
NetSecCC: A scalable and fault-tolerant
architecture for cloud computing security

言語: English

出版者: Springer

公開日: 2016-03-22

キーワード (Ja):

キーワード (En): security group, Security inspection

chain, Scalability, Fault tolerance, On-demand service

作成者: HE, Jin, 董, 冕雄, 太田, 香, FAN, Minyu, WANG,

Guangwei

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10258/00008599URL

Noname manuscript No.
(will be inserted by the editor)

NetSecCC: A Scalable and Fault-tolerant Architecture for
Cloud Computing Security

Jin He · Mianxiong Dong · Kaoru Ota · Minyu Fan · Guangwei Wang

Received: date / Accepted: date

Abstract Keywords security group, security in-

spection chain, scalability, fault tolerance, on-demand

service

1 Introduction

As one of the most influential computing paradigms

in recent years, cloud computing not only noticeably

reduces capital expenditures, but also largely improves

computational efficiency, and thus successfully attracts

extensive attentions from both academia and industry.

As a result, cloud computing is widely used in vari-

ous IT services, including but not limited to, parallel

computing, visualization, network storage technologies,

load balance, utility computing, service-oriented etc.

Behind the great success and potential of cloud com-

puting, there is a big challenge to ensure its security.

Though cloud computing also involves other types of

security issues (e.g., data security), network security is

considered as one most prominent issue that must be

solved [6] [9] [36] [42] [12] [2]. Indeed, as stated by Na-

tional Vulnerability Database [15], there are 84 network

J. He, M. Fan and G. Wang
Department of Computer Science, University of Electronic
Science and Technology of China (UESTC), Chengdu,
611731, P.R.China
E-mail: {hejin some, ff98, wguanwei}@163.com

M. Dong
National Institute of Information and Communications Tech-
nology, Japan
E-mail: mx.dong@ieee.org, ota@csse.muroran-it.ac.jp

K. Ota
Department of Information and Electronic Engineering,
Muroran Institute of Technology, Japan
E-mail: ota@csse.muroran-it.ac.jp

vulnerabilities discovered in cloud computing by Febru-

ary 2013, all of which strongly threaten the security of

cloud computing. Other evidences [14] [10] [34] [41] also

reveal that malicious network attacks are responsible

to a large number of data destruction or tampering or

forgery in cloud computing. Unless network security in

cloud computing is properly ensured, all cloud comput-

ing based services are exposing to a high risk of attacks.

To protect network security, a traditional architec-

ture is to place network security devices (middleboxes

[8]) at front-end of cloud computing as shown in Fig. 1.

Though this traditional architecture addressed many

concerns in network security, it is faulted in several

important aspects. Lack of network security pro-
tection between virtual machines (VMs): Since a

compromised VM easily attacks other VMs in a same
hardware platform by virtual network [4] [39], How-

ever, the traditional architecture is lack of an internal

network protection mechanism between VMs. Diffi-
cult scalability : The traditional architecture presents

such a scenario: traffic bursts and exceeds the maxi-

mum capacity of the existing deployed middleboxes at

some points, while network traffic flows under normal

circumstances. If we add a number of corresponding

middleboxes to reduce traffic loss at peak load, it re-

sults in not only less efficient resource utilization, but

also higher deployment and maintenance costs. Diffi-
cult fault-tolerance: Using hot standby (HS) in the

traditional architecture can offer fault tolerance for the

failed middelboxes. However, one simple enterprise net-

work requires 640 middleboxes to protect its security

[32] [33], not to mention cloud computing that will host

much more complex multi-services end users. In cloud

computing, if we use the same hot standby to offer fault

tolerance for such a large volume of middleboxes, this

will result in unsustainable costs.

2 Jin He et al.

Cloud computing

FW
NAS

UTM

IDS

WAF

Client

SSL/VPN

AV
AS

LB

Firewall (FW)

Unified Threat Management (UTM)

Network Access Control (NAS)

Intrusion Detection System (IDS)

Security Socket Layer/Virtual Private Network (SSL/VPN)

Anti-Spam (AS)

Anti-Virus (AV)

Web Application Firewall (WAF)

Load Balancer (LB)

Fig. 1: The traditional architecture network security for cloud
computing

Considering the above shortcomings of the tradi-

tional architecture, both industries and academies put

many efforts on alternative solutions. In industry, McAfee

Security-as-a-Service [27] merely provides Web and Email

security protection in cloud computing, and thus it is

lack of comprehensive multi-service protection in cloud.

Amazon Web Services [16] only provides basic network

security via a port-based firewall, and relies on third-

party security vendors to provide robust network secu-

rity with the granularity, control and reporting what

customers need. VMware vShield (app, endpoint, edge,

zones) [24] provides services in cloud with partial net-

work security protection, but it is short of comprehen-

sive and integrated capacity (e.g., encryption transmis-

sion, anti-virus). Security as a Service (SecaaS) [21]

provides services in cloud with comprehensive security

protection, including web, email and intrusion SecaaS,

but it fails to include scalability and system fault-tolerance.

In academia, Wu et al. [40] aim to control the inter-

communication among virtual machines with higher se-

curity by an embedded firewall in virtualized environ-

ment, but this method neither prevents malicious at-

tacks from external traffic, nor provides flexible scal-

ability and fault tolerance for the firewall. Salah et

al. [31] propose a cloud-based security overlay network

as a comprehensive protection solution for servers and

end-users, but it is also lack of an effective scalability

and fault-tolerance mechanism. Split/Merge [30] can be

dynamically scaled out (or in) virtual middleboxes in

cloud computing by SDN [11], which only focuses on

load-balanced elasticity and system utilization without

paying attention to preventing external and internal

malicious traffic from attacking cloud services. [33] [28]

well combine middleboxes with SDN to protect enter-

prise network security, and to provide a flexible scal-

ability and fault-tolerance mechanism, but it is a pity

that they are not suitable for cloud security.

Since it is not suitable or defective for the above

efforts to protect network security of cloud computing,

we propose a NetSecCC architecture that takes a novel

approach of eliminating these disadvantages. It not only

prevents external and internal malicious attacks and of-

fers on-demand network security service for cloud users,

but also is able to provide flexible scalability and fault

tolerance for virtual middlebox load and failure, respec-

tively. Experiments have further fully proved that Net-

SecCC has high performance in terms of scalability and

fault tolerance, and also provides security services for

cloud computing without much degraded system per-

formance. In summary, our main contributions are as

follows:

• An innovative architecture NetSecCC is a novel

scalability and fault-tolerant security architecture

using a systematic approach to properly provide se-

curity protection for cloud computing. The archi-

tecture provides balanced scalability alongside VM

scale-in and scale-out for virtual middleboxes ac-

cording to their loads, and offers many-to-one fault-

tolerant mechanism to overcome disadvantages of

the traditional HS for virtual middlebox failure.

• External and internal protection NetSecCC pre-

vents malicious attacks from not only external traf-

fic, but also internal traffic to ensure network secu-

rity of cloud users’ services in cloud computing.

• On-demand network security services NetSecCC

provides on-demand network security services for

different network security requirements from differ-

ent services on cloud computing.

The rest of the paper is organized as follows: Section 2

provides an overview of the design of NetSecCC. Sec-

tion 3 gives implementation details of the entire system.

Section 4 shows various experimental results for eval-

uating the impact and performance of our system. We

conclude our paper in Section 5.

2 Design

Before describing the NetSecCC design, we assume

that hardware platform, hypervisor and VMs-OS on

cloud computing are trusted, and just focus on network

security of services placed on cloud computing. thereby

ensuring that traffic arriving at services in service do-

mains is secure and trusted.

2.1 Principle

In order to prevent external and internal malicious

traffic from attacking cloud users’ services in cloud com-

puting, incompetence external traffic from Internet or

internal traffic from VMs must be forwarded through a

desired sequence of security groups in SMG (e.g., FW-

WAF) to be inspected and filtered before arriving at

services in service domains §(2.2).

NetSecCC: A Scalable and Fault-tolerant Architecture for Cloud Computing Security 3

Dom0 MD AS Udom1 Udomn

SMG

Service Domains
Anti-Spam Group

ELMD WAF

WAF Group

FW

FW Group

IDS

IDS Group

VM FTP

AV Group

SMD

AS WAFFW IDS

a1

a2

a4

b1 b4

b2
a3

b3

NIC

Web

E.g., Sending attack logs from SMG

to ELMD, and state information

from SMG to MD and forwarding

information from vSwitch to MD

E.g., MD issues forwarding

rules to vSwitch

vSwitch (e.g., openflow)

E.g., SDN

controller

AVAV

Forwarding rules in vSwitch (e.g., Web traffic):

a1 a2 a3 b1 b2 b3 b4a4Enternal traffic access (NIC-FW-WAF-Web): Internal traffic access (FTP-FW-WAF-Web):

MD, as a SDN controller, collects state information

(e.g., load, failure) from every group in SMG, and re-

ceives forwarding information (e.g., traffic) from vSwich

in a timely manner, and generates and issues forward-

ing rules to vSwitch according to SIC mapped by net-

work security requirements of cloud users’ services (To

simplify, we call it SIC of cloud users’ services) §(2.2),

security domains topology, state information and for-

warding information. VSwitch, as an openflow switcher

forwards external traffic from Internet and internal traf-

fic from VMs through the corresponding SIC according

to forwarding rules in vSwtich. SMG, as a performer is

comprised of various security groups (e.g., WAF group),

and is responsible for filtering and inspecting incoming

traffic before it is forwarded to service domains.

Preventing external and internal malicious
attacks Incompetence external traffic from Internet or

internal traffic from VMs, before arriving at services

in service domains, must be forwarded through SMG,

thereby ensuring services security. To make this process

concrete, as shown in Fig. 2, we use the Web server in

service domains as an example to elaborate the process-

ing. When external traffic accesses to the Web server,

it goes through NIC-FW-WAF-Web presented by blue

areas to ensure that traffic arriving at the Web server

is secure and trusted. When internal traffic from FTP

domains accesses to Web server, it must go through

FTP-FW-WAF-Web presented by red areas.

Scalability and fault tolerance Traffic is required

to go through one or more security groups, each group

on SIC path may suffer overload or low load or failure,

so a scalable and fault-tolerant security architecture re-

quires load-balanced dynamic elasticity and high avail-

ability in every group as shown in §(2.3). MD dynami-

cally adjusts forwarding rules in vSwtich to achieve the

purpose of load balancing and fault tolerance in each

group, and updates rules in the following two stages:

Initial phase, when cloud users employ their services in

service domains before not running, MD generates for-

warding rules in accordance with SIC of cloud users’

service, security domains topology and current mid-

dleboxes load; Running phase, when middelboxs suffer

overload or low load or failure, MD updates forward-

ing rules in vSwtich to rebalance middleboxes load for

overload or low load, and provide fault tolerance for

failure.

Compared with the traditional architecture, it can

be observed from the NetSecCC work principle that

it not only prevents external and internal malicious at-

tacks and offers on-demand network security service for

cloud users, but also is able to provide flexible scalabil-

ity and fault tolerance for virtual middlebox load and

failure. The focus of NetSecCC design is on-demand

network security service and scalability and fault-tolerance

of each group in SMG. SIC of cloud users’ services fo-

cuses on on-demand security service (§2.2), while flexi-

ble scalability and efficient fault tolerance in each group

(§2.3) can enhance load balancing and high availability,

and improve resource utilization.

2.2 SIC

FTP Server

NAS

Group

UTM

Group

Service DomainsSecurity Meta-Group

All traffic

Email Server

Bank Business

Storage Server

WAF

Group

AS

Group

SSL/VPN

Group

Web Server

AV

Group

IDS

Group

FW

Group
Hyperv

isor

Hypervisor

Fig. 2: Security Inspection Chains

4 Jin He et al.

Table 1: NetSecCC ’s components and functions

Component Function

Dom0

• weaken dom0 privileges, it has
no permission to create/start and
stop/destroy any domain in SMG.

• dom0 still keeps such permissions to
do with all domains in service domains
and SMD, and manages resources,
including scheduling time-slices, I/O
quotas, etc.

SMD

It is composed of management domain
(MD) and event and log management do-
main (ELMD). ELMD stores and manages
events and logs from SMG, and provides
the unified query for security managers.
MD is responsible for three main func-
tions:

• create/destroy any domain in SMG.
• collect state information (e.g., load,

failure) from every group in SMG and
receive forwarding information (e.g.,
traffic) from vSwich.

• generate and update forwarding rules
in vSwtich according to security in-
spection chains (SIC) §(2.2), secu-
rity groups topology, virtual middle-
box load and failure.

SMG

It is comprised of various security meta-
groups (e.g., WAF group, IDS group, AV
group). Every group includes one or more
of virtual middleboxes of the same type
(To simplify, we also call these virtual
middleboxes security domains). Note that
each virtual middlebox is installed in a
standalone VM.

• Security domains are responsible for
traffic security inspection and filtering.

• provide fault tolerant for the failed se-
curity domains by the improved Hot
Standby (HS).

Service
Domains

It hosts various types of Internet-based
cloud users’ services (e.g., FTP server,
Web server).

vSwtich

It is responsible for receiving forwarding
rules from MD, and forwarding external
and internal traffic through security do-
mains to be filtered and inspected.

SIC is a sequence of logical policy chains through

one or more security groups (e.g., FW-WAF, FW-IDS),

traffic accessing to service domains must be forwarded

through the corresponding SIC to ensure the security of

service domains. NetSecCC is able to provide suitable

SIC for different network security requirements from

different services, i.e., on-demand security service as

shown in Fig. 3. Note that many middleboxes are state-

ful and need to process both directions of a session for

correctness. To make this discussion concrete, we use

two examples to further illustrate SIC.

Web server in service domains needs to solve these

attacks from network-layer and application-layer. At-

tacks from network-layer include DDOS attack, syn at-

tack, etc. Attacks from application-layer includes cross-

site attacks, SQL injection, vulnerability overflow and

so on. NetSecCC provides Web server security with SIC

(FW-WAF) as shown in Fig. 3 with yellow lines, Web

traffic must flow through FW and WAF to ensure the

security of Web server, where FW group assures its

network-lay security, WAF group offers its application-

layer security, thereby ensuring that traffic reaching

web service is secure.

Email server security requirements are able to

protect against DDOS attack, syn attack, malicious e-

mail, spam and virus e-mail, etc. Even the important

emails need to be encrypted for transmission. NetSecCC

provides email server with SIC (FW-AS-SSL/VPN), in-

dicated in Fig. 3 with red lines, to guarantee its secu-

rity. Where FW group secures network-layer security of

email server, AS group filters malicious and spam e-mail

to guarantee application-layer security, and SSL/VPN

group provides the important emails with secure trans-

mission.

2.3 Group Management

Incompetence external traffic from Internet or in-

ternal traffic from VMs accesses to services in service

domains, MD as a SDN controller is responsible for con-

trolling traffic to follow its corresponding SIC. While

each group on SIC path is a real performer on security

inspection and filtering, preventing malicious and virus

attacks from arriving at services in service domains. In

this process, when security domains (nodes) in some

groups on SIC path suffer overload or low load or fail-

ure, NetSecCC needs to rebalance load in groups for

overload or low load to strengthen network traffic pro-

cessing capability, including increasing throughput and

resource utilization, and to provide fault tolerance using

hot standby for failure to improve seamless inspection

and filtering, including reducing system recover time.

Note that the HS is not a traditional one-to-one rela-

tionship [5] [38] [3] between active nodes and standby

nodes, but a improved many-to-one relationship, that

is, the state information of all active nodes is synchro-

nized to one standby node to improve resource utiliza-

tion.

When one group faces traffic overload or low load

or node failure, as shown in Fig. 4, NetSecCC presents

NetSecCC: A Scalable and Fault-tolerant Architecture for Cloud Computing Security 5

MD

Node1 Node2 Node3Node4

ActiveStandby

HSC
ol

le
ct

in
g

In
fo

rm
at

io
n

Renew forwarding rules

in vSwitch when active

nodes appear overload or

low load or failure

1

C
ollecting

Inform
ation3

4

vSwitch

Flow table

Renew forwarding rules

when group overloads

ServerID Fwd

WebID1 Node1

WebID2 Node2

ServerID Fwd

WebID1 Node4

WebID2 Node2

Renew forwarding rules

when group low load

1

Create/destroy node

ServerID Fwd

WebID1 Node1

WebID2 Node2

ServerID Fwd

WebID1 Node1

WebID2 Node2

WebID3 Node3

ServerID Fwd

WebID1 Node1

WebID2 Node2

Renew forwarding rules

when Node1 failure

Adjust forwarding rules

according to loads

Adjust forwarding rules

because of failure

2

Fig. 3: Working mechanism of every group in SMG

how to deal with such a problem. MD collects and re-

ceives load and traffic information (e.g., session, load)

from active nodes in real time (1); In the case of these

active nodes overload or low load, MD makes such a

determination according to the received information: If

the load of the active nodes is not balanced, MD re-

news forwarding rules in vSwitch to adjust the load be-

tween the active nodes (4). If all active nodes overload,

MD creates an active node (2), and dynamically gener-

ates new forwarding rules and renews those in vSwitch

(4) to balance the load in active nodes. If active nodes

face low load, MD may destroy an active node (2), and

renew forwarding rules in vSwitch (4) to improve re-

source utilization. To make load balancing contrate, we

present from Fig. 4 how MD adjusts flow table to re-

balance load. Initially, WebID1 and WebID2 traffic is

forwarded to node1 and node2, respectively, to be in-

spected and filtered. If WebID3 traffic arrives and goes

through node1 and node2, they overload, so MD cre-

ates node3 and adds forwarding rules to route WebID3

traffic to node3. When WebID3 traffic ends, MD deletes

rules forwarding traffic to node3 and destroys node3.

Since most middleboxes are stateful, a middelbox

fails to result in loss of the established sessions in its

memory. If a client accesses to the remote server again,

the rebooted middlebox needs to reestablish a new ses-

sion between client and server, resulting in a large la-

tency. Although the traditional HS is able to solve this

problem by one-to-one switch-over between active nodes

and standby nodes, too many standby nodes seriously

reduce resource utilization. Because the probability of

middlebox failure is low, NetSecCC uses many-to-one

mapping relationship between all active nodes and one

standby node, that is, the state information in all ac-

tive nodes is synchronized to a same standby node.

When any active node fails, an automatic switch-over is

achieved between the failed active node and the standby

node, the standby node immediately plays the role of

the active node, and MD changes forwarding rules to

route traffic from the failed active node to the switched

standby node. The improved HS not only overcomes a

long latency to reboot the failed middlebox, but also

improves system resource utilization. In a specific ex-

ample as shown in Fig. 4, when node1 suddenly fails,

node4 immediately plays the role of node1 by switch-

over, and changes forwarding rules in vSwitch to route

traffic from WebID1 to node4. This process is done au-

tomatically without human involvement. A more de-

tailed process will be shown in Section 3.2.

3 Implement

The above design elaborates the principle of Net-

SecCC. In this section, we represent the implementation

of NetSecCC in detail. In regard of the implementation

of NetSecCC, we focus on the implementation of MD

and security group. MD provides the corresponding SIC

for cloud users’s services placed on cloud computing

to ensure their network security, and dynamically ad-

justs load balancing in security groups according to the

load information. Security groups not only perform se-

curity inspection and filtering, but also improve quality

of security service, including resource utilization, fault

tolerance, high availability. We first demonstrate the

implementation of MD.

3.1 MD Implement

During the implementation of NetSecCC, MD as a

SDN controller plays two important roles: First, it con-

trols traffic through the corresponding SIC of cloud

users’ services to ensure these services security. Sec-

ond, it rebalances load due to traffic overload or low

load or node failure in each group. MD implements its

two functions by forwarding rules in vSwitch, and the

process of implementation is shown in Fig. 5. Resource

manager sorts and analyzes these data from the inputs:

state information from groups in SMG (e.g., CPU, ses-

sion) and forwarding information from vSwitch, groups

topology and SIC, and outputs the parameters as the

inputs of RouteGen. RouteGen converts these parame-

ters into forwarding rules by forwarding traffic through

groups in SMG to be inspected and filtered. Until de-

ployment of new services or security needs change in

service domains, traffic overload or low load or node

6 Jin He et al.

failure in groups, MD will not generate or renew rules

in vSwitch.

SIC

MD

Resource manager

RouteGen

Groups topology FW WAF(e.g., Web traffic)

State information from groups State from vSwitch

vSwitch

ServerID Traffic In Interface Fwd

WebID HTTP NIC FW

WebID HTTP FW WAF

WebID HTTP WAF Web Server

WebID HTTP FW

WebID HTTP FW WAF

FTP Server

Forward from

FTP to Web

WebID HTTP WAF Web Server

-- -- -- MDDefault Route

Forward from

client to WebEnternal-SIC-services

Internal-SIC-services

Forwarding rules (e.g., Web traffic: FW-WAF)

Fig. 4: MD implementation

Web server (Web security chains FW-WAF) as an

example presents its forwarding rules by MD, as shown

in Fig. 5. External traffic from a client to the Web server

and internal traffic from the FTP server to the Web

server are first forwarded to FW by vSwtich to be fil-

tered, then forwarded to WAF to be inspected, and fi-

nally arrive at the Web server, thereby ensuring that

traffic arriving at Web server is secure and trusted.

3.2 Security Group

MD described above, as a controller, performs net-

work security inspection and filtering for network-based

services in cloud computing, while security groups are

regarded as an actual operator to put into effect specific

security inspection. As shown in Fig. 6, we elaborate the

implementation of security group in detail by focusing

on load balancing and fault tolerance of each group in

SMG. We first dwell on the cooperation between MD,

active nodes and vSwitch to implement load balancing

between active nodes. Fig. 6(a) shows their communi-

cation and work sequence.

1. MD
ReqMessagequery(IDNode)−−−−−−−−−−−−−−−−−−→

1a
active nodes: IDNode de-

notes the current active node identifier, MD send a

query message to all active nodes.

2. Active nodes
ResMessagequery(IDNode,CPU,memory)−−−−−−−−−−−−−−−−−−−−−−−−−−−→

1b
MD:

All current active nodes respond to the respec-

tive state information including CPU utilization,

memory usage, sessions, etc.

3. vSwitch
ReqMessagereport(vSwitch)−−−−−−−−−−−−−−−−−−→

2a
MD: vSwitch peri-

odically reports the number of packets and flow size

through active nodes to MD.

4. MD
ResMessagereport(vSwitch)−−−−−−−−−−−−−−−−−−→

2b
vSwitch: MD responds

the report message to vSwitch.

5. LB algorithm: Alg (the number of packets, flow size,

CPU, memory, session, etc) (3a). Note: the cur-

rent popular algorithms, for example round

robin, dynamic server act and dynamic ratio-

APM, may be used as the load balancing al-

gorithm. Since the article focuses on security

architecture of cloud computing, load balanc-

ing algorithm will not be described too much.

6. MD
ReqMessagerelease(vSwitch)−−−−−−−−−−−−−−−−−−−→

4a
vSwitch: MD issues for-

warding rules to vSwitch according to LB algorithm.

7. vSwitch
ResMessagerelease−−−−−−−−−−−−→

4b
MD: vSwitch responds to

MD for the release message.

Next, as show in Fig. 6(b), the communication and

work sequence between active nodes and standby node

will be elaborated to prepare for fault-tolerant on ac-

count of any active node failure.

1. Active or standby node
ReqMessageheartbeat(IDNode)−−−−−−−−−−−−−−−−−−−−→

1a

standby or active node: they probe each other to

determine whether the other is alive.

2. Standby or active node
ResMessageheartbeat(IDNode)−−−−−−−−−−−−−−−−−−−−→

1b

active or standby node: they respond to each other

probes.

3. Active node
ReqMessageinform(IDNode,state,session)−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

2a
standby

node: The renewed information (such as state, ses-
sion) is replicated from active nodes to standby node

in real time.

4. Standby node
ReqMessageinform(IDNode)−−−−−−−−−−−−−−−−−−−→

2b
active node:

Standby node responds to active nodes for the re-

newed message.

Finally, as show in Fig. 6(b), Hot Standby switch-

over processing will be explained in accordance with an

active node failure, and the sequence and communica-

tion between MD and standby node will be present to

implement fault-tolerance. That is, if any active node

fails, the standby node immediately plays the role of

that failed active node.

1. Standby node
ReqMessagereplace(IDactive,IDstandby)−−−−−−−−−−−−−−−−−−−−−−−−−−→

3a
MD:

if probing that the active node has failed, the standby

node sends a replacement message to MD to switch

over between the active node and the standby node.

2. MD
ResMessagereplace−−−−−−−−−−−−→

3b
Standby node: MD responds to

the standby node for switch-over.

NetSecCC: A Scalable and Fault-tolerant Architecture for Cloud Computing Security 7

4 1 3 2MB
Active

Node1

Active

Node2
vSwitch

Query message (ID1)

Query message (ID2)

Report message (vSwitch)

Obtain

Obtain

Processing

Response message (CPU, session)

Response message(CPU, session, memory, service level)

Response message

L
B

 alg
o

rith
m

1a

1b

3a

1b

1a

4a

Response message (vSwitch)

Release message (forwarding rules)

Renew rules

2a

2b

4b

(a) Scaling out and in WAF due to traffic overload and low load

4

Measuring

2

Heartbeat message

Query stateHearbeat response

Heartbeat message

Hearbeat response
Query state

Inform message (state, session)

Query stateInform response (state, session)

Replace response

2

1a

1a

1b

1b

2a

2b

Release message(forwarding rules)

Renew rules

MB vSwitch
Active

Node

Standby

Node

doing

Replace message (master(ID), slave(ID))

Replace response

3a

3b

4a

4b

(b) Fault-tolerance processing

Fig. 5: Load balancing and fault-tolerance processing in each group

3. MD
ReqMessagerelease(vSwitch)−−−−−−−−−−−−−−−−−−−→

4a
vSwitch: MD renews for-

warding rules to vSwitch after switch-over. The standby

node becomes the active node responsible for in-

specting and filtering the received traffic.

4. vSwitch
ResMessagerelease−−−−−−−−−−−−→

4b
MD: vSwitch responds to

MD for the renewed message.

To summarize, MD guides security groups to put

into effect security inspection for traffic, thereby ensur-

ing that traffic arriving at service domains is secure and

trusted, while security groups are the specific imple-

menter of security inspection. They complement each

other to achieve security protection of cloud comput-

ing.

4 Evaluation

In this section, we evaluate NetSccCC with the fol-

lowing goals:

• evaluate NetSecCC ’s ability to prevent external and

internal malicious traffic from attacking cloud users’

services (§4.1).

• evaluate NetSecCC ’s ability to provide dynamic scal-

ability to complex real world middleboxes, and mea-

sure the gain in resource utilization when scaling in

a deployment with NetSecCC (§4.2).

• evaluate NetSecCC ’s fault-tolerance ability compared

with three different fault-tolerance cases when one

or more of the active nodes fail (§4.3).

• quantify system overhead with NetSecCC compared

with the case without security protection in cloud

computing (§4.4).

Experimental environment Cloud platform was con-

ducted on a Dell Server with 8 core, 3.42 GHz Intel

Table 2: The list of open source security middleboxes

Middlebox Name Open Source Software

FW IPFire [7]

WAF ModSecurity [13]

SSL/VPN OpenSSL [20]

AS PacketFence [35]

CPU, 16GB memory. The XEN hypervisor version is

3.4.2, the dom0 system is fedora 16 with kernel version

2.6.31. We used a 64bit fedora Linux with kernel ver-

sion 2.6.27 as guest OS, vSwitch bandwidth is 1 Gigabit

Ethernet; NetSecCC uses open source security middle-

boxes as shown in Table 2.

4.1 Protection

Table 3 shows NetSecCC ’s ability to prevent exter-

nal and internal malicious traffic from attacking Web

server in service domains. Our experimental environ-

ment is that a Web server [26] was installed on a stan-

dalone VM in service domains, we have simulated dif-

ferent types of malicious external traffic from Internet

and internal traffic from other VMs generated by attack

tools (e.g., SQL Inject Me, HackBar), as shown in Table

3, to attack the Web server. Three scenarios are com-

pared to protect against these malicious attacks: Net-

SecCC, Wu et al. that control the inter-communication

among virtual machines with higher security by the em-

bedded firewall in virtualized environment, and the tra-

ditional architecture that places network security mid-

dleboxes at front-end of cloud computing to protect

their network security, as shown in Fig. 1.

8 Jin He et al.

Table 3: Comparison results of the three protection: Wu et al. just prevent malicious internal traffic between VMs; the
traditional architecture is just able to prevent malicious external traffic; While NetSecCC can address the attacks from
external and internal traffic.

Vulnerability Attack Tool
Wu et al. [40] Traditional Architecture NetSecCC

Ext. Int. Ext. Int. Ext. Int.

Cross-site scripting ZAP [25] ×
√ √

×
√ √

Cross-site request forgery ZAP ×
√ √

×
√ √

Input validation Nikto/Wikto [19] ×
√ √

×
√ √

SQL injection SQL Inject Me [22] ×
√ √

×
√ √

Information leak Tamper Data [23] ×
√ √

×
√ √

Authentication issues HackBar [17] ×
√ √

×
√ √

Path traversal HackBar ×
√ √

×
√ √

The results of experiments are shown in Table 3.

The solution provided by Wu et al. is just able to pro-

tect inter-communication between virtual machines in

the same platform. However, it can not protect against

external malicious attacks. The traditional architecture

is now a popular way to provide protection for external

network security of cloud computing, but it can not pro-

tect internal communication between virtual machines,

thus resulting in the serious problem that the malicious

virtual machine can attack and control the other vir-

tual machines in the same platform to destroy the entire

cloud system. While NetSecCC, in the contrary, pro-

tects against not only malicious attacks from external

traffic, but also attacks from internal traffic to ensure

network security of cloud users’ services in cloud com-

puting, thus overcoming the shortcomings of Wu et al.

and the traditional architecture.

4.2 Scalability

Fig. 7(a) shows NetSecCC ’s ability to dynamically

scale WAF out and in during a load burst. Our experi-

mental environment is that a Web server is installed on

a standalone VM in service domains, 30 clients in the

form of a continuous sequence of POST requests access

to the Web server, the requests contain SQL injection

and cross-site scripting attacks, and each client gener-

ates 80 requests/second. We inject a load burst 50 sec-

onds into the experiment by introducing an additional

30 clients, and the load burst lasts 40s. Three scenarios

are compared: a single WAF instance that handles the

entire load burst, a pair of WAFs that share load (flows

are assigned to each WAF in a round-robin fashion)

and NetSecCC. NetSecCC scenario begins with a sin-

gle WAF. When overloaded, NetSecCC creates a new

WAF to split Web traffic.

As shown in Fig. 7(a), until the load burst at t =

50s, all the three scenarios have a 100% detection rate.

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

 A
tt
a

c
k
s
 D

e
te

c
te

d
 (

%
)

Time (s)

 NetSecCC

 One WAF

 Two WAF

(a)

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

A
v
g

 S
y
s
te

m
 U

ti
liz

a
ti
o

n
 (

%
)

Time (s)

 Without scaling in

 NetSecCC

(b) System utilization when scaling FW in for low load

Fig. 6: Scaling security groups out and in to test NetSecCC ’s
scalability according to traffic overload and low load

During the load burst, the performance of the single

WAF degrades drastically because packets are dropped

and attacks are missed. The two WAFs do not expe-

rience any degradation as they have enough capacity

and the load is well balanced between the two WAFs.

While NetSecCC creates a new WAF to split Web traf-

fic according to the load burst at t = 50s, the following

problem is caused: packets are dropped and attacks are

missed. However, the detection rate quickly rises be-

cause the two WAFs have enough capacity for the load

burst. After the load burst (t = 90s), NetSecCC de-

tects a drop in load due to the destroying of one WAF.

NetSecCC therefore enables WAF to handle the load

burst without wasting resources by running two WAFs

throughout the entire experiment.

Fig. 7(b) shows system utilization between NetSecCC

and a pair of FWs that share load in a round-robin

fashion. Our experimental environment is that a UDP

NetSecCC: A Scalable and Fault-tolerant Architecture for Cloud Computing Security 9

server is installed on a standalone VM in service do-

mains, 100 UDP clients continuously send UDP pack-

ets to the UDP server, and each client evenly generates

from 8M requests/second to 1M requests/second within

100s in the descending way. Initially, NetSecCC has two

FWs to share UDP traffic. When traffic declines, in the

first 50s, the system utilization of NetSecCC is the same

as that of this pair of FWs, decreased from 80% to 50%.

However, NetSecCC utilization burst reaches 80% at t

= 50s, this is mainly because that NetSecCC is config-

ured with a scale-in policy that is triggered once one

FW load falls below 50. That is, at low load, one FW is

destroyed, and all traffic is forwarded to the other FW.

That is, at this moment, only one FW in NetSecCC is

responsible for filtering and inspecting all traffic, while

a pair of FWs remain two FWs, thereby improving sys-

tem utilization. After 50s, NetSecCC ’s system utiliza-

tion decreases from 80% to 20% with gradually decreas-

ing traffic, while the system utilization of this pair of

FWs decreases to 10%.

4.3 Fault Tolerance

One dynamic scenario is considered in Fig. 4. When

node3 fails, it is needed to recover the normal running

network, and what we are interested in is the recovery

time [37]. Three scenarios are compared: Remus [1], RP

[29] and NetSecCC. The following shows three different

fault-tolerance configurations:

NetSecCC RP Remus
0

1

2

3

4

5

6

7

8

R
e

c
o

v
e

ry
 T

im
e

 (
m

s
)

 Rule Update

 Create VM

 Flow State Replication

 Failure Detection

Fig. 7: Recovery time in the case of a virtual middlebox failure

Remus uses a VM-level fault-tolerance technique

that provides transparent failure recovery. The flow state

of node3 is constantly replicated by Remus to node4 in

the same group, and node3’s passive backup copy cre-

ated by Remus is denoted as node3-B. When node3

failure is detected, Remus creates node3-B, and con-

stantly replicates the flow state of node3 from node4 to

node3-B, and vSwitch forwards the flows accordingly to

node3-B.

RP uses a fine-grained flow-level fault-tolerance tech-

nique. When node3 fails, the flow state of node3 is con-

stantly replicated by RP to node1 and node2 in the

same group, and the SDN controller immediately acti-

vates the relevant flow states in node1 and node2 and

vSwitch forwards the flows accordingly.

Fig .8 shows recovery time of each fault-tolerance

strategy, including failure detection time, flow state repli-

cation time, creation VM time and rule update time.

In regard of Remus, the overhead is prohibitively high,

and the main overhead comes from the flow state repli-

cation and the creation VM. Where the time overhead

of the creation VM is the time to establish VM and mid-

dlebox, the root cause of the performance degradation

during the flow state replication arises from suspend-

ing and resuming the entire VM by a VM-level fault-

tolerance technique. In regard of PR, the recovery time

is very close to approximate 5ms, its main overhead

also comes from the flow state replication. This is due

to the fact that in order to failover a set of flows of

the failed node to the active nodes without disrupting

end-to-end connectivity, when finding node failure, PR

takes a long time to replicates relevant flow states. In

regard of NetSecCC, during the operation, the new and

renewing flow state of the active nodes has being syn-

chronized to the standby node in a timely manner, so

NetSecCC ’s fault tolerance overhead just takes failure

detection time and rule update time, thus reflecting a

higher recovery efficiency.

4.4 Performance Overhead

To evaluate NetSecCC ’s system performance over-

head, throughput and latency that are important in-

dicators of system performance are used as evaluation

criteria. Although this way without NetSecCC is higher

efficient than one with NetSecCC, if no protective mea-

sures are taken to protect cloud computing security, it

may lead to incalculable losses. Therefore, it is neces-

sary to protect network security of cloud computing to

defend various attacks from the network. Even if Net-

SecCC is selected to protect cloud computing security,

it is also necessary to consider whether its performance

overhead can be accepted. IXIA [18] is used as a perfor-

mance testing tool to evaluate NetSecCC ’s performance

overhead, comparing both with and without network

security in cloud computing. Next, Two experiments

are used to evaluate the performance impact with Net-

SecCC.

For Web page access as our first experiment, IXIA

is used both as a customer and as a server to test with

and without NetSecCC. The results of this experiment

show in Fig. 9 that NetSecCC has little impact on

system performance, compared with the case without

NetSecCC, NetSecCC imposes 9.3% of average latency

10 Jin He et al.

overhead (ranging from 6.4% to 13.9%) and 0.4% of av-

erage throughput drop(ranging from 0 to 3.7%). There

are two main reasons. First, since SIC (FW-WAF) of

web page access is composed of FW group and WAF

group, Web traffic must go through FW group and

WAF group to be inspected and filtered before being

forwarded to the Web server in service domains. In this

process, traffic is required to match hundreds of filter-

ing rules in FW and thousands of signatures in WAF.

This will take some time, resulting in the increased la-

tency and the decreased throughput. Second, since FW

group and WAF group share the same hardware re-

sources (e.g., CPU, memory) in the same virtual plat-

form, context switches between FW group and WAF

group cause cache invalidations, which is very expen-

sive. In the case without NetSecCC, Web traffic directly

accesses to the Web server to avoid inspection in terms

of system overhead. Therefore, compared with the cases

without NetSecCC, latency becomes longer with Net-

SecCC, throughput is suffered from the impact of la-

tency, but overall system performance with NetSecCC

is within the acceptable range(≤ 9.3%).

256 512 1024 2048 4096 8192 16384

400

600

800

1000

 Web page size (Bytes)

W
e

b
 t
h

ro
u

g
h

p
u

t
(M

b
p

s
)

 NetSecCC

 Without NetSecCC

(a) Throughput comparison of web page access

256 512 1024 2048 4096 8192 16384
0

200

400

600

800

A
v
g

 W
e

b
 L

a
te

n
c
y
 (

u
s
)

Web page size (Bytes)

 Without NetSecCC

 NetSecCC

(b) Latency comparison of web page access

Fig. 8: Performance comparison results of cases with Net-
SecCC and without NetSecCC by Web page access

For Email access as our second experiment, IXIA

is used to test performance overhead with NetSecCC.

The results of this experiment show in Fig. 10 that even

encrypted emails with NetSecCC are just slightly af-

fected. Compared with the case without NetSecCC,

specific data with NetSecCC on the performance over-

head is shown below: the average cost of latency is

11.1% (ranging from 9.2% to 13.7%), and the average

cost of throughput is 5% (ranging from 0 to 11.1%).

For security services, such a performance overhead (≤
11.1%) is perfectly acceptable.

256 512 1024 2048 4096 8192 16384

200

400

600

800

1000

E
m

a
il

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Mail size (Bytes)

 NetSecCC

 Without NetSecCC

(a) Throughput comparison of mail access

256 512 1024 2048 4096 8192 16384
0

4000

8000

12000

16000

20000

A
v
g

 E
m

a
il

L
a

te
n

c
y
 (

u
s
)

Mail size (Bytes)

 NetSecCC

 Without NetSecCC

(b) Latency comparison of encrypted mail access

Fig. 9: Performance comparison results of cases with
NetSecCC and without NetSecCC by mail access

In summary, by the comparison of two cases both

with and without NetSecCC in cloud computing, Net-

SecCC is able to provide adequate network security

protection for cloud computing, but not at the cost of

sacrificing the high price of system performance. The

two experiments have further indicated that NetSecCC

scheme can provide efficient comprehensive network pro-

tection for cloud computing.

5 Conclusion

In this paper, we introduce a novel solution Net-

SecCC to ensure network security in cloud computing.

In particular, this new solution is carefully designed to

provide protection against both external and internal

attacks, to provide flexible scalability and to achieve

high and effective capability of fault-tolerance. Our ex-

tensive experimental results validates all these charac-

teristics, and thus NetSecCC address the all three ma-

jor defects known in a traditional solution. It also pro-

vides a more comprehensive protection for cloud com-

puting, and opens a new door in network security re-

search.

Acknowledgements This work is partially supported by
NSFC Grant No. 61450110085, the Open Research Project of
the State Key Laboratory of Industrial Control Technology,
Zhejiang University, China (No. ICT1407), JSPS KAKENHI
Grant Number 25880002, 26730056 and JSPS A3 Foresight
Program.

NetSecCC: A Scalable and Fault-tolerant Architecture for Cloud Computing Security 11

References

1. Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike
Feeley, Norm Hutchinson, and Andrew Warfield. Remus:
High availability via asynchronous virtual machine repli-
cation. In Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation, pages
161–174. San Francisco, 2008.

2. Mianxiong Dong, Kaoru Ota, He Li, Suguo Du, Haojin
Zhu, and Song Guo. Rendezvous: towards fast event de-
tecting in wireless sensor and actor networks. Computing,
pages 1–16, 2013.

3. Mianxiong Dong, Kaoru Ota, Man Lin, Zunyi Tang,
Suguo Du, and Haojin Zhu. Uav-assisted data gathering
in wireless sensor networks. The Journal of Supercom-
puting, pages 1–14, 2014.

4. Adrian J Duncan, Sadie Creese, and Michael Goldsmith.
Insider attacks in cloud computing. In Trust, Security
and Privacy in Computing and Communications (Trust-
Com), 2012 IEEE 11th International Conference on,
pages 857–862. IEEE, 2012.

5. BIG-IP Configuring High Availability F5 Networks Inc.
http://support.f5.com/kb/enus/products/big-ip_

ltm/manuals/product/tmos_management_guide_10_0_0/

tmos_high_avail.html.
6. Diogo AB Fernandes, Liliana FB Soares, João V Gomes,

Mário M Freire, and Pedro RM Inácio. Security issues in
cloud environments: a survey. International Journal of
Information Security, pages 1–58, 2013.

7. IPFire. http://www.ipfire.org/.
8. Dilip Joseph and Ion Stoica. Modeling middleboxes. Net-

work, IEEE, 22(5):20–25, 2008.
9. Hongwei Li, Xiaodong Lin, Haomiao Yang, X Liang,

R Lu, and X Shen. Eppdr: An efficient privacy-preserving
demand response scheme with adaptive key evolution in
smart grid. IEEE Transactions on Parallel and Dis-
tributed Systems, page 1, 2013.

10. Hongwei Li, Rongxing Lu, Liang Zhou, Bo Yang, and
X Shen. An efficient merkle-tree-based authentication
scheme for smart grid. Systems Journal, IEEE, pages
655–663, 2013.

11. Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. Openflow: enabling inno-
vation in campus networks. ACM SIGCOMM Computer
Communication Review, 38(2):69–74, 2008.

12. Peter Mell and Timothy Grance. The nist definition
of cloud computing (draft). NIST special publication,
800(145):7, 2011.

13. ModSecurity. http://www.modsecurity.org/.
14. Ali Mohammed, Sachin Sama, and Majeed Mohammed.

Enhancing Network Security in Linux Environment.
PhD thesis, Halmstad University, 2012.

15. NVD. http://nvd.nist.gov/.
16. AWS [Online]. http://docs.aws.amazon.com/AWSEC2/

latest/UserGuide/using-network-security.html.
17. HackBar [Online]. https://addons.mozilla.org/en-us/

firefox/addon/hackbar/.
18. IXIA [Online]. http://www.ixiacom.com/.
19. Nikto [Online]. http://www.netsecurity.com.
20. OpenSSL [Online]. http://www.openssl.org/.
21. SecaaS [Online]. https://cloudsecurityalliance.org/

research/secaas/.
22. SQL Inject [Online]. https://addons.mozilla.org/

en-US/firefox/addon/sql-inject-me/.
23. Tamper Data [Online]. https://addons.mozilla.org/

en-us/firefox/addon/tamper-data/.

24. VMware [Online]. http://www.vmware.com/.
25. Zap [Online]. https://code.google.com/p/zaproxy/.
26. Apache HTTP Server Project[Online]. http://httpd.

apache.org/.
27. McAfee SaaS Email Protection and Web Pro-

tection. http://www.mcafee.com/us/products/

security-as-a-service/index.aspx.
28. Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui

Miao, Vyas Sekar, and Minlan Yu. Simple-fying middle-
box policy enforcement using sdn. In Proceedings of the
ACM SIGCOMM 2013 conference on SIGCOMM, pages
27–38. ACM, 2013.

29. Shriram Rajagopalan, Dan Williams, and Hani Jamjoom.
Pico replication: a high availability framework for mid-
dleboxes. In Proceedings of the 4th annual Symposium
on Cloud Computing, page 1. ACM, 2013.

30. Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and
Andrew Warfield. Split/merge: System support for elastic
execution in virtual middleboxes. In Proceedings of the
10th USENIX conference on Networked Systems Design
and Implementation, pages 227–240. USENIX Associa-
tion, 2013.

31. Khaled SALAH, Jose M ALCARAZ CALERO, Sher-
ali ZEADALLY, Sameera AL-MULLA, and Mohammed
ALZAABI. Using cloud computing to implement a secu-
rity overlay network. IEEE security & privacy, 11(1):44–
53, 2013.

32. Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K
Reiter, and Guangyu Shi. Design and implementation of
a consolidated middlebox architecture. In Proc. NSDI,
2012.

33. Vyas Sekar, Sylvia Ratnasamy, Michael K Reiter, Nor-
bert Egi, and Guangyu Shi. The middlebox manifesto:
enabling innovation in middlebox deployment. In Pro-
ceedings of the 10th ACM Workshop on Hot Topics in
Networks, page 21. ACM, 2011.

34. Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krish-
namurthy, Sylvia Ratnasamy, and Vyas Sekar. Making
middleboxes someone else’s problem: Network processing
as a cloud service. ACM SIGCOMM Computer Commu-
nication Review, 42(4):13–24, 2012.

35. SpamAssassin. http://spamassassin.apache.org/.
36. S Subashini and V Kavitha. A survey on security issues

in service delivery models of cloud computing. Journal of
Network and Computer Applications, 34(1):1–11, 2011.

37. Nikolay Topilski, Jeannie R Albrecht, and Amin Vahdat.
Improving scalability and fault tolerance in an applica-
tion management infrastructure. In LASCO, 2008.

38. High Availability Reference Guide Vyatta Inc.
http://www.vyatta.com/downloads/documentation/

VC6.5/Vyatta-HA_6.5R1_v01.pdf.
39. Zhi Wang, Chiachih Wu, Michael Grace, and Xuxian

Jiang. Isolating commodity hosted hypervisors with hy-
perlock. In Proceedings of the 7th ACM european confer-
ence on Computer Systems, EuroSys ’12, pages 127–140,
New York, NY, USA, 2012. ACM.

40. Hanqian Wu, Yi Ding, Chuck Winer, and Li Yao. Net-
work security for virtual machine in cloud computing. In
Computer Sciences and Convergence Information Tech-
nology (ICCIT), 2010 5th International Conference on,
pages 18–21. IEEE, 2010.

41. Yue Wu, Joseph P Noonan, and S Agaian. Binary data
encryption using the sudoku block cipher. In Systems
Man and Cybernetics (SMC), 2010 IEEE International
Conference on, pages 3915–3921. IEEE, 2010.

42. Dimitrios Zissis and Dimitrios Lekkas. Addressing cloud
computing security issues. Future Generation Computer
Systems, 28(3):583–592, 2012.

