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A time domain boundary element method (TDBEM) gives us another possibility of time domain microwave simulations in addition 

to a finite difference time domain (FDTD) method.  In particular, the TDBEM has good advantages in analysis of coupling problems 

with charged particle motion such as in a particle accelerator.  However, it is known that time domain microwave simulations in the 

particle accelerator by the conventional TDBEM often encounter numerical instability and inaccuracy owing to its bad matrix 

property.  To avoid the numerical instability and inaccuracy caused by the conventional open boundary problem formulation of the 

TDBEM, an initial value problem formulation of 3D TDBEM is presented in this paper.  

 
Index Terms— Microwave propagation, Particle accelerators, Moment methods, Numerical simulation  

 

I. INTRODUCTION 

time domain boundary element method (TDBEM) 

provides us another possibility of time domain 

simulations of microwave phenomena [1]-[4] in addition to a 

finite difference time domain (FDTD) method.  The TDBEM 

has advantages in open boundary problems, treatments of 

slightly curved boundary objects, coupled problems with 

charged particles, etc. compared with the FDTD method.  In 

particular, the coupled problem with charged particles such as 

analysis of wake fields in a particle accelerator is one of the 

most suitable applications of the TDBEM owing to its surface 

meshing.  However, a treatment of infinite length structure of 

the particle accelerator is a very difficult subject in the 

TDBEM, therefore, a numerical model of a finite length 

accelerator tube with thin thickness has been used mainly in 

conventional works [3],[4].  Then, the microwave simulation 

by the TDBEM was often numerically unstable in a long range 

simulation owing to the thin thickness structure of the 

numerical model.  To improve this problem of the numerical 

stability, an initial value problem formulation of the TDBEM 

was presented for axis-symmetric two-dimensional problems 

[5].  In general, two-dimensional TDBEM can be used in only 

restricted applications.  In this paper, the initial value problem 

formulation (IVPF) of the TDBEM is extended to three-

dimensional cases, and it is shown that the numerical stability 

is effectively improved from the conventional formulation. 

II. II. TIME DOMAIN EFIE/MFIE AND TDBEM 

It is known that time domain electromagnetic fields, E(t,x), 

B(t,x), in a domain V can be expressed using electromagnetic 

fields on the domain surface VS   in the following surface 

integral equation [3],[4]; 
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which are the time domain versions of a well-known EFIE and 

MFIE in a frequency domain [6],[7].  Eext(t,x) and Bext(t,x) are 

externally applied electric and magnetic fields, respectively, 

the retarded time t ' is defined by ctt '' xx   , c is the 

velocity of the light and n is a unit normal vector on the 

surface.  To discretize Eqs.(1) and (2) in time and the surface, 

we obtain a matrix equation containing many matrices (Fig.1), 

which should be solved as the 3D TDBEM. Unknown vectors 

in the matrix equation are two components of a surface current 

and charge densities K,  , which correspond to Bn   and 

En   on the surface, respectively. Owing to the retarded time 

property of Eqs.(1) and (2), unknowns at different time steps 

are independent each other.  Then, if we assume that the 

boundary S is a perfectly electric conductor (PEC) throughout, 

(2) results in the following very simple form; 
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which was used in the conventional TDBEM. 

A 

Fig. 1. Structure of matrix equation of TDBEM  

 

t ttt  tt  2 tLt 

  

unknown vectors inhomogeneous term
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III. TREATMENT OF INFINITE LENGTH STRUCTURE OF 

PARTICLE ACCELERATOR IN TDBEM  

In derivation of the integral equations (1) and (2), it is 

assumed that there are no surface current and charge density at 

the initial time.  To satisfy these conditions and realize the 

simulation of wake fields by a finite length numerical model, 

an open boundary problem formulation using a thin double 

layer numerical model with a torus topology (Fig.2(a)) was 

used in conventional works.  Then, it was assumed that the 

electron beam was located at sufficiently far upstream distance 

from the finite length accelerator tube at the initial time to 

satisfy the conditions of no surface current and charge density 

on the domain surface.  In this formulation, the domain 

boundary is PEC throughout, therefore, the simplified 

formulation (2)' can be used.  However, the conventional 

method using the numerical model of Fig.2(a) had some 

difficulties, a bad matrix property caused by the thin double 

layer structure of the numerical model, an instability caused 

by an interior resonance in the long range simulation, and 

large calculation size owing to the double layer structure of 

the numerical model.  

IV. INITIAL VALUE PROBLEM FORMULATION OF 3D TDBEM 

To improve these difficulties, which are caused by the open 

boundary problem formulation (2)' and thin double layer 

numerical model (Fig.2(a)), the initial value problem 

formulation of the TDBEM, which allows us to use the 

numerical model with a closed domain structure (Fig.2(b)), 

was proposed for axis-symmetric two-dimensional cases.  

However, the TDBEM with the assumption of axis-symmetric 

system can be used only in restricted applications.  In this 

paper, the initial value formulation of the TDBEM is 

expanded to three-dimensional cases.  For the case that there 

are non-zero surface current and charge densities on the 

domain surface at the initial time t = t0, Eqs.(1) and (2) are 

generalized as follows [5] 
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Differences in (3) and (4) from the conventional integral 

equations (1) and (2) are only the existences of the fifth terms, 

which are contributions of volume integral on V0 at the initial 

time, that is, a bottom super-surface of the 4D time-space 

region   of Fig.3.  The normal component of magnetic field 

nB   and the tangential component of electric field nE  

disappear on the PEC boundary and exist only on the 

absorbing boundary condition (ABC) virtual surface.  The 

fifth terms in (3) and (4) are superposed on the 

inhomogeneous term in practical calculations, and the time 

domain simulation based on (3) and (4) is carried out in the 

same manner as that of Fig.1.  A detail structure of the matrix 

equation corresponding to (3) and (4) is indicated in Fig.4.  

Unknown vectors are composed of two tangential components 

of magnetic field Bs, Bt and a normal component of electric 

field En on the PEC boundary.  Contribution from the virtual 

surface with the ABC is summarized as the second 

inhomogeneous term. (see Fig.4) 

1V

0V

t

1tt 



V
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0tt 

            Fig.3. 4D time-space volume between time t0 and t1 Fig. 4. Configuration of matrix equation of TDBEM with IVPF 
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V. NUMERICAL EXAMPLES 

The first numerical example is a numerical model of a pill-

box cavity in the particle accelerator (Fig.2).  The tube inside 

radius is 2cm, radius and longitudinal length of the cavity part 

are 12cm both, and it is assumed that the electron beam with 

1.5cm length Gaussian distribution travels on the axis with the 

light velocity c.  Owing to axis-symmetric structure of this 

model, transient electromagnetic fields (wake fields) induced 

by the electron beam (Fig.5) can be simulated by the 2D 

TDBEM and the axis-symmetric 2D FDTD method as well. 

Fig.6 indicates comparison of so-called longitudinal wake 

potential W(s) defined by,  

      
 

dz
sz

tzr
Q

e
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

 



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 


v
E ,,0

 (5) 

which means total energy loss of a virtual particle traveling at 

distance s behind the original electron beam.(see Fig.5) It is 

found that three methods, the 2D-FDTD method, the 2D-

TDBEM with the conventional open boundary formulation 

and the presented method (3D), show good agreements each 

others.  Then, conventional 2D-TDBEM needs the 

discretization of 200 divisions at least for rotational direction 

around the axis to obtain the sufficiently good agreement with 

the 2D-FDTD method owing to the bad matrix property 

caused by the thin double layer numerical model of Fig.2(a).  

On the other hand, the presented method, the TDBEM with 

IVPF needs 40 divisions at most. 

The second example is numerical models of the slightly 

curved accelerator tube with rectangular cross-section 

indicated in Fig.7.  The electron beam with 1.5cm length 

Gaussian distribution travels on the center axis of the tube.  

The vertical and horizontal size of the rectangular cross-

section are 2cm and 8cm, respectively.  The longitudinal 

length of the curved section has 18 degree angle with the 

curvature radius 1.6m.  It is easily imagined that the FDTD 

grid generation of this numerical model is not easy, and the 

3D TDBEM surface meshing is much more suitable.  The 

closed model for the presented IVF and the open boundary 

model for the conventional formulation are shown in Fig.7(a) 

and (b), respectively. In Fig.7(a), upstream straight section is 

additionally extended to smoothly begin the electron beam 

motion, compared with Fig.7(b).  In addition, an infinitely 

spread parallel plate model (Fig.7(c)(i)) is considered here, 

which gives us a approximately semi-analytical solution by 

using a method of infinite vertical series image charges. (see 

Fig.7(c)(ii))  A time domain behaviors of two tangential 

components of the magnetic field Bs and Bt, which correspond 

to the induced surface currents, on the observation lines in 

Fig.7 are indicated in Fig.8 for the longitudinal current 

component, and in Fig.9 for the rotational current component.  

In this case, the longitudinal surface current of Fig.8 is the 

main component, and therefore Fig.8 is plotted in 50 times 

bigger scale than those of Fig.9.  Fig.8(a), (b) and (c) indicate 

simulation results by the presented method, the conventional 

3D TDBEM and the image charge method, respectively.  We 

can find sufficiently good agreements between these three 

simulations.  Fig.9(a), (b) and (c) are also drawn as same 

manner as in Fig.8, then Fig.(b) is plotted in 10 times bigger 

scale than the other two plots.  Owing to semi-static 

calculation based on the image charge method in the 

numerical model of Fig.7(c), the rotational current 

components, which are created by inductive behavior of the 

electromagnetic fields during the curved motion of the 

electron beam, show different behavior in Fig.9(a) and (c).  In 

particular, the conventional TDBEM simulation of Fig.9(b) 

contains serious unnatural and unphysical oscillations, which 

come from inaccuracy caused by the bad matrix property 

owing to the thin double layer model, although Fig.9(b) is 

made by finer meshes by using 10 times bigger memory 

(350GB) than that of Fig.9(a).  Calculation times are 300 min. 

by a single node, 340 min. by four parallel nodes and 330 min. 

by single node on a supercomputer HITACHI SR16000 for 

Fig.7(a), (b) and (c), respectively. 

VI. SUMMARY 

In this paper, the initial value problem formulation of 3D 

TDBEM has been presented.  The proposed method is applied 

to analysis of the wake fields in the particle accelerator.  It is 

shown that the proposed method provides us stable 

simulations of the time domain microwave phenomena than 

those of the conventional formulation.  In particular, the 

improvement of the stability allows us to use coarse meshes, 

which means that effective memory reduction is achieved by 

the initial value problem formulation.  
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