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Abstract 

Preparat ion o f noble metal (NM) (Rh, Pd, Ru, Pt) phosphide species and their  

catalyt ic act ivit ies for hydrodesulfur izat ion (HDS) of thiophene w ere invest igated.  

Noble metal phosphides (NM XPY) catalyst s were prepared by reduct ion o f P -added 

NM (NM-P) supported on silica (SiO 2)  with hydrogen. Hydrogen consumpt ion 

peaks at  around 350−700 °C, which were at t ributed to  the format ion o f NM XPY ,  

were observed in temperature-programmed reduct ion (TPR) spectra of al l 

NM-P/SiO2 .  Furthermore, X-ray diffract ion (XRD) pat terns o f NM-P/SiO2  indicate 

that  NMXPY  (Rh2P, Pd4 .8P, Ru2P, PtP2) were formed by hydrogen reduct ion at  high 

temperature.  The reduct ion temperature st rongly affected HDS act ivit ies o f 

NM-P/SiO2  catalysts.  The NM-P/SiO2  catalysts,  other than Pt ,  showed higher HDS 

act ivit ies than NM/SiO 2  catalysts.  The HDS act ivity o f the Rh-P/SiO2  catalyst  was  

the highest  among those o f NM-P/SiO2  catalysts.  This act ivity was higher than that of 

the Ni-P catalyst and was the same as that  of pre-sulfided CoMoP/Al2O3  catalyst .  

Furthermore, the Rh-P/SiO2  catalyst  showed stable act ivit y even after react ion for  

30 h.  The XRD, t ransmiss ion electron microscopy (TEM), and energy dispersive 

X-ray spectroscopy (EDS) result s revealed that  the format ion o f small Rh2P  

part icles and suit able P addit ion to form Rh 2P caused the high HDS act ivit y o f the 

Rh-P catalyst .  
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1. Introduction  

Recent ly,  the techno logies to  solve environmental problems, such as acid rain 

and global warming, have at t racted a lot  of at tent ion on a global scale.  The 

combust ion o f organic su lfur compounds in fuels used for bo ilers and engines 

result s in the format ion of sulfur  oxides (SO X),  which cause the acid rain.  

Hydrodesulfur izat ion (HDS) is one o f the important  processes in the petroleum 

industry to produce clean fuels [1,2].  CoMo/Al 2O3  catalysts have been widely used 

in the HDS process.  Recent ly,  the petroleum industry c la imed that  the development  

of highly act ive HDS catalysts,  which exhibit  higher act ivity t han commercial 

CoMo/Al2O3  HDS catalysts,  will prevent the acid rain and the deact ivat ion o f 

automotive exhaust  catalysts [3 -6].  

Previously,  phosphides [7-14],  carbides [15-17],  and nit r ides [15, 18-20] have 

received much at tent ion as new HDS catalysts.  In part icu lar,  t ransit ion meta l 

phosphides,  such as Ni2P [7-12] and MoP [13, 14],  were examined to develop highly 

act ive new HDS catalyst s.  Many preparat ion methods for  metal phosphide catalysts,  

such as the reduct ion of oxidized or chlo r inated precursors with phosphine (PH 3)  

and hydrogen, have been reported [20, 21].  Especially,  phosphate salts were widely 

used as phosphorous source.  Bussel et  al.  [10] and Lee and Oyama et  al.  [11]  

reported that  Ni2P catalysts supported on silica (SiO 2) showed higher HDS act ivit y 

than NiMo/Al2 O3  catalyst s.  Thus, SiO 2  is a super ior support  for preparat ion o f 

highly act ive phosphide catalyst s.  On the other hand, we have reported that  noble 

metal (NM), especially plat inum (Pt),  supported on zeo lit es [22 -24] and related 

mater ials,  such as mesoporous silicates [25 -27] and clays [24, 28],  showed high and 

stable act ivity in HDS o f thiophene. Thus, it  is expected that  noble meta l 

phosphides (NM XPY) show high catalyt ic act ivit ies for HDS react ion, but  HDS 
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act ivit ies o f NM XPY  have not  been reported. In the present  study, we exam ined the 

effect  of reduct ion temperature on the preparat ion o f NM phosphides (NM xPy)  

supported on SiO2  and their catalyt ic performance for HDS of thiophene to  develop 

highly act ive HDS catalysts.  

 

2. Experimental  

2.1.  Preparation of catalysts  

Silica (SiO2 ,  BET surface area 295 m
2
/g) was supplied from Nippon Aerosil Co. 

NM/SiO2  catalysts were prepared by an impregnat ion method using aqueous 

so lut ions o f NM chlor ides such as rhodium (III) chlor ide t r ihydrate (RhCl 3 ·3H2O),  

palladium (II) chlor ide (PdCl2),  ruthenium (III) chlor ide t r ihydrate (RuCl 3 ·3H2O),  

and hydrogen hexachloroplat inate (IV) hexahydrate (H 2PtCl6 ·6H2O). However,  

PdCl2  was disso lved in 1.0 mol/ l HCl aqueous so lut ion because PdCl 2  d id not  

disso lve completely in water.  The amount  of NM loading was 5 wt .%. Impregnated 

catalyst s were dr ied at  110 °C for 24 h followed by heat  t reatment  in a nit rogen 

st ream at  450 °C for 1 h to  decompose the NM salt s.  After decomposit ion o f NM 

salt s,  catalyst s were pressed into disk s and crushed to obtain 30–42 mesh size 

granules.  The sieved catalysts were calcined in air at  500 °C for 4 h.  The ramp rate 

of heat  t reatment  and calcinat ion was 10 °C/min. Furthermore, P -added 

NM(NM-P)/SiO2  was prepared by the same procedure,  using NM chlor ides and 

ammonium dihydrogen phosphate (NH4H2 PO4) aqueous so lut ion. The amount  of P  

addit ion was 1.5 wt .%. 

2.2. Characterization of catalysts  

NM and NM-P supported on SiO 2  were character ized by 

temperature-programmed reduct ion (TPR), X-ray diffract ion (XRD), and 
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t ransmit tance electron micro scopy (TEM) techniques.  TPR spectra were measured 

using a Shimadzu GC-8A gas chromatograph. Supported NM or NM-P catalysts (0.1 

g) were heated in a helium stream (30 ml/min) from room temperature to 500 °C at  

10 °C/min, fo llowed by t reatment  in helium at  5 00 °C for 1 h.  After helium 

treatment ,  the calcined catalyst s were cooled to  30°C in a helium stream, and the 

helium was swit ched into 5 vo l% hydrogen-nit rogen (H2-N2) mixture gas at  30 °C 

for 30 min before measurement .  Water was removed by a molecular sieve t rap. The 

TPR spectrum was recorded through the temperature range o f 30 to  800 °C at  

10 °C/min, using a thermal conduct ivity detector (TCD) to monitor hydrogen 

consumpt ion. XRD pat terns o f calcined and reduced catalysts were measured by 

Rigaku MiniFlex with Cu Kα radiat ion at  30 kV and 15 mA. Part icle (crystallit e)  

size o f NM and NM XPY  were calculated by Scherrer ’s equat ion. TEM observat ion 

was carr ied out  using JEOL JEM-2000FX. The condit ions o f TEM operat ion were as 

fo llows: accelerat ion vo ltage = 200 kV and magnificat ion = 200 ,000. Part icle size  

dist r ibut ion and average part icle size were measured from TEM micrographs.  

Elemental composit ions of NM-P catalysts were determined by semiquant itat ive 

analys is using energy dispersive X-ray spectroscopy (EDS, JEOL JED-2300) with 

Si (Li) semiconductor detector .  

2.3. Hydrodesulfurization of thiophene 

HDS of thiophene was performed at  350 °C under 0.1 MPa using a convent ional 

fixed bed flow reactor. The 0.1 g  amount  of catalyst  was charged into the quartz 

reactor and was heated (10 °C/min) in a helium stream (30 ml/min) at  500 °C for 1h.  

After helium treatment ,  the catalysts were reduced by hydrogen (30 ml/min) at  350 –

700 °C for 1 h.  The hydrogen-thiophene gas mixture (H 2 /Thiophene = 30),  obtained 

by passing a hydrogen st ream through a thiophene t rap cooled at  0 °C, was 
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int roduced into the reactor.  React ion condit ion (W/F) was 37.9 g·h/mol.  The 

react ion products were analyzed by gas chromatograph ( flame ionizat ion detector, 

FID) equipped with silicone DC-550 (2 m, 110 °C) and VZ-7 (4 m, 0 °C) co lumns.  

Commercia l CoMoP/Al2O3  (Co: 2.5 wt%, Mo: 10.0 wt%, and P: 2.1 wt%) and 

Ni-P/SiO2  (prepared using Ni(NO 3)3 ·6H2 O, Ni: 15.0 wt%; P: 7.9%) catalysts were 

used to  compare with supported NM-P catalysts.  The pre-sulfided CoMoP/Al2O3  

catalyst  was prepared using 5% H 2S-H2  at  400 °C after hydrogen reduct ion at  

450 °C. 

 

3. Results and discussion  

3.  1.  TPR spectra of NM-P/SiO2  catalysts  

It is well-known that  t ransit ion metal phosphides,  such as Ni 2P, are prepared by 

reduct ion of oxidized precursors at high temperature [8,  10 -12]. Therefore,  we 

evaluated the TPR spectra and XRD pat terns o f NM -P/SiO2  catalysts to  get  the 

informat ion for NMXPY  format ion by hydrogen reduct ion. Figure 1 shows the TPR 

spectra of calcined NM/SiO 2  catalysts.  The hydrogen consumpt ion peaks appeared  

at  100–200 °C in the spectra of supported Rh and Ru catalysts.  These peaks were 

att ributed to  reduct ion o f NM oxides.  However,  there was a remarkable negat ive 

peak at  74 °C in the Pd catalyst  spectrum. This pea k resulted from the  

decomposit ion o f palladium β hydr ide [29].  Furthermore, a hydrogen consumpt ion 

peak did not  appear in the low temperature region o f the supported Pt catalyst .  

These result s indicate that  palladium and plat inum oxides are easily reduced into 

metallic species.  No hydrogen consumpt ion peaks appeared in the high temperature 

region in any TPR spectra of NM/SiO 2  catalysts.  

Fig. 2  shows the TPR spectra of NM-P/SiO2  catalysts.  At  low temperature 
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(around 50–200 °C),  the peaks were the same as those o f NM/SiO2  catalysts.  On the 

other hand, hydrogen consumpt ion peaks were observed between 200 and 750 °C 

with all catalysts.  In Ru and Pt  catalyst s ,  the hydrogen consumpt ion peaks appeared 

at  above 600 °C. Bussel et  al.  [10] and Lee and Oyama et  al.  [11, 12] reported that  

the TPR spectra o f supported Ni-P catalysts showed a peak at  around 600 °C. These 

result s indicate that  the peaks around 600 to 750 °C result  from the format ion o f 

NMxP y.  On the other hand, Brock et  al.  and co-workers [30] reported that  reduct ion 

of the precursor in a 5% H 2-Ar st ream with heat ing from 50 to 375 °C resulted in  

the format ion of unsupported Rh2P. We also observed peaks at  around 350 °C in the 

Rh-P and Pd-P catalyst  (Fig. 2 (b)).  These result s indicate that  Rh and Pd were  

phosphided at  lower temperature than Ru and Pt .  The format ion o f NMxP y was 

ident ified by XRD pat terns o f NM-P/SiO2  catalysts after TPR measurement .  Fig. 3  

demonstrates the XRD pat terns of NM-P/SiO2  catalysts after calcinat ion and TPR 

measurement .  The XRD pat terns o f calcined catalysts revealed that  all o f the NM 

catalyst s (except  Pt) were oxides (Rh 2O3 ,  PdO, and RuO2); however,  the Pt  catalyst  

was metallic.  In contrast ,  the XRD pat terns of Rh-P and Ru-P catalysts after TPR 

measurement  showed clear peaks fo r NMxP y (Rh2P and Ru2P). On the other hand,  

there were small,  broad peaks o f Pd 4 .8P in the XRD pat tern of Pd-P catalyst .  In the 

Pt-P catalyst ,  we observed plat inum phosphide (PtP 2 : 2θ = 27.06°,  31.38°,  44.94°,  

53.26°,  and 72.30°) and unknown peaks.  However,  the peaks of metallic Pt  (2θ = 

39.74°,  46.24°,  67.46°,  81.24°,  and 85.70°) were also observed. This result  

indicates that  even if Pt -P was reduced at  800 °C, format ion o f PtP 2  is insuffic ient .  

That  is to  say, Pt  forms phosphide species less easily  than other NM. We found that  

reduct ion o f all NM-P/SiO2  catalysts with hydrogen result ed in the format ion o f 

NMxP y species.  
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3. 2.  HDS activities of NM -P/SiO2  catalysts  

Fig.  4  shows the thiophene HDS over NM-P/SiO2  catalyst s reduced at  550 °C.  

The order of the HDS act ivit ies o f NM-P/SiO2  catalysts was Rh-P > Pd-P > Ru-P > 

Pt-P. Furthermore, we evaluated the reduct ion temperature on the HDS act ivit ies o f 

NM/SiO2  and NM-P/SiO2  catalyst s.  The reduct ion temperature affe cted the HDS 

act ivit ies o f NM/SiO 2  catalysts minimally,  as shown in Fig. 5 (a) .  On the other  

hand, the reduct ion temperature st rongly affected the HDS act ivit ies of NM -P/SiO2  

catalyst s and the type o f NM determined the opt imal reduct ion temperature o f the 

NM-P catalysts,  as shown in Fig. 5 (b) .  Fig. 6  shows the HDS act ivit ies o f 

NM-P/SiO2  and NM/SiO2  catalysts reduced at  opt imal temperature.  The HDS 

act ivit ies o f NM-P/SiO2  catalysts,  except  Pt -P catalyst ,  were higher t han those o f 

NM/SiO2  catalyst s.  However ,  the Pt -P/SiO2  catalyst  showed lower act ivity than the  

Pt /SiO2  catalyst .  Especially,  P addit ion remarkably enhanced the HDS act ivit y o f 

the Rh/SiO2  catalyst .  Furthermore, this act ivity was higher than that  of the Ni -P 

catalyst  and was the same as the pre -sulfided CoMoP/Al2O3  catalyst .  The stabilit y 

of catalyt ic act ivit y was evaluated by relat ive act ivity (A/A 0),  which was calculated 

by the act ivit y at  any react ion t ime (A) divided by the init ia l act ivity (A 0 ,  at  10 

min).  We did not  evaluate the A/A0  o f Ru-P and Pt -P catalysts because these 

catalyst s showed remarkably lower act ivit ies than other NM -P and CoMoP catalysts.  

The A/A0  values o f Rh-P/SiO2 ,  Pd-P/SiO2  and CoMoP/Al2 O3  catalyst s are listed in 

Table 1 .  In CoMoP/Al2O3  catalyst ,  the A/A0  remarkably decreased within the init ia l 

1 h.  Then the A/A0  was stable from 3 h unt il 30 h.  On t he other hand, the A/A0  o f 

Rh-P catalyst  slight ly decreased with t ime on st ream. Furthermore, this  A/A0  was 

higher than that  of pre-sulfided CoMoP/Al2O3  catalyst  at  any react ion t ime .  
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However,  the HDS act ivit y o f Pd-P/SiO2  catalyst  was remarkably decreased with 

t ime on st ream. Thus, the Rh-P/SiO2  catalyst  has higher  stabilit y and potent ial for  

HDS react ion than other NM-P/SiO2  catalyst s.  Table 2  shows the product  

dist r ibut ion over NM/SiO 2  and NM-P/SiO2  catalysts in the HDS of thiophene at  

350 °C. The select ivity o f n-butane definite ly increased with increasing thiophene 

conversion by P addit ion. This select ivity for Rh-P catalyst  was the same as that  for 

CoMoP/Al2O3  catalyst .  In contrast ,  P addit ion enhanced the thiophene conversion 

for Pd catalyst ,  but  decreased n-butane select ivit y.  Furthermore, select ivity o f 

tet rahydrothiophene (THT) for the Pd -P catalyst  was remarkably lower than that  for 

other NM-P catalysts.  These result s mean that  the direct  desulfur izat ion route 

preferent ially occurred over Pd-P catalyst .  We examined the XRD pat terns o f 

NM-P/SiO2  catalysts to  clar ify act ivity enhancement  by phosphidat ion o f NM.  

 

3. 3.  XRD patterns of reduced NM/SiO 2  and NM-P/SiO2  catalysts  

Fig.  7  shows the XRD pat terns of NM-P/SiO2  catalysts with different  reduct ion 

temperatures.  After reduct ion at  500 °C, we observed a remarkably high intensity o f 

NMXPY  (Rh2P and Pd4 .8P) in the XRD patterns o f Rh and Pd catalysts with high 

HDS act ivit ies.  In the XRD pat terns o f the Ru -P/SiO2  catalyst  reduced at  500 and 

550 °C, both Ru and Ru 2P were observed. On the other hand, peaks of plat inum 

phosphides were not  observed in the XRD pattern o f Pt -P/SiO2  reduced at  500 and 

550 °C. In the TPR spectra of t he Ru-P and Pt -P catalysts,  hydrogen consumpt ion 

was observed above 600 °C, as shown in Fig. 2 .  Thus,  large peaks of metallic NM 

spec ies appeared in t he XRD pat terns o f Ru -P and Pt -P catalysts.  

The peaks o f NM XPY  (Rh2P, Pd4 .8P, Ru2 P, and PtP2) species increased with 

increasing reduct ion temperature.  However,  the Pd 4 .8P peaks decreased and 
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broadened with increasing reduct ion temperature.  It was reported that  Pd 4 .8P 

decomposes eutectoidally into Pd 6P and Pd3P between 660 °C and 700 °C [31].  This 

indicates that  decomposit ion o f Pd 4 .8P into other palladium phosphides may lead to  

decrease o f Pd4 .8P intensit y.  Therefore,  decomposit ion o f Pd 4 .8P exp lains the low 

act ivit ies of Pd-P/SiO2  catalysts reduced at  high temperature (above 600 °C, Fig. 5  

(b)).  

 

3. 4.  Particle sizes of NMXPY  and NM in reduced NM-P/SiO2  catalysts  

Fig.  8  shows the TEM images o f NM-P/SiO2  catalyst s reduced at  500 °C. We 

observed small NM XP Y  and NM part icles in all catalysts.  The part icle size 

dist r ibut ions o f NM XPY  and NM measured from TEM images o f NM-P/SiO2  

catalyst s reduced at  500 and 650 °C are shown in Fig. 9 .  Furthermore, Table 3  

shows the average part icle size calculat ed from TEM images and XRD pat terns 

using Scherrer’s equat ion.  With the except ion o f Pt -P, the NMXPY  and NM part icle 

size dist r ibut ion shifted toward larger part icle size when reduct ion temperature 

increased from 500 to 650 °C, as shown in Fig. 9 .  The part icle size dist r ibut ion o f 

Pt-P/SiO2  catalyst  reduced at  650 °C has two peaks (Fig. 9),  but  the average 

part icle size did not  change compared with that  of the mater ial reduced at  500 °C 

(Table 3).  The part ic le size of Rh-P/SiO2  was the smallest  among all o f the 

NM-P/SiO2 ,  as shown in Table 3 .  At  both reduct ion temperatures (500 and 650 °C),  

the average part ic le size o f Rh-P catalyst  measured from TEM was the same as that  

calculated from XRD. For the Pd-P catalyst  reduced at  500 °C, the part icle size 

measured by TEM was also the same as that  calculated from XRD. However,  for the 

Pd-P catalyst  reduced at  650 °C, the part icle size calculated from XRD was 

remarkably smaller than that  calculated from TEM. An exp lanat ion of this result  is  
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that  part icle size calcu lated from XRD would not be accurate because  a broad peak 

was observed in t he XRD pat tern ( Fig. 7 (ii) ,  (d) ) due to  decomposit ion o f Pd 4 .8 P 

into other phosphides [31].  On the other hand, the part icle sizes o f Ru -P and Pt -P 

catalyst s calculated from XRD were larger than those measured from TEM at  either  

reduct ion temperature.  The small amount  of la rge part icles may be difficult  to  

observe by TEM. On the other hand, XRD analys is detects large part icles as the 

sharp peaks,  as shown in Fig. 7 .  Therefore,  TEM observat ion is not  the proper  

method to est imate average part icle diameter of Ru -P and Pt -P catalyst s.  In contrast , 

Rh-P and Pd-P catalysts would have uniform part icle s ize because part icle size 

measured from XRD was the same as that  from TEM.  

 

3. 5.  Elemental analysis by EDS  

Table 4 shows the elemental analys is of reduced NM-P/SiO2  by EDS. The 

content  of NM was 5 wt% in all catalyst s,  but  P content  was less than 1.5 wt%. The 

format ion of phosphine explains this result .  The measured P/NM molar rat ios and 

stoichiometr ic P/NM rat ios are also list ed in Table 4 .  For the Rh-P and Ru-P 

catalyst s,  the measured P/NM rat io s were slight ly higher than the stoichiometr ic  

rat io .  Wang et  al.  [8] and Bussel et  al.  [10] reported that  excess P in the catalyst  

precursor is necessary to  prepare highly act ive Ni-P/SiO2  catalyst s.  Thus, the 

format ion of small Rh2P part icles and a suitable P addit ion to  form Rh 2P resulted in  

the high HDS act ivity o f the Rh-P/SiO2  catalyst .  On the other hand, the measured 

P/NM rat ios of Pd-P catalyst  with reduct ion at  500 and 650 °C were three to five 

t imes higher than the s toichiometr ic rat ios.  These results indicate that  the amount  

of P added was not  suitable to  form NM XPY .  Therefore,  Pd-P catalysts with higher  

HDS act ivit ies than that  of the CoMoP/Al 2O3  catalyst  would be prepared by 
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controlling the amount  o f P added. The measured P/NM of the Pt -P catalyst  was 

close to the stoichiometr ic rat io .  However,  the HDS act ivity o f the Pt -P catalyst  

was remarkably lower than that  of other NM-P and Pt  catalysts.  An explanat ion for 

this result  is the poisoning o f the act ive site by P b ecause Pt  does not  easily for m 

phosphides.  

 

4. Conclusions  

NMXPY  species were formed on SiO 2  by a convent ional preparat ion method 

using NH4H2PO4 .  The nature of NM caused var iat ions in the HDS act ivit ies o f 

NM-P/SiO2  catalysts.  The order o f the act ivit ies o f t hese catalysts was as fo llows:  

Rh-P > Pd-P > Ru-P > Pt-P. In part icular,  the HDS act ivity o f the Rh-P catalyst  was 

remarkably higher than that  of the Ni-P catalyst  and was the same as that  of the 

pre-sulfided CoMoP/Al2O3  catalyst .  Furthermore, the Rh-P/SiO2  catalyst  showed 

stable act ivity even after react ion for 30 h.  Character izat ion of the NM -P catalyst s 

revealed that  the format ion o f small Rh2P part icles and suitable P addit ion to  form 

Rh2P caused the high HDS act ivity o f the Rh-P catalyst .  
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Table 1 

Relative activities of NM-P/SiO2 catalysts for HDS of thiophene at 350 °C 

 

  Relative activity (A/A0) 

Catalyst 
Reduction 

Temperature (°C) 
1 h 3 h 15 h 30 h 

Rh-P 550 0.979 0.970 0.920 0.889 

      

Pd-P 500 0.900 0.860 0.728 0.677 

      

CoMoP/Al2O3 
400 

(sulfidation) 
0.884 0.851 0.843 0.830 

A0: Activity at 10 min 

A: Activity at any reaction time 
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Table 2 

Distribution of reaction products in the HDS of thiophene over reduced NM/SiO2 and NM-P/SiO2 

catalysts 

 

   Composition of HDS products (%) 

Catalyst 

Reduction 

temperature 

(°C) 

Conversion 

(%) 
C1-C3

a)
 Butanes Butenes 

1,3- 

butadiene 
THT

b)
 

Rh 450 13.32 0.00 12.13 85.28 0.00 2.59 

Rh-P 550 54.95 0.11 20.82 75.54 0.00 3.53 

        

Pd 350 39.86 0.00 26.96 70.38 0.00 2.66 

Pd-P 500 45.85 1.06 10.04 87.48 0.00 1.42 

        

Ru 350 0.28 0.00 0.00 77.81 22.19 0.00 

Ru-P 650 12.66 0.00 4.94 86.85 0.00 8.21 

        

Pt 400 22.09 0.00 52.05 41.48 0.00 6.47 

Pt-P 650 3.36 0.00 14.25 60.15 0.00 25.60 

        

CoMoP

/Al2O3 

400 

(Sulfidation) 
53.28 0.70 18.68 80.53 0.00 0.10 

a) C1-C3 hydrocarbons 

b) Tetrahydrothiophene 
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Table 3 

Particle size of noble metal phosphides in NM-P/SiO2 catalysts calculated by TEM images and 

XRD patterns using Scherrer’s equation 

 

Catalyst 

Reduction 

temperature (°C) 

Average particle size (nm) 

TEM 

XRD 

NMXPY / NM 

Rh-P 

500 8.3 9.1 / - 

650 9.9 10.8 / - 

    

Pd-P 
500 10.2 11.4 / - 

650 13.1 6.0 / - 

    

Ru-P 

500 10.0 17.9 / 7.5 

650 11.9 21.7 / - 

    

Pt-P 

500 14.9 - / 36.5 

650 14.9 57.5 / 24.4 
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Table 4 

Elemental composition of reduced NM-P/SiO2 catalysts 

 

  Elemental composition measured by EDS  

Catalyst 

Reduction 

temperature 

(°C) 

NM 

(wt%) 

P 

(wt%) 

P/NM 

(mol/mol) 

Stoichiometric 

P/NM of NMXPY 

observed by XRD 

Rh-P 

500 5.00 1.04 0.69 0.50 (Rh2P) 

650 5.01 0.99 0.65 0.50 (Rh2P) 

      

Pd-P 
500 5.06 1.43 0.97 0.21 (Pd4.8P) 

650 4.99 1.01 0.70 0.21 (Pd4.8P) 

      

Ru-P 

500 4.99 1.20 0.80 0.50 (Ru2P) 

650 5.02 0.95 0.63 0.50 (Ru2P) 

      

Pt-P 
500 4.96 1.43 1.82 - 

650 5.04 1.17 1.46 2.00 (PtP2) 
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Fig.  1  TPR spectra of calcined NM/SiO 2  catalysts.  
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Fig. 2  TPR spectra of calc ined NM-P/SiO2  catalyst s.  (a) TPR spectra of NM-P 

catalyst s,  (b) Magnified TPR spectra of Rh-P and Pd-P catalysts from 200 to 

800 °C.  
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Fig.  3  XRD pat terns o f NM-P/SiO2  catalysts after (a) calcinat ion at  500 °C and 

(b) TPR measurement .  ( i)  Rh-P, ( ii)  Pd-P, ( iii)  Ru-P, and ( iv) Pt -P. 
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Fig. 4  Hydrodesulfur izat ion of thiophene over NM -P/SiO2  catalysts reduced at  

550 °C.  
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Fig.  5  Effect  of reduct ion temperature on HDS act ivit ies o f (a) NM/SiO 2  and (b)  

NM-P/SiO2  catalysts.  
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Fig.  6  HDS act ivit ies of NM/SiO2  and NM-P/SiO2  catalysts.  Reduct ion 

temperature: 350 °C (Pd),  400 °C (Pt ,  Ru),  450 °C (Rh),  500 °C (Pd-P, Pt -P),  550 °C 

(Rh-P),  650 °C (Ru-P, Ni-P).  
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Fig.  7  XRD pat terns o f NM-P/SiO2  catalysts after reduct ion at  (a) 500 °C, (b)  

550 °C, (c) 600 °C, and (d) 650 °C. ( i)  Rh -P, (ii)  Pd-P, ( iii)  Ru-P, and ( iv) Pt -P. 
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Fig.  8  TEM images of NM-P/SiO2  catalysts reduced at  500 °C. ( i)  Rh-P, (ii)  Pd-P,  

( iii)  Ru-P, and ( iv) Pt -P. 
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Fig.  9  Part icle size dist r ibut ions o f NM and NM XPY  in NM-P/SiO2  catalysts 

reduced at  500 and 650 °C. ( i)  Rh-P, ( ii)  Pd-P, ( iii)  Ru-P, and ( iv) Pt -P. 
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