditions for the pseudo-second-class
constraints(63) and (65), we have linear equations as

hgA,HjGP+ mBhgA,gBjGP= 0, s67d

hgB,HjGP+ lAhgB,gAjGP= 0. s68d

The Lagrange multipliers are determined like Eq.(21) for the
second-class constraints,

lA = −
hgB,HjGP

hgB,gAjGP
, s69d

mB = −
hgA,HjGP

hgA,gBjGP
= −

i"gB

hgA,gBjGP
= 0. s70d

Finally, in the case of Parametrization 2 discussed in Sec.
IV A 2, the trial wave function(49) always satisfies Eq.(51)
and the norm of the wave function is conserved. Then we can
drop all the terms ofg0 andh0 from the above equations. The
Lagrange multiplierslA andmB in Parametrization 2 are the
same as Eqs.(69) and (70), respectively.

V. SUMMARY

The TDVP with constraints is equivalent to solving the
Schrödinger equation in restricted variational subspaces
which are identified by some physical or artificial con-
straints. In this study, we have given the EOM with con-
straints for parametrized wave functions. If the local bases in
the parametrized wave functions construct a complete basis
set, the classification of the constraints with the CGPB be-
comes equivalent to that with the commutator of the corre-
sponding operators[10]. The parametrization with such a
complete local basis set can solve the Schrödinger equation
exactly in the subspaces identified by the constraints. In the
approximate wave functions, however, the local bases with
limited variational parameters are generally incomplete and
cannot afford the equivalence between the CGPB and the
commutator of operators. Although the norm of the wave

functions can be conserved by allocating an independent
variational freedom to the prefactor of the wave functions,
the first-class constraints and the constants of motion should
be generally reconsidered as the pseudo-second-class con-
straints in the approximate wave functions.

APPENDIX A: COMPLETENESS OF LOCAL BASES

The completeness of the local basesh]C /]ziji=1,M in Eq.
(23) can be considered as follows. First we consider an or-
thonormal complete basis sethxiji=1,M in the Hilbert space
with a resolution of the unit operator

o
i=1

M

uxilkxiu = 1̂. sA1d

We note that the baseshxiji=1,M are “nonlocal” because they
do not depend on the variational parametershzi ,zi

*ji=1,M. On
the other hand, we can orthonormalize the local bases
h]C /]ziji=1,M by an adequate transformation as

jisz,z* d = o
j=1

M
]Cszd

]zj
fTsz,z* dg ji , sA2d

where the transformation matrixTsz,z* d should satisfy
T†CT =E for the Hermitian overlap matrixCsz,z* d in Eq.
(14). If the orthonormalized but nonanalytical local bases
hjisz,z* dji=1,M can be represented by the unitary transforma-
tion of the “nonlocal” baseshxiji=1,M as

jisz,z* d = o
j=1

M

x jfUsz,z* dg ji , sA3d

we can show the completeness of the local bases
h]C /]ziji=1,M as

o
i,j=1

M U ]C

]zi
LsC−1di jK ]C

]zj
U

= o
i,j=1

M

o
k,l=1

M

ujklsT−1dkisC−1di jfsT−1d†g jlkjlu,

= o
k,l=1

M

ujklfsT†CTd−1gklkjlu = o
i=1

M

ujilkjiu,

= o
i=1

M

o
j=1

M

o
k=1

M

ux jlsUd jisU†dikkxku = o
i=1

M

uxilkxiu,

= 1̂. sA4d

The unitarity of the “local” transformationUsz,z* d in Eq.
(A3) ensures the completeness of the local bases
h]C /]ziji=1,M.

APPENDIX B: PROOF OF EQ. (50)

To prove Eq.(50), we first calculate the following terms
for a real functionA as
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I i = o
j=1

M
]A

]zj
sC−1d ji = Fo

j=1

M

sC−1di j
]A

]zj
*G*

si = 1, . . . ,Md.

sB1d

By using the termsI i, the CGPB(16) is written as

hA,BjGP= o
i=1

M FI i
]B

]zi
p −

]B

]zi
I i
*G . sB2d

Multiplying Eq. (B1) by the overlap matrixC, we have

o
i=1

M

IisCdi j =
]A

]zj
s j = 1, . . . ,Md. sB3d

For the wave function(49) in Parametrization 2, the local
bases are calculated as

]C

]z1
= F, sB4d

]C

]zi
= z1

]F

]zi
; z1Fi si = 2, . . . ,Md. sB5d

The overlap matrixC in Eq. (14) between the local bases
(B4) and (B5) is calculated as

C =1
kFuFl z1kFuF2l ¯ z1kFuFMl

z1
pkF2uFl ¯ ¯ ¯

¯ ¯ z1
pz1kFiuF jl ¯

z1
pkFMuFl ¯ ¯ ¯

2 .

sB6d

If we take the norm of the wave function(49) as the real
function A in Eq. (B1), we have

A = kCu1̂uCl = z1
pz1kFuFl, sB7d

]A

]z1
= z1

pkFuFl,

]A

]zi
= z1

pz1kFuFil, and c.c. sB8d

By calculating Eq.(B3) with Eqs. (B6)–(B8), we have, for
j =1,

I1kFuFl + z1
po

i=2

M

IikFiuFl = z1
pkFuFl, sB9d

and for j ù2,

I1z1kFuF jl + z1
pz1o

i=2

M

IikFiuF jl = z1
pz1kFuF jl. sB10d

The elimination ofI1 from Eqs.(B9) and (B10) leads to the
homogeneous linear equations forI i si ù2d,

o
i=2

M

IifkFuFlkFiuF jl − kFiuFlkFuF jlg = 0 s j = 2, . . . ,Md.

sB11d

By introducing the matrixD as

sDdi j = kFuFlkFiuF jl − kFiuFlkFuF jl si, j = 2, . . . ,Md,

sB12d

we can rewrite Eq.(B11) as

o
i=2

M

IisDdi j = 0 s j = 2, . . . ,Md. sB13d

On the other hand, the determinant of the matrixC (B6) is
calculated by expanding in the first column as

uCu = kFuFl−sM−2dsz1
pz1dsM−1duDu. sB14d

If we can assumeuCuÞ0 as the nonsingularity of the local
bases(B4) and (B5), Eq. (B14) leads directly to

uDu Þ 0. sB15d

From Eq.(B15), we have only the trivial solutions for Eq.
(B13) as

I i = 0 si = 2, . . . ,Md. sB16d

By substituting Eq.(B16) into Eq. (B9), we have

I1 = z1
p. sB17d

Finally, for any operatorB̂, the CGPB is calculated through
Eq. (B2) as

hkCu1̂uCl,kCuB̂uCljGP= z1
p]sz1

pz1kFuB̂uFld
]z1

p

−
]sz1

pz1kFuB̂uFld
]z1

z1,

= 0. sB18d
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