
SmartRep: Reducing Flow Completion Times with
Minimal Replication in Data Centers

言語: English

出版者: IEEE

公開日: 2016-05-23

キーワード (Ja):

キーワード (En):

作成者: WANG, Fuguang, QIAN, Zhuzhong, ZHANG,

Sheng, 董, 冕雄, LU, Sanglu

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10258/00008888URL

SmartRep: Reducing Flow Completion Times with
Minimal Replication in Data Centers

Fuguang Wang†, Zhuzhong Qian†, Sheng Zhang†, Mianxiong Dong‡, and Sanglu Lu†
†State Key Laboratory for Novel Software Technology, Nanjing University, China

‡Muroran Institute of Technology, Japan
Email: †{wfg2008913, zhangsheng}@dislab.nju.edu.cn, {qzz, sanglu}@nju.edu.cn, ‡mx.dong@ieee.org

Abstract—To improve users’ experience, TCP short flows that
are heavily used in interactive services should be completed as
soon as possible. In current data centers, large flows and head-
of-line blocking in switches hinder short flows from completion,
which leads to long-tailed flow completion times (FCT). Repli-
cating short flows with multiple equal-cost paths is a promising
way to reduce FCT. However, the original flow and its replicated
one are quite likely to be routed to the same path (ECMP
hash collision), which increases both the mean and 99-percentile
FCT significantly. What’s more, inadequate replication leaves
many other less-congested equal-cost paths unused and limits
the performance while excess replication degrades throughput of
large flows. To solve these problems, we propose SmartRep, a
scheme consisting of an efficient and effective traceroute based
hash collision avoidance method and an algorithm to decide the
optimal number of replicated flows for different short flows.
SmartRep can be easily implemented in software and readily
deployed in data centers. Extensive NS2 simulations show that our
approach improves previous replication-based work by 25%-50%
in both mean and 99th percentile FCT, and meanwhile imposes
negligible impact on large flows.

I. INTRODUCTION
Nowadays, numerous online services are hosted in data

centers. Many services, such as social networking, online
shopping and web search have strict requirements on latency.
Even a small increase in response latency to the user’s request
may lead to a large financial loss [?].

Modern applications in data centers are usually constructed
in Partition/Aggregate pattern [?] [?], in which aggregator
servers partition a large task into small ones and distribute
them to worker servers. Worker servers achieve these small
tasks and return results to aggregators. The finish time of each
large task is largely up to the flow completion times (FCT)
of the delay-sensitive short flows generated in this process.
However, short flows are very likely to be queued behind bursts
of packets from large flows, and they may experience more
than 2x larger mean FCT than its theoretical minimum [?] [?]
and even more than 10x larger than the average [?] [?].

To reduce FCT of short flows in data centers, a lot of
approaches were proposed in recent years. However, most of
them are need to modify either switches or TCP protocol [?]
[?] [?] [?], which makes them difficult to deploy in current
large-scale production data centers. To avoid modifying TCP or
physical layer mechanism, replicating short flows with multiple
equal-cost paths, which is easily implemented as libraries or
middleware at the application layer, is a promising way to
reduce FCT. Typically, each short TCP flow is replicated by
creating another TCP connection to the receiver, and sending
identical packets for both flows [?]. The application uses
the result from the flow which completes first. Thus a task

undertook by a flow originally is performed by two flows
now, which makes the task less likely to be blocked by
large flows than before when the two flows traverse different
paths. However, it is observed that many short flows and their
replicated ones are routed to the same path because of hash
collision in ECMP (Equal-Cost Multi-Path routing), and this
leads to a big performance degradation. Further, even though
the replicated flow and its original one traverse different paths,
they are very likely to be blocked by large flows at the same
time when the network load is high.

In this paper, we introduce SmartRep, a new scheme to
overcome the limitations mentioned above and maximize the
improvement of replication to FCT of short flows. SmartRep
is composed of a hash collision avoidance (HCA) method and
an efficient algorithm (RepNumAssign) to find the optimal
number of replicated flows created for every short flow while
minimizing the overhead. In HCA, we use traceroute based
path probe to find the route of a flow with a specific TCP/IP
5-tuple, and allocate a carefully selected TCP/IP 5-tuple to a
replicated flow of the original one, which guarantees the two
flows traverse different paths. In designing RepNumAssign,
we model the process that the original flow and its replicated
ones traverse the network as Bernoulli trials and then try to
understand the problem that how to assign the optimal number
of replicated flows to each short flow. SmartRep does not
modify switch or TCP stack and can be easily implemented and
readily deployed in data centers. Extensive NS2 simulations
with a variety of workloads show SmartRep outperforms
previous replication-based solution by 25%-50% in both mean
FCT and 99-percentile FCT.

In summary, our work makes three main contributions: (i)
We show by theoretical analysis that hash collision between
original flow and its replicated one has a great impact on FCT
of short flows and the potential of cutting down FCT of short
flows by creating multiple replicated flows; (ii) We design
SmartRep, a new scheme to use replication to reduce FCT of
short flows, which consists of HCA and RepNumAssign; and
(iii) We implement SmartRep in NS2 and conduct extensive
simulations to evaluate it.

The rest of the paper is organized as follows. We describe
the motivation of SmartRep in Section II. Then we present the
design of SmartRep in Section III. In Section IV, SmartRep is
evaluated. Finally, we conclude the paper in Section V.

II. MOTIVATION
A. Related Work

Many of previous work reduce the FCT of short flows by
reducing the occupations of queue in switches [?] [?], explicit
rate control [?], or favouring short flows by well-designed flow

A large

flow

B C

S1 S2 S3

E

A

A short flow

F

A replicated

flow of F

(a) An ideal case

B C

S1 S2 S3

E

A

(b) A hash collision

A B C

S1 S2 S3

(c) An extreme case

Fig. 1: Hash collision illustration

scheduling algorithms [?] [?]. These methods require switch
or TCP modification, which makes them difficult to deploy
in current large-scale production data centers. Recently, some
replication based approaches is proposed to reduce the com-
pletion times of tasks [?] [?] [?], which can be implemented at
application layer and avoid changing switch or TCP protocol
stack. The idea of these approaches is to initiate redundant
operations across diverse resources or issue redundant requests
to multiple servers. Based on this idea, RepFlow [?] creates
two flows to finish a task, which was accomplished by a flow
originally. One of the flows is known as the original flow and
the other as the replicated flow. The replicated flow is exactly
the same as its original one except that its destination port is
set equal to its original one’s plus one. The application uses
the result from the first finished flow. When the original flow
and its replicated one traverse different paths, which depends
on ECMP heavily, the task is less likely to be blocked by large
flows than before.

B. Impact of Flow Hash Collision
Our work is closely related to ECMP and we introduce it

briefly next. ECMP is widely deployed in current data centers
to utilize multiple equal-cost paths [?] [?]. To avoid out-of-
order, which causes obvious throughput degradation of TCP
[?], ECMP ensures the packets belonging to the same TCP
flow traverse the same path by hashing TCP/IP 5-tuple (source
IP address, destination IP address, source port, destination
port and protocol number) fields of each packet to one of the
available equal-cost routes to the destination [?]. The widely
used hash algorithm is Hash-Threshold [?]. It first selects a key
by performing hash over TCP/IP 5-tuple of a packet. Then the
size of the hash function output space is divided by the number
of available next hops to get the region size. Lastly the hash
key is divided by region size to get the output port number.
Note that the algorithm doesn’t specify the hash function to
obtain the key but typically uses Cyclic Redundancy Check
(CRC) [?].

In ideal situations, the replicated flow and its original one
are hashed to different equal-cost paths by ECMP and avoid
being blocked by large flows, as Fig. 1(a) shows. Here by
“different equal-cost paths” we means paths that don’t share
links. If a short flow and its replicated one both traverse
a switch-to-switch link, we say that a flow hash collision
happens (Fig. 1(b)). When a flow hash collision happens,
replication becomes useless and even counterproductive be-
cause the output queue caching the original flow is more

congested than before due to the replicated flow. Unfortunately,
the flow hash collision is quite likely to happen in current
replication based design. Through our simulations, over 25%
of original flows will collide with its replicated ones when
using CRC16 as the hash function, and the percentage exceeds
50% when using CRC32 hash function. The impact of flow
hash collision on FCT of short flows is presented in Theorem
1. Note that throughout this paper we consider FCT as the
flow’s completion time normalized by the possible completion
time without contention. Both mean and tail (99-th percentile)
FCT is studied.

Theorem 1. Let p be the probability that a short flow and its
replicated one are routed to the same path, and ρ be the load
of the data center network. Then the probability that both of
the flows meet a large flow is P = (1+ϵ)ρ[p+(1+ϵ)ρ(1−p)],
where ϵ is the fraction of total bytes from replication.

Proof: The proof is given in Appendix.
We learn from [?] that the mean FCT of short flows is

FCTmean =
pM

2(1− p)

∫ SL

0

log2(x/k + 1)

x

f(x)

F (SL)
dx+ 1

(1)
the 99-th percentile FCT of short flows is FCT99 =

pM

2(1− p)

∫ SL

0

log2(x/k + 1)− ln 100
e

x

f(x)

F (SL)
dx+ 1, (2)

the mean FCT of large flows is
FCTL

mean =
p

2(1− p)
+ 1, (3)

the 99-th percentile FCT of large flows is

FCTL
99 = (1 +

∫ ∞

SL

(2 ln 10− 1)f(x)

(1− F (SL))x
dx)

p

2(1− p)
+ 1, (4)

where p is the probability a short flow meets a large flow, and
other notations are listed in Table I. According to the Theorem
1, Equation 1 and Equation 2, we plot the mean and 99-th
percentile FCT of short flows under different levels of flow
hash collision with the web search workload [?] in Fig. 2. As
Equation 3 and 4 show, the mean and tail FCT of large flows
is decided by the load increase from replication, which keeps
constant under different levels of hash collision, so they are
not affected by flow hash collision.

Fig. 2 shows when flow hash collision happens in prob-
ability 0.25, both the mean and tail FCT of short flows
with replication will increase by about 15% at high load,
compared to replication without flow hash collision, and when

 0

 2

 4

 6

 8

 10

 12

 14

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
o
rm

al
iz

ed
 F

C
T

Load

TCP
Replication without collision
Replication with 25% collision
Replication with 50% collsion

(a) Short flow mean FCT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
o
rm

al
iz

ed
 F

C
T

Load

TCP
Replication without collision
Replication with 25% collision
Replication with 50% collsion

(b) Short flow tail FCT

Fig. 2: FCT contrast under different levels of hash collision

 0

 2

 4

 6

 8

 10

 12

 14

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
o
rm

al
iz

ed
 F

C
T

Load

TCP
Replication with 1 replicated flow
Replication with 2 replicated flows
Replication with 3 replicated flows
Replication with 5 replicated flows
Replication with 10 replicated flows

(a) Short flow mean FCT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
o
rm

al
iz

ed
 F

C
T

Load

TCP
Replication with 1 replicated flow
Replication with 2 replicated flows
Replication with 3 replicated flows
Replication with 5 replicated flows
Replication with 10 replicated flows

(b) Short flow tail FCT

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
o

rm
al

iz
ed

 F
C

T

Load

TCP
Replication with 1 replicated flow
Replication with 2 replicated flows
Replication with 3 replicated flows
Replication with 5 replicated flows
Replication with 10 replicated flows

(c) Large flow mean FCT

 0

 2

 4

 6

 8

 10

 12

 14

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
o

rm
al

iz
ed

 F
C

T

Load

TCP
Replication with 1 replicated flow
Replication with 2 replicated flows
Replication with 3 replicated flows
Replication with 5 replicated flows
Replication with 10 replicated flows

(d) Large flow tail FCT

Fig. 3: FCT contrast with different numbers of replicated flows

the probability increases to 0.5, the FCT increases by over
30%. The results demonstrate the great negative impact of flow
hash collision on FCT of short flows.

C. Gain of Creating Multiple Replicated Flows
In a worse case, both of the short flows will collide with

large flows when the network load is high, even if they traverse
different paths (Fig. 1(b)). The reason is that creating one
replicated flow is insufficient to utilize the multiple equal-cost
paths in data center networks.

In the following analysis, we assume that there are enough
equal-cost routes for each short flow and that replicated flows
and its original one traverse different paths. Let ϵ be the
fraction of total bytes from replication and ρ be the network
load without replication. When we create n−1 replicated flows
for every short flow, the network load increases from ρ to
(1 + (n − 1)ϵ)ρ and the probability that all of them collide
with a large flow is (1+(n−1)ϵ)nρn, where ϵ is below 0.035
in the empirical workloads [?] [?] [?] used by us.

Using Equation 1, 2, 3 and 4, we plot the mean and 99-th
percentile FCT of short flows and large flows with different
number of replicated flows using the web search workload [?]
in Fig. 3. As Fig. 3(a) and 3(b) show, creating 5 replicated
flows can reduce both the mean and tail FCT by roughly 50%,
compared to creating one. Meanwhile, excess replication cause
large flows to finish late, as Fig. 3(c) and 3(d) show. So it is
important to find the suitable number of replicated flows.

D. Goals and Challenges
The problems discussed above motivate us to design a new

replication based method to reduce the FCT of short flows.
However, it is not easy to find a suitable way to avoid the hash
collision between flows or leverage multiple equal-cost paths
by creating multiple replicated flows. Specifically, we are faced

Notations Notes
M maximum window size (64KB,44 packets)
ϵ the fraction of total bytes from short flows
W queuing delay of the M/G/1-FCFS queue
ρ ∈ [0, 1) overall traffic load
SL threshold for large flows(100KB)
F (·), f(·) flow size CDF and PDF
k initial window size in slow-start (12 packets)

TABLE I: Notations

with the following challenges: (i) Though simple hash collision
avoidance methods like modifying hash algorithm in switches
exist, we do not use them because they are hard to deploy
in production data centers; (ii) Short flows are very delay-
sensitive and impose strict requirements on the efficiency; (iii)
Simply creating multiple replicated flows for every short flow
is not feasible because it has a large impact on performance
of large flows and also suffers hash collisions.

III. DESIGN DETAILS
In this section, we elaborate on SmartRep targeting to

maximize the capabilities of replication. SmartRep (Algorithm
1) consists of two components: HCA which avoids the hash
collision by selecting suitable source ports for replicated flows
and the original flow, and RepNumAssign which finds the
optimal number of replicated flows for each short flow. The
number of replicated flows for each short flow is computed
according to its flow size in advance by RepNumAssign and
stored in a set repNum. For each short flow, if its ends are
located under the same top of rack, no replicated flow will be
created for it because only one path exists between the two
hosts. Otherwise, the number of replicated flows created is
decided according to its flow size k (line 5). This observation
saves much overhead because over 75% of the whole traffic
happened in the same rack in most data centers [?]. Lastly,
HCA is invoked to assign source ports for n replicated flows
and the original one, them traverse different paths.

Next, we describe in details HCA and RepNumAssign.

Algorithm 1 SmartRep

1: procedure SMARTREP(srcIP,dstIP,srcPort,dstPort,k,repNum)
2: n← 0
3: if srcIP and dstIP not under the same ToR then
4: n← repNumk

5: end if
6: P ← HCA(srcIP, dstIP, P ∪ p0, n+ 1)
7: return P
8: end procedure

A. Hash Collision Avoidance
Our principle is to avoid switch and TCP modification and

keep universal. Without hardware modification, we can not
control the path of a flow. There are diverse implementations
of ECMP so we can’t assume a specific hash algorithm is used.
We have to vary the changeable fields in TCP headers of a flow,
test its route and check if the setting of the fields meets our
demand. In the fields of a TCP/IP 5-tuple, we can change only
the TCP source port because IP addresses, protocol number
and the destination port are all fixed once the client and the
server are decided. We try to find suitable source ports for
replicated flows and the original one. To this end, we design
a mechanism using path probing technique (Algorithm 2).

1) Traceroute based port selection: We choose traceroute
like method to probe the path that a flow with a predefined
TCP/IP 5-tuple will traverse (procedure traceRoute in Algo-
rithm 2). Procedure traceRoute constructs a packet using the
input and set TTL of the packet as 1. When the packet arrives
at its first hop switch, its TTL is decremented to zero and the
switch will notify the sender with a packet carrying its address
according to Internet Control Message Protocol. So the sender
knows which path the flow with the 5-tuple will traverse. We
consider data centers with fat-tree topology in this paper and
we assume the ECMP algorithm in each switch is the same
so that once the first hop of a flow is decided the route of the
flow is decided. In data centers with other types of topology,
the setting of TTL may be different.

When a host will create a short flow, SmartRep passes
procedure HCA the IP addresses and the destination port of
the flow, and the number of flows to be created, k, including
replicated flows and the original one. HCA assign source ports
to the k flows one by one. For those flows whose source ports
have been assigned, the identity of the paths they will traverse
is stored in Addr. For each next flow to be assigned a source
port, a iteration will be done to find a source port, making the
flow’s path different with previous flows’ (line 5-8). Finally,
the k source ports are returned. It’s clear that any two of k
flows will traverse different paths.

Algorithm 2 Hash Collision Avoidance Algorithm

1: procedure HCA(srcIP,dstIP,dstPort,k)
2: p← the biggest used port
3: Addr ← ϕ, srcPorts← ϕ
4: while k > 0 do
5: repeat
6: p← p+ 1
7: addr ← traceRoute(srcIP, dstIP, p, dstPort)
8: until addr /∈ Addr
9: Addr ← Addr ∪ {addr}

10: srcPorts← srcPorts ∪ {p}
11: k ← k − 1
12: end while
13: return srcPorts
14: end procedure
15:
16: procedure TRACEROUTE(srcIP,dstIP,srcPort,dstPort)
17: create a TCP packet pkt with IPs and Ports from input
18: set the TTL of pkt to 1
19: send pkt to get ICMP error packet reply
20: return source IP address of reply
21: end procedure

2) Efficiency of HCA: The running time of HCA is up to
procedure traceRoute. When n replicated flows are created for
a short flow, procedure traceRoute will be invoked at least∑n

i=1 i = n(n + 1)/2 times. It takes 2 ∗ (link delay) + 2 ∗
(server processing delay) + switch processing delay ≈
1 + 18 + 11 = 30µs to finish one traceRoute. However, for
a large data center, n may exceed 10 and HCA will run for
over 1.6ms. It is unacceptable to finish such a time-consuming
operation every time a short flow lasting tens of µs is created.

Fortunately, HCA can be done in advance and the results
(TCP/IP 5-tuples and its corresponding paths) can be stored in
a database. This is because applications in data centers usually
work in a Partition/Aggragation way, where the destination

servers’ addresses of short flows keep constant and ECMP
ensures that the flows with the same TCP/IP 5-tuple traverse
the same path at any time. Therefore, for each TCP/IP 5-tuple,
procedure traceRoute runs only once and subsequent query
about the tuple can be replaced by a fast database query. Thus,
procedure traceRoute needs to run for N = n+

∑n
k=1 θk times,

where θk is the number of iteration in line 5-8 of procedure
HCA when the kth flow is created.

If we assume the trials in the loop are independent from
each other, θk follows a geometric distribution. The expecta-
tion of θk is E[θk] = 1/(1−p)k, where p is the probability that
any two flows have a hash collision. Therefore, the expected
number of running traceRoute when creating n replicated flows
for a short flow is E[N] = n+

∑n
k=1 E[θk] = n+

∑n
k=1 1/(1−

p)k = n + 1−(1−p)n

p(1−p)n . For a fat-tree data center with 16000
hosts, there are 20 equal-cost paths between any pair of hosts
at different pods and n ≤ 20. Using CRC16 as the ECMP hash
function, p ≈ 0.25 and the expected time of running HCA
once is no longer than 38ms. It is observed that the number
of active flows at any given interval is less than 10,000 [?],
so it will take about 10000 × 38ms = 380s to finish all the
running of HCA on average.
B. Assignment of Replicated Flows

Multiple equal-cost paths exist between a host pair in
typical data centers while one replicated flow is created, which
is not enough at high network load. We try to create multiple
replicated flows for a mice flow. However, such design may
incur high overhead, reducing throughput of large flows and
aggravating incast [?]. To reduce the overhead, we do not
create the same number of replicated flows for each flow. The
specific number of replicated flows for each flow depends on
the distribution of the flow size and its size.

1) Model of the assignment: The impact of replication on
large flows is decided by the fraction of total bytes from
replication. To reduce the impact of replication on large flows,
the following constraint is imposed on the number of replicated
flows:

SL∑
i=1

i ∗ πi ∗ xi < ε ∗Θ,

∀i ∈ {1, 2, ..., SL}, xi ∈ {0, 1, ..., ecpNum− 1}

where Θ is the total traffic of all flows from historical data,
πi is the number of flows with i KB in the historical data, xi

is the number of the replicated flows that will be assigned to
short flows with i KB traffic. The left of the inequality is the
total traffic from replicated flows. ε ∈ (0, 1) is used to limit
the traffic from replication to an acceptable percentage of the
total traffic. We limit repNumk to be less than ecpNum− 1,
where ecpNum is the number of different equal-cost paths
between any pair of hosts at different pods, because when
over ecpNum replicated flows are created, there is at least a
replicated flow in each equal-cost path.

We model the process that a short flow and its xi replicated
ones traverse data center network as xi + 1 Bernoulli trials.
In each Bernoulli trial, it’s regarded as a failure that all of
the xi + 1 flows collide with a large flow. Let p be the
probability that failure happens in a trial. If all of the xi + 1
flows experience a large flow, the replication is meaningless
and the gain of the replication is 0. Otherwise the gain is 1.
We try to maximize the expected total gain for each short
flow

∑SL

i=1 πi(1− pxi+1), which is equivalent to minimize the

following formula:
∑SL

i=1 πip
xi+1.

Algorithm 3 Replicated Flows Number Assignment

1: procedure REPNUMASSIGN(ε, Θ, π, SL)
2: for i← 1 to SL do
3: ηi ← i ∗ πi

4: repNumi ← 0
5: end for
6: sum← 0
7: T ← {1, 2, 3, ..., SL}
8: repeat
9: k ← argmaxi∈T {πi ∗ prepNumi+1}

10: while sum+ ηk > ε ∗Θ do
11: T ← T − {k}
12: k ← argmaxi∈T {πi ∗ prepNumi+1}
13: end while
14: if πk = 0 or repNumk ≥ ecpNum then
15: T ← T − {k}
16: else
17: repNumk ← repNumk + 1
18: sum← sum+ ηk
19: end if
20: until T == ϕ
21: return repNum
22: end procedure

2) A greedy solution: We devise an algorithm to solve
the optimization problem (Algorithm 3). The basic idea is
to increase the repNumk corresponding to the most πk ∗
prepNumk+1 by one because it reduces the current objective
function value the most.

The time complexity of the algorithm is O(εΘ). The
algorithm is quick enough because SmartRep does not require
it to reflect the pattern of new data in real-time. This algorithm
are ran when new historical data are collected and the period
between two runs can be long.

3) Setting of parameters: When the services hosted in a
data center don’t change, the traffic pattern will keep constant
and historical data, which is easily gathered in private data
centers, can be used to reflect the traffic patter of the data
center. When p is too high, no replicated flows will be created
for the minority of the short flows, which increase the tail
FCT of short flows so much. Therefore, we set p as 0.1.
In our experience, when ε is set below 0.03, the throughput
degradation of large flows will be very small.

IV. EVALUATION
Now we evaluate SmartRep through NS-2 [?] simulations.

A. Evaluation Settings
We used a fat-tree topology, which is commonly used in

current data centers [?] [?]. The addressing method designed
in [?] is used. The fabric consists of 10 pods, each of which
contains 5 edge switches and 5 aggregation switches. Each
switch in the fabric has 10 10Gbps ports. The end-to-end
round-trip time is 12µs. There are 5 different equal-paths for
any pair of hosts at different pods.

Two empirical workloads are used to reflect traffic patterns
in production data centers. One is from a data center mostly
running web search [?], and the other is from a data center
mostly running data mining jobs [?]. Both workloads are mix
of mice flows and elephant flows and follow a long-tail pattern.
Flows are generated between random pairs of hosts following a

Possion process with load varying from 0.1 to 0.8. We simulate
2s worth of traffic at each run and 10 runs for each load.

We choose CRC16 as the hash function of ECMP. The
source ports of replicated flows for each short flow is obtained
in advance using HCA. Our method is mainly compared with
the following ones: (i) TCP: Standard TCP-New Reno with
DropTail queues is used as the baseline of our evaluation; (ii)
RepFlow: One replicated flow is created for each short flow.
The replicated flow is exactly the same as the original flow
except that its destination port is equal to its original one’s plus
one; (iii) FullRep: The number of replicated flows created for
each short flow is set equal to the number of equal-cost paths
between any pair of hosts at different pods.
B. Evaluation Results

SmartRep on RepFlow and TCP: Fig. 4 and Fig. 5 show
the FCT performance of different flows with the web search
and data mining workloads under different levels of network
load. With the data mining workload, SmartRep reduces the
mean FCT of short flows by more than 70% and 50%, and
improve the tail FCT of short flows by more than 50% and
40% at nearly all loads, compared with TCP and RepFlow,
respectively. With the web search workload, SmartRep reduces
the tail FCT of short flows by over 50% and 25%, and improve
the tail FCT of short flows by over 50% and 35% at nearly all
loads, compared with TCP and RepFlow, respectively. All of
these simulation results demonstrate the ability of SmartRep to
avoid the flow hash collision and use multiple equal-cost paths.
Meanwhile, large flows under SmartRep suffer a negligible
FCT increase, as Fig. 4(c) and Fig. 5(c) show.

SmartRep on FullRep:As Fig. 5 shows, FullRep achieves
almost the same mean and tail FCT as SmartRep. However,
FullRep increases the mean FCT of large flows by over 10%
for loads from 0.4 to 0.8 while SmartRep has little impact
on the mean FCT of large flows. Note that we don’t plot the
FCTs under FullRep with the data mining workload, because
all the FCTs under FullRep are exactly the same as SmartRep.
The reason is that the fraction of traffic from short flows is
very small and it is allowed to create enough replicated flows
for each flow to utilize much more or even all of the equal-
cost paths while imposing negligible increase. This is also why
SmartRep has a better FCT improvement to RepFlow with the
data mining workload than with the web search workload.

Performance and efficiency of HCA: We also evaluate the
performance of HCA. Fig. 4 and Fig. 5 show HCA improves
RepFlow by about 15% in both mean and 99th percentile FCT.
This result confirms the analysis in Section II.

According to the analysis in Section III, the running time
of HCA is up to the times of invoking procedure traceRoute.
The numbers of replicated flows assigned to short flows by
SmartRep vary from 0 to 5, and the average number of
invoking procedure traceRoute is 15.1.

V. CONCLUSION
In this paper, we firstly study the effect of hash collision

on performance of replication based FCT method and the
benefit of creating multiple replicated flows for each short
flow. Then we propose SmartRep, consisting of a traceroute
based method HCA to overcome the hash collision problem
and RepNumAssign to find the optimal number of replicated
flows created for each short flow while limiting the overhead.
SmartRep is evaluated in extensive simulations and improves
prior replication based work by 25%-50% in both mean and
99-percentile FCT with negligible impact on large flows.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
o
rm

al
iz

ed
 F

C
T

Load

TCP
RepFlow
SmartRep
FullRep
HCA

(a) Short flow mean FCT

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
o
rm

a
li

z
e
d
 F

C
T

Load

(b) Short flow tail FCT

 2

 4

 6

 8

 10

 12

 14

 16

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
o
rm

a
li

z
e
d
 F

C
T

Load

(c) Large flow mean FCT

Fig. 4: Normalized FCT breakdown for different flows with a 10-pod Fat-tree and web search workload in NS-2.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
o
rm

al
iz

ed
 F

C
T

Load

TCP
RepFlow
SmartRep
HCA

(a) Short flow mean FCT

 10

 15

 20

 25

 30

 35

 40

 45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
o
rm

a
li

z
e
d
 F

C
T

Load

(b) Short flow tail FCT

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
o
rm

a
li

z
e
d
 F

C
T

Load

(c) Large flow mean FCT

Fig. 5: Normalized FCT breakdown for different flows with a 10-pod Fat-tree and data mining workload in NS-2.

ACKNOWLEDGMENT
This work is partially supported by the National Natural

Science Foundation of China under Grant No. 61202113,
61472181, 61321491, 91218302; Jiangsu Key Technique
Project (industry) under Grant No. BE2013116; EU FP7
IRSES MobileCloud Project under Grant No. 612212; the
Fundamental Research Funds for the Central Universities un-
der Grant No. 20620140513; JSPS KAKENHI Grant Number
25880002, 26730056 and JSPS A3 Foresight Program. This
work is also partially supported by Collaborative Innovation
Center of Novel Software Technology and Industrialization.APPENDIX

Proof of Theorem 1: When one replicated flow is created
for each short flow, the load increase from ρ to (1+ϵ)ρ, where
ϵ is the fraction of total bytes from short flows. It means that
when a flow traverse a path, the flow meets a busy queue

with probabilty (1 + ϵ)ρ. Let a be a short flow and b be its
replicated flow. Let ε be the event that both flows meet a busy
network, ε1 be the event that both a and b are routed to the
same path, i.e., hash collision happens, and ε2 be the event that
a and b traverse different paths. Then Pr[ε2] = 1−Pr[ε1] and
Pr[ε] = Pr[ε|ε1] · Pr[ε1] + Pr[ε|ε2] · Pr[ε2]. When a and b
traverse the same path, they meet a busy queue with probability
Pr[ε|ε1] = (1 + ϵ)ρ. When a and b traverse different paths,
they are independent and the probability that both of them
meet busy queues is Pr[ε|ε2] = (1 + ϵ)2ρ2. Let Pr[ε1] = p,
then the probability that both a and b meet busy queues is

Pr[ε] = (1 + ϵ)ρp+ (1 + ϵ)2ρ2(1− p)

= (1 + ϵ)ρ[p+ (1 + ϵ)ρ(1− p)]

