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LTE-A Networks
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Guojun Wang, Member, IEEE, and Laurence T. Yang, Member, IEEE

Abstract—Device-to-Device (D2D) communication is a key en-
abler to facilitate the realization of the internet of things (IoT). In
this paper, we study the deployment of D2D communications as
an underlay to long term evolution-advanced (LTE-A) networks
based on novel architectures such as cloud radio access network
(C-RAN). The challenge is that both energy efficiency (EE) and
quality of service (QoS) are severely degraded by the strong
intracell and intercell interference due to dense deployment and
spectrum reuse. To tackle this problem, we propose an energy-
efficient resource allocation algorithm through joint channel
selection and power allocation design. The proposed algorithm
has a hybrid structure that exploits the hybrid architecture of
C-RAN: distributed remote radio heads (RRHs) and centralized
baseband unit (BBU) pool. The distributed resource allocation
problem is modeled as a noncooperative game, and each player
optimizes its EE individually with the aid of distributed RRHs.
We transform the non-convex optimization problem into a convex
one by applying constraint relaxation and nonlinear fractional
programming. We propose a centralized interference mitigation
algorithm to improve the QoS performance. The centralized
algorithm consists of an interference cancellation technique and
a transmission power constraint optimization technique, both of
which are carried out in the centralized BBU pool. The achievable
performance of the proposed algorithm is analyzed through sim-
ulations, and the implementation issues and complexity analysis
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I. INTRODUCTION

W ITH the explosive growth of mobile Internet, it is
predicted that mobile data traffic will grow more than

1000 times from 2010 to 2020, and almost 50 billion devices
will be connected by then [1], [2]. Internet of things (IoT)
that enables ubiquitous information acquisition and exchange
among devices without external human intervention is a key
enabler to facilitate the evolution of cellular network from long
term evolution-advanced (LTE-A) systems to future 5G [?],
[?].

Among various types of communication technologies exist-
ing within the IoT, device-to-device (D2D) communications
allow user equipments (UEs) that are in the proximity of
each other to exchange information over a direct link, and
can be operated as an underlay to LTE-A networks by reusing
the scarce spectrum resources [3]. D2D communications also
enable the cooperation between UEs and machine-type devices
(MTDs) [4], and function as a machine-type gateway (MTG)
through data aggregation and relaying to reduce the number of
connections between MTDs and base stations (BSs) [5]. The
applications of D2D communications underlaying LTE-A net-
works were studied in [6], [7], and up-to-date standardization
activities in 3rd generation partnership project (3GPP) were
introduced in [8]. Furthermore, cloud radio access network (C-
RAN) based LTE-A systems are proposed to facilitate cross-
cell cooperations and improve spectrum efficiency (SE) by
employing densely deployed remote radio heads (RRHs) that
are powered by cloud computing to cooperatively support UEs
[9], [10]. As a result, D2D communications underlaying C-
RAN will bring numerous benefits [11], and provide flexible
control through centralized network coordination and advanced
resource allocation techniques [12]. First of all, unlike other
IoT based applications, D2D communications require much
higher throughput and QoS. Thus, better performance can be
achieved for D2D communications with the assistance and sup-
port of the densely deployed RRHs and centralized baseband
unit (BBU) pool because the computational performance of
UEs is far lower than that of C-RAN. Second, C-RAN has
the disadvantages of severe intercell interference and fronthaul
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capacity constraints. The integration offers advantages of shift-
ing the data transmission load from a big cloud to UEs and
reducing the latency and volume of data signaling between
the BBU pool and end UEs. Last but not least, it shed lights
on the convergence of C-RAN based LTE-A networks with
D2D underlay that enables the coexistence of different types of
communication protocols, services, and devices under a unified
frame.

However, the integration of D2D with C-RAN based LTE-A
networks poses many new challenges in the resource allocation
design due to the dense deployment of RRHs and intense
spectrum reuse. Both the energy efficiency (EE) and quality
of service (QoS) are challenged by the strong intracell and
intercell interference. For example, UEs near the edge of a
cell have to increase their transmission power to meet the QoS
requirement. As a result, UEs with limited battery capacity
will quickly run out of battery if without careful energy
optimization and interference management design.

In this paper, we propose an energy-efficient resource allo-
cation algorithm to optimize EE while guaranteeing the QoS
provisioning through joint channel selection and power alloca-
tion design. The proposed algorithm has a hybrid structure that
exploits the hybrid architecture of C-RAN: distributed RRHs
and centralized BBU pool. Firstly, the available resources
are scheduled by each UE in an energy-efficient way. Since
UEs are only interested in improving their own performance,
we propose a game-theoretic approach which models the
distributed resource allocation problem as a noncooperative
game. Each player optimizes its EE individually with the
aid of distributed RRHs under the transmission power and
QoS constraints. We transform the non-convex optimization
problem into a convex one by applying constraint relaxation
and nonlinear fractional programming. We prove that a Nash
equilibrium exists in the noncooperative game, and the opti-
mum solution obtained by the proposed algorithm is exactly
the Nash equilibrium. Secondly, we propose a centralized
interference mitigation algorithm to improve the QoS perfor-
mance. The strong intercell interference caused by cellular
UEs is canceled by exchanging decoded dominant interferer
data in the centralized BBU pool and reconstructing inter-
fering signals. The interference caused by D2D UEs is also
mitigated by dynamically optimizing maximum transmission
power constraints in the BBU pool. Finally, the achievable
performance of the proposed algorithm and the impacts of
channel estimation errors are analyzed through simulations,
and the implementation and complexity issues are discussed
in details.

The structure of this paper is organized as follows: Section II
describes the related works. Section III introduces the system
model of D2D communications underlaying C-RAN. Section
IV introduces the problem formulation. Section V introduces
the proposed hybrid energy-efficient resource allocation algo-
rithm. Section VI introduces the simulation parameters, results
and analyses. Section VII gives the conclusion.

II. RELATED WORKS

Game theory provides a tool set for analyzing optimization
problems with multiple conflicting objective functions and has

been widely used for resource allocation in D2D communica-
tions. A Stackelberg game based resource allocation scheme
was proposed in [13], in which the Base Station (BS) and D2D
UEs were modeled as the game leader and followers respec-
tively. Another Stackelberg game based scheme was proposed
in [14], in which cellular UEs rather than the BS were modeled
as game leaders. A two-stage resource allocation scheme which
employs both the centralized and distributed approaches was
proposed in [15]. A three-stage resource allocation scheme
which combines admission control, power allocation, and link
selection was proposed in [16]. A reverse Iterative Combina-
torial Auction (ICA) based resource allocation scheme was
proposed in [17] for optimizing the system sum rate. The
resource allocation problems in relay-aided scenarios were
studied in [18], [19], and in infeasible systems where all users
can not be supported simultaneously were studied in [20]. The
throughput performance of the D2D underlay communications
with different resource sharing modes was evaluated in [21].
SE enhancement of D2D communications for wireless video
networks was studied in [22]. Resource allocation for D2D
communications underlaying cellular networks powered by re-
newable energy sources was studied in [23]. A comprehensive
overview and discussion of resource management for D2D
underlay communications is provided in [24].

The above mentioned works mainly focus on how to max-
imize SE and ignore the energy consumption of UEs. A few
works have addressed the energy-efficient resource allocation
problem in the conventional single-cell scenario. Centralized
resource allocation algorithms for optimizing EE in the device-
to-multi-device (D2MD) or D2D-cluster scenarios were stud-
ied in [25] and [26] respectively. An auction-based energy-
efficient resource allocation algorithm was proposed in [27],
and auction-based resource allocation scheme and D2D coop-
erative relays were proposed to improve battery lifetime in [28]
and [29] respectively. Fractional frequency reuse (FFR) based
two-stage resource allocation algorithm was proposed in [30].
An iterative resource allocation scheme was proposed in [31],
and the EE-SE tradeoff was studied in [32]. Coalition game
based resource allocation algorithms were proposed to jointly
optimize the model selection and resource scheduling in [33],
[34].

However, the above works lack the detailed modeling of
complex interference scenarios in densely deployed multi-
cellular networks, and are not designed based on the novel
architecture of C-RAN. Furthermore, they focus either on
centralized or distributed approaches, and have not taken
advantages of both of them. The conventional centralized
resource allocation problem is not convex due to the coupling
of the resource allocation strategies. As a result, the centralized
problem is NP-hard, and it is intractable to find the global opti-
mum solution of the overall network. In addition, the computa-
tional complexity and signaling overhead increase significantly
with the number of UEs, and the optimum solution needs to
be delivered from the BBU pool to UEs within the channel
coherence time. In comparison, the proposed hybrid scheme
provides a flexible tradeoff between performance improve-
ments and implementation complexity, since the centralized
interference cancellation and mitigation algorithm is invoked
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only if the intercell interference exceeds a certain threshold. It
also enables seamless coexistence with the heterogeneous ar-
chitecture of D2D communications underlaying C-RAN based
LTE-A networks. Better performance can be achieved for D2D
communications with the assistance and support of the densely
deployed RRHs and centralized BBU pool. At the same time,
the data load can be shifted from constrained fronthaul links
to UEs to further reduce transmission latency and signaling
overhead.

III. SYSTEM MODEL

The general architecture of D2D communications underlay-
ing C-RAN is shown in Fig. 1, which consists of the following
main components: (i) a BBU pool, (ii) RRHs, (iii) fronthaul
links, (iv) cellular UEs, and (v) D2D UEs. We focus on the
uplink resource sharing scenario where D2D UEs are allowed
to reuse the uplink spectrum resources allocated to cellular
UEs. RRHs are responsible for forwarding baseband signals
from cellular UEs to the BBU pool for further processing in the
uplink [1]. In general, RRHs are configured with simple front
radio frequency (RF) and signal processing functionalities such
as RF amplification, up/down conversion, filtering, A/D and
D/A conversion, etc. The BBU pool consists of BBUs which
can be implemented in the form of virtual base stations (VBS)
to enable network function virtualization (NFV) [35]. The
BBU pool is configured with powerful centralized processors
to process baseband signals and optimize resource allocation.
The fronthaul links connect the RRHs with the BBU pool and
require low latency. The fronthaul links can be realized by
different technologies [1].

Fig. 2 shows an example of the complex interference envi-
ronment of two active cells. There are two cellular UEs (UE1

and UE2), and two D2D pairs (UE3 and UE4, and UE5 and
UE6 respectively). Since each cellular UE is allocated with an
orthogonal link (e.g., an orthogonal resource block in LTE-A),
i.e., there is no intracell interference among cellular UEs in
the same cell, but there is intercell interference among cellular
UEs located in adjacent cells. Block fading model where the
channel gain is constant during a slot is adopted [36]. As a
result, the RRH1 suffers from the intercell interference caused
by the cellular UE in the adjacent cell (UE2) as shown in Fig.
2(a), the intracell interference caused by the D2D transmitter
in the same cell (UE3) as shown in Fig. 2(b), and the intercell
interference caused by the D2D transmitter in the adjacent cell
(UE5) as shown in Fig. 2(c). D2D receivers (UE4 and UE6)
suffer from the interference caused by cellular UEs (UE1 and
UE2) as shown in Fig. 2(b), (c), and D2D transmitters that
reuse the same channel (UE5 or UE3 respectively) as shown in
Fig. 2(d). As the density of active RRHs increases, it will cause
severe interference that leads to inefficient EE and degraded
QoS.

For a more general case, we consider a total of M (M ≥ 2)
adjacent cells. In the m-th cell (m = 1, · · · ,M), the set of UEs
is denoted as Sm = {Nm,Km}, where Nm and Km denote
the sets of D2D UEs and cellular UEs respectively. The total
numbers of D2D links and cellular links are denoted as Nm
and Km respectively. The achievable SE (defined as bits/s/Hz)

Fronthaul Network

BBU BBU BBU BBU

PHY_Baseband

MAC

Network

PHY_RF

RRH

RRH

RRH

RRH RRH

RRH

BBU Pool

Fig. 1. The architecture of D2D communications underlaying C-RAN.

of the i-th D2D pair in the m-th cell (i ∈ Nm,m ∈ M) on
the k-th channel (k ∈ Km) is given by

Cdim =
∑
k∈Km

log2

(
1+

skimp
k
im
gkim

Idim,1+ Idim,2+ Icim,1+ Icim,2+N0

)
,

(1)

where pkim is the transmission power of the i-th D2D trans-
mitter on the k-th channel in the m-th cell. gkim is the desired
D2D signal channel gain. skim is the binary channel selection
indicator, i.e., skim = 1 means that the k-th channel is reused
by the i-th D2D UE of the m-th cell, and otherwise, skim = 0.
N0 is the noise power.
Idim,1 and Idim,2 denote the intracell interference and intercell

interference caused by D2D UEs, and are given by

Idim,1 =
∑

jm∈Nm\{im}

skjmp
k
jmg

k
jm,im , (2)

Idim,2 =
∑

m′∈M\{m}

∑
i
m
′∈N

m
′

ski
m
′ p
k
i
m
′ g
k
i
m
′ ,im , (3)

where skjmp
k
jm
gkjm,im is the intracell interference from the j-th

D2D interferer to the i-th D2D receiver on the k-th channel,
i.e., j 6= i. ski

m
′ p
k
i
m
′ g
k
i
m
′ ,im

is the intercell interference on the

k-th channel from the i-th D2D interferer in the m
′
-th cell to

the i-th D2D receiver in the m-th cell, i.e., m
′

= 1, 2, · · · ,M,
m
′ 6= m.
Icim,1 and Icim,2 denote the intracell interference and intercell

interference caused by cellular UEs, and are given by

Icim,1 = pckmg
k
km,im , (4)

Icim,2 =
∑

m′∈M\{m}

pck
m
′ g
k
k
m
′ ,im , (5)

where pckmg
k
km,im

denotes the intracell interference from the
k-th cellular interferer to the i-th D2D receiver. pck

m
′ g
k
k
m
′ ,im
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UE2
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RRH2
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Fig. 2. An example of D2D communications underlaying C-RAN with two
cells: (a). intercell interference among cellular UEs; (b). intracell interference
among cellular and D2D UEs; (c). intercell interference among cellular and
D2D UEs; (d). intercell interference among D2D UEs.

denotes the intercell interference from the k-th cellular inter-
ferer in the m

′
-th cell to the i-th D2D receiver in the m-th

cell.
Similarly, the SE of the k-th cellular UE in the m-th cell is

given by

Cckm = log2

(
1 +

pckmg
c
km

Idkm,1 + Idkm,2 + Ickm,2 +N0

)
, (6)

where pckmg
c
km

is the desired signal received at the associated
RRH. Idkm,1 denotes the intracell interference caused by D2D
UEs in the same cell, and is given by

Idkm,1 =
∑
i∈Nm

skimp
k
img

c
im,km , (7)

where skimp
k
im
gcim,km is the intracell interference from the i-th

D2D interferer on the k-th channel in the m-th cell.
Idkm,2 denotes the intercell interference caused by D2D UEs

in adjacent cells, and is given by

Idkm,2 =
∑

m′∈M\{m}

∑
i
m
′∈N

m
′

ski
m
′ p
k
i
m
′ g
c
j
m
′ ,km , (8)

where ski
m
′ p
k
i
m
′ g
c
j
m
′ ,km

is the intercell interference on the k-th

channel from the i-th D2D interferer in the m
′
-th cell.

Ickm,2 denotes the intercell interference caused by cellular
UEs in adjacent cells, and is given by

Ickm,2 =
∑

m′∈M\{m}

pck
m
′ g
c
k
m
′ ,km , (9)

where pck
m
′ g
c
k
m
′ ,km

is the intercell interference from the k-th

cellular interferer in the m
′
-th cell.

TABLE I. PARAMETER NOTATIONS.

Parameter Description
M the set of cells
Km the set of cellular UEs in the m-th cell
Nm the set of D2D pairs in the m-th cell
im, km the indexes of the i-th D2D pair, and the k-th

cellular UE in the m-th cell, respectively
Cd

im
SE of the i-th D2D pair in the m-th cell

Cc
km

SE of the k-th cellular UE in the m-th cell
Ed

im
EE of the i-th D2D pair in the m-th cell

Ec
km

EE of the k-th cellular UE in the m-th cell
pdim,t, p

c
km,t total power consumption

{sdim ,p
d
im
} the channel selection and transmission power

strategy set of the i-th D2D pair in the m-th cell
{sd∗im ,p

d∗
im
,pc∗

km
} the optimum resource allocation strategy set

pc
km

the transmission power strategy set of the
k-th cellular UE in the m-th cell

skim the i-th D2D pair’s channel selection indicator
for the k-th channel

pkim the i-th D2D pair’s transmission power
on the k-th channel

pckm
the k-th cellular UE’s transmission
power on the k-th channel

pdim,max, p
c
km,max maximum transmission power constraints

pkim,max, w
k
im,max the maximum transmission power constraint

on the k-th channel and its corresponding weight
pcir UE’s circuit power consumption
η power amplifier efficiency
Cc

km,min QoS requirement
qd∗im , q

c∗
km

maximum achievable EE

The total power consumptions are given by

pdim,t =
∑
k∈Km

1

η
skimp

k
im + 2pcir, (10)

pckm,t =
1

η
pckm + pcir, (11)

where pdim,t is the total power consumption of the i-th D2D
pair, which is composed of the transmission power over all of
the Km channels, i.e.,

∑
k∈Km

1
η s
k
im
pkim , and the circuit power

of both the D2D transmitter and receiver, i.e., 2pcir. The circuit
power of any UE is assumed as the same and is denoted as pcir.
η is the power amplifier (PA) efficiency, i.e., 0 < η < 1. pckm,t
is the total power consumption of the k-th cellular UE, which is
composed of the transmission power (1/η)pckm and the circuit
power only at the transmitter side. The power consumption of
RRHs is not taken into consideration since RRHs are usually
powered by external grid power.

To improve the clarity, notations of key parameters are
summarized in Table I.

IV. PROBLEM FORMULATION

In the distributed resource allocation scenario, UEs are
assumed as rational and selfish [37], i.e., each UE is interested
in maximizing its individual utility through resource allocation.
Therefore, the distributed power allocation problem can be
modeled as a noncooperative game G. The game G can be
described as the triplet G =

[
{S}, {A}, {U}

]
, wherein S =

{S1,S2, · · · ,SM} is the set of active UEs participating in the



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2015 5

game, A = {A1,A2, · · · ,AM} is the set of possible actions
(strategies) that UEs can take, and U = {U1,U2, · · · ,UM} is
the set of UEs’ utilities. As an example, if Am = {pmax}, then
each UE in the m-th cell is allowed to transmit power from
the interval [0, pmax], with pmax as the maximum allowed
transmission power.

To be more general, the transmission power and channel
selection strategy set of the i-th D2D transmitter in the m-th
cell is denoted as {sdim ,p

d
im
} = {skim , p

k
im
| skim = {0, 1}, 0 ≤∑

k∈Km
skimp

k
im
≤ pdim,max}, ∀i ∈ Nm,∀k ∈ Km,∀m ∈ M.

The transmission power strategy set of k-th cellular UE in the
m-th cell is denoted as pckm = {pckm | 0 ≤ pckm ≤ pckm,max},
∀k ∈ Km,∀m ∈ M. pdim,max and pckm,max are the max-
imum transmission power constraints. The strategy sets of
the other D2D transmitters and the other cellular UEs are
denoted as {sd−im ,p

d
−im} = {skjm , p

k
jm
| skjm = {0, 1}, 0 ≤∑

k∈Km
skjmp

k
jm
≤ pdjm,max, jm 6= im}, and pc−km = {pck

m
′ |

0 ≤ pck
m
′ ≤ pck

m
′ ,max,m

′ 6= m} respectively, ∀i ∈ Nm,
∀k ∈ Km, ∀m ∈M.

The utility function is defined as the EE (bits/J/Hz), which is
the ratio of transmission rate to power consumption [38]. The
EE of the i-th D2D pair (including both the D2D transmitter
and receiver) in the m-th cell is defined as

Edim(sdim ,p
d
im) =

Cdim(sdim ,p
d
im

)

pdim,t(s
d
im
,pdim)

. (12)

The corresponding EE optimization problem is formulated as

max
(sdim ,p

d
im

)
Edim(sdim ,p

d
im)

s.t. C1 : 0 ≤
∑
k∈Km

skimp
k
im ≤ p

d
im,max,

C2 : skim = {0, 1},∀k ∈ Km. (13)

C1 is the maximum transmission power constraint, i.e., the
total transmission power allocated over all of the Km chan-
nels should be no greater than pdim,max. C2 is the Boolean
constraint of channel selection. Since D2D UEs communicate
in a cognitive way, we have not imposed any QoS requirement
for D2D UEs.

Similarly, the EE of the k-th cellular UE in the m-th cell,
i.e., Eckm , is defined as

Eckm(pckm) =
Cckm(pckm)

pckm,t(p
c
km

)
. (14)

The corresponding EE maximization problem is formulated as

max
(pc

km
)

Eckm(pckm)

s.t. C3 : Cckm(pckm) ≤ Cckm,min,
C4 : 0 ≤ pckm ≤ p

c
km,max. (15)

The constraint C3 specifies the QoS requirement in terms of
minimum transmission rate, and the constraint C4 specifies the
transmission power constraint.

There are two challenges when solving the above optimiza-
tion problems. Firstly, the problems are non-convex due to the

fractional form and Boolean variables, and are computationally
intractable. Secondly, the cellular UE’s transmission rate de-
fined in (6) depends on both intercell and intracell interference.
If the combined interference is strong, the QoS constraint C3

cannot be guaranteed and the problem (15) becomes infeasible.

V. THE ENERGY-EFFICIENT RESOURCE ALLOCATION
ALGORITHM

In this section, we propose an energy-efficient algorithm to
address the above mentioned challenges. Firstly, we introduce a
transformation to handle the non-convex problem via nonlinear
fractional programming and constraint relaxation. Secondly,
we propose an iterative algorithm (known as the Dinkelbach
method) to solve the transformed problem. Thirdly, we analyze
the Nash equilibrium of the noncooperative game, and its rela-
tionships with the optimum solution. Fourthly, we introduce a
centralized interference mitigation scheme to improve the QoS
performance. Finally, we discuss the implementation issues
and provide complexity analysis.

A. The Objective Function Transformation
We start with the distributed resource allocation problem.

Without loss of generality, the maximum EE of the i-th D2D
pair in the m-th cell, qd∗im , is defined as

qd∗im = max
(sdim ,p

d
im

)
Edim(sdim ,p

d
im) =

Cdim(sd∗im ,p
d∗
im

)

pdim,t(s
d∗
im
,pd∗im)

, (16)

where sd∗im and pd∗im are the optimum channel selection and
power allocation strategies, respectively. The following theo-
rem can be easily proved by following a similar approach as
in [39]:

Theorem 1: qd∗im is achieved if and only if

max
(sdim ,p

d
im

)
Cdim(sdim ,p

d
im)− qd∗imp

d
im,t(s

d
im ,p

d
im)

=Cdim(sd∗im ,p
d∗
im)− qd∗imp

d
im,t(s

d∗
im ,p

d∗
im) = 0. (17)

Theorem 1 shows that the transformed problem with an
objective function in subtractive form is equivalent to the
non-convex problem with an objective function in fractional
form. Therefore, we can focus on the equivalent transformed
objective function, and the original problem (13) can be
rewritten as

max
(sdim ,p

d
im

)
Cdim(sdim ,p

d
im)− qd∗imp

d
im,t(s

d
im ,p

d
im),

s.t. C1, C2. (18)

The new problem can be viewed as a weighted sum of SE
and power consumption, where the parameter qd∗im acts as the
“price” (negative weight) of the power consumption.

Although the objective function is now transformed into
a subtractive form which is easier to handle, the equivalent
problem (18) is still a mixed combinatorial and convex opti-
mization problem. An exhaustive search is needed to obtain
the optimum solution in every time instant, which leads to a
complexity of O(NKm

m ). In order to strike a balance between
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tractability and optimality, we can relax skim in constraint C2

from a Boolean value to a real value between zero and one
[40], i.e., 0 ≤ skim ≤ 1. Then, skim can be interpreted as a
time sharing factor for Nm users to utilize the k-th channel.
The duality gap of the relaxation becomes negligible as the
number of channels becomes sufficiently large [41]. Under this
assumption, we can replace skimp

k
im

by a new variable p̃kim .
Similarly, defining qc∗km as the maximum achievable EE of

the k-th cellular UE in the m-th cell, the original problem (15)
can be rewritten as

max
(pc

km
)
. Cckm(pckm)− qc∗kmp

c
km,t(p

c
km),

s.t. C3, C4. (19)

However, the maximum EE qd∗im and qc∗km are still unknown.
In the next subsection, we introduce how to find qd∗im or qc∗km
by proposing an iterative algorithm.

B. The Iterative Resource Allocation Algorithm

In this subsection, an iterative algorithm is proposed based
on Dinkelbach’s method [39] to find qd∗im or qc∗km for solving
the transformed problems. The initial values of qdim or qckm can
be set as a small positive number near to zero, e.g., 10−4. At
each iteration, the following transformed problems are solved

max
(p̃d

im
)

Cdim(p̃dim)− qdimp
d
im,t(p̃

d
im),

s.t. C
′

1 : 0 ≤
∑
k∈Km

p̃kim ≤ p
d
im,max,

C
′

2 : 0 ≤ skim ≤ 1. (20)

max
(pc

km
)
. Cckm(pckm)− qckmp

c
km,t(p

c
km),

s.t. C3, C4. (21)

Since both (20) and (21) are convex, Karush-Kuhn-Tucker
(KKT) conditions can be used to find the optimum strategy
[42]. Taking (20) as an example, the associated Lagrangian is
given by

LEE(p̃dim , αim) = Cdim(p̃dim)

−qdim p̃
d
im,t(p̃

d
im)− αim

( ∑
k∈Km

p̃kim − p
d
im,max

)
, (22)

where αim is the Lagrange multiplier associated with C
′

1,
and C

′

2 is absorbed into KKT conditions. The equivalent dual
problem can be decomposed as [42]

min
(αim ≥ 0)

. max
(p̃dim)

. LEE(p̃dim , αim). (23)

The inner maximization problem solves the resource allocation
problem and the outer minimization problem solves the master
dual problem.

The optimal value p̂kim corresponding to qdim is given by

p̂kim =

[
η log2 e

qdim + ηαim
−
Idim,1 + Idim,2 + Icim,1 + Icim,2 +N0

gkim

]+

(24)
where [x]+ = max{0, x}. Equation (24) indicates a water-
filling algorithm, where the water level is determined by the
cost of allocating resource, i.e., αim , as well as the current
cost of total power consumption given by qdim . For solving
the minimization problem, the Lagrange multipliers can be
updated by using the gradient method [43] as

αim(τ + 1)

=

[
αim(τ) + µim,α(τ)

( ∑
k∈Km

p̂kim(τ)− pdim,max

)]+

,

(25)

where τ is the iteration index, µim,α is the positive step size.
We have adopted a constant step size to strike a balance be-
tween optimality and convergence speed. Then, qdim is updated
for the next iteration as

qdim =
Cdim(p̂dim)

pdim,t(p̂
d
im

)
. (26)

The iteration process will continue until Cdim(p̂dim) −
qdimp

d
im,t

(p̂dim) ≤ ∆d
im

, or the maximum iteration number
is reached. ∆d

im
is the maximum tolerance. Then we set

p̃d∗im = p̂dim , and calculate qd∗im as (16). The optimization
problem (21) can be solved in a similar way, which is omitted
here due to space limitation.

On the other hand, in order to obtain the optimum channel
selection strategy, we can take the derivative of the suboptimal
problem w.r.t. skim , which yields ∂LEE

∂skim
. Thus, the k-th channel

is selected if ∂LEE

∂skim
> 0, which provides the i-th D2D pair with

a positive marginal benefit.
The convergence of the algorithm to the maximum EE is

guaranteed by the following theorem:
Theorem 2: The iterative optimization algorithm converges

to the maximum EE which is unique if the transformed
problems (20) and (21) are feasible [31], [39], [43].

C. Nash Equilibrium Analysis

Definition 1. A Nash equilibrium is a set of strategies that
none UE (neither D2D UE nor cellular UE) can unilaterally
improve its EE performance by choosing a different strategy
set.

Theorem 3: The strategy set {sd∗im ,p
d∗
im
, sc∗km | ∀i ∈

Nm,∀k ∈ Km,∀m ∈M}, obtained by the proposed algorithm
constitutes a Nash equilibrium, which exists but is not unique.

Proof: The proof of Theorem 3 is given in Appendix A.
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D. The Centralized Interference Mitigation Algorithm

From Theorem 2, we know that if the QoS constraint C3 is
not satisfied, (21) becomes infeasible, and the convergence of
the proposed iterative algorithm cannot be guaranteed. To mea-
sure the probability of infeasibility, i.e., Pr{Cc∗km < Cckm,min},
we adopt infeasibility ratio as a key performance measurement
for D2D communications [11]. Infeasibility ratio and can be
quite high if RRHs are densely deployed. In this subsection,
we propose an interference mitigation algorithm to reduce
the infeasibility ratio by exploiting the powerful computing
capabilities of the centralized BBU pool.

The functional block diagram of the proposed algorithm is
shown in Fig. 3. In the first stage, the interference caused by
cellular UEs is canceled by interference regeneration based
techniques such as network interference cancellation engine
(NICE) [44]. We target the intercell interference from cellular
UEs firstly because the transmission power of cellular UEs is
usually much higher than D2D UEs due to longer transmission
distances between cellular UEs and RRHs. In particularly, cel-
lular UEs near the cell edge may cause significant interference.

NICE opportunistically performs interference cancellation
by exchanging decoded interferer’s data within the centralized
BBU pool. The suffering BBU performs channel estimation to
identify dominant interferers, and requests the decoded data
associated with those dominant interferers from corresponding
BBUs. Since the signal processing ability is limited, an inter-
fering signal is likely to be selected for cancellation only if its
signal strength is large enough. Let Φckm represent the set of
dominant interferer UEs and rckm represent the received signal
on the k-th channel in the m-th cell. The interfering signal
yc
m′

that is reconstructed for all m
′ ∈ Φckm , is subtracted form

the overall received signal as

r̂ckm = rckm −
∑

m′∈Φc
km

yc
m′
. (27)

This results in a new post-cancellation of the received signal
vector with reduced interference level. The detailed mathemat-
ical derivations can be found in [44].

In the second stage, both the intracell interference and
intercell interference caused by D2D UEs are suppressed by
dynamically adjusting the maximum tolerable transmission
power for each D2D pair. For example, the optimization of
pkim,max is performed in the centralized BBU pool, and is
informed to the i-th D2D transmitter by distributed RRHs.
Then the D2D transmitter is forced to transmit at a lower power
level than pkim,max that should not cause too much interference
to cellular UEs in adjacent cells.

The constraint C
′

1 is replaced by the following Km con-
straints:

Cim,1 ∼ Cim,Km
: 0 ≤ p̃kim ≤ p

k
im,max,∀k ∈ Km. (28)

In addition, pkim,max should also satisfy

Cim,Km+1 :
∑
k∈Km

pkim,max ≤ p
d
im,max. (29)

Equalization Decoding

Dominant Cellular 

Interferer Identification 

Dominant Interferer 

Reconstruction

Interference

Cancellation

Centralized

BBU Pool 

Dominant D2D 

Interferer Identification 

Interference Threshold 

Calculation

Power Constraint 

Optimization

Cellular UE Channel 

Estimation

Demodulation

Signal from RRHs

Data Request

Channel Estimates Request

To distributed RRHs

Invoke

interference

mitigation

If necessary 

Fig. 3. Block diagram of centralized interference mitigation schemes

For a given Cckm,min in C3, the interference threshold for the
k-th cellular UE in the m-th cell is calculated as

Idkm,1 + Idkm,2 ≤
pckmg

c
km

2C
c
km,min − 1

−N0 = Ickm,th. (30)

The above interference threshold can be rewritten as

Ckm,1 :
∑
i∈Nm

pkim,maxgim,km

+
∑

m′∈M\{m}

∑
j
m
′∈N

m
′

pkj
m
′ ,maxgjm′ ,km ≤ I

c
km,th. (31)

Define pdmax = {pkim,max |
∑
k∈Km

pkim,max ≤ pdim,max},
∀m ∈ M,∀k ∈ Km,∀i ∈ Nm, which can be obtained by
solving the following problem

max
pd

max

∏
m∈M

∏
i∈Nm

∏
k∈Km

(
pkim,max
wkim

)
(32)

s.t. Cim,Km+1, Ckm,1,∀m ∈M,∀k ∈ Km,∀i ∈ Nm.

wkim is the weight of pkim,max. If wkim = 1,∀m ∈ M,∀k ∈
Km,∀i ∈ Nm, the RRH allocates resources based on the
instantaneous interfering channel gains. D2D UEs that would
cause stronger interference are always allocated with less
resources, which may be unfair in the long run. Alternatively,
wkim can be designed to take fairness into consideration such
as the proportional fair scheduling [36].

It is noted that if the D2D interference mitigation scheme
is used, the constraint C

′

1 should be replaced by Cim,1 ∼
Cim,Km

, which are even tighter constraints. The optimal value
p̂kim is similar to (24) by replacing αim with βkim , which is
the Lagrange multiplier associated with Cim,k. Then, βkim is
updated as

βkim(τ + 1) =
[
βkim(τ) + µkim,β(τ)

(
p̂kim(τ)− pkim,max

)]+
(33)

The impacts of using tighter constraints Cim,1 ∼ Cim,Km

instead of C
′

1 are analyzed through simulation results.
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E. Implementation Issues and Complexity Analysis

When implementing the algorithm, channel estimation is
particularly important since the efficiency of both interfer-
ence mitigation and resource allocation depends on channel
estimation accuracy. In conventional cellular systems, channel
estimation is performed at the base station (BS) side, and the
BS has to be aware of the reference symbols assigned by
neighboring BSs. In addition, the decoded data have to be
firstly decoded by interfering BSs and then transmitted back
to the desired BS through backhaul links. The cooperation
among cells causes frequent signaling exchange, and may not
perform well due to backhaul delay, synchronization errors,
etc. However, in the novel C-RAN architecture, information
exchange and optimization can be performed in the centralized
BBU pool, which facilitates the implementation of the pro-
posed algorithm. In this paper, we assume that precise channel
estimates are available. The impacts of channel estimation
errors are discussed through simulation results.

In the distributed resource allocation algorithm, each D2D
pair only needs to estimate the received interference rather
than knowing the specific power allocation or channel selection
strategies of interferers. The reason is that the sufficient infor-
mation of strategies are contained in the form of interference.
Cellular UEs also need to know the knowledge of interference,
which can be estimated firstly by centralized powerful BBUs
and then fed back to cellular UEs through distributed RRHs.

The iterative algorithm produces an increasing sequence of
qdim or qckm values, which converge to the optimum value
qd∗im or qc∗km at a super-linear convergence rate [43]. Taking
(20) as an example, the complexity is dominated by the
calculations given by (24), which leads to a total complexity
O(KmL

d
im,1

Ldim,2), where Ldim,1 and Ldim,2 are the numbers
of iterations required for reaching convergence and solving the
dual problem respectively.

The overhead caused by the interference mitigation algo-
rithm consists of two parts, i.e., the regeneration of intercell
interference caused by cellular UEs, and the optimization
of the maximum transmission power cap for D2D pairs. In
the first part, the interference cancellation algorithm is, in
essence, a “multi-cell successive interference cancellation”
(MC-SIC) technique with a low computation complexity that
is of the same order as conventional SIC receivers. The
interference cancellation algorithm is invoked only if the
intercell interference exceeds a certain threshold, and only
interference with large enough signal strength will be selected
for signal reconstruction. According to [44], the overhead
factor is only 1.9 when there are six dominant interference
sources, which causes almost two orders of magnitude less
overheads than multi-antenna based schemes. In the second
part, the optimization problem defined in (32) is a geometric
programming problem, and can be transformed to a convex
problem by a change of variables and a transformation of the
objective and constraint functions. It involves solving a convex
problem with

∑
m∈MNmKm optimization parameters, and∑

m∈M (Nm +Km) linear inequality constraints, which can
be solved in polynomial time. If D2D UEs in the same
cell or clusters are allocated with the same resource, i.e.,

TABLE II. SIMULATION PARAMETERS.

Parameter Value
Cell radius 300 m
Intercell distance 500 m
Max D2D transmission distance 25 m
Max Tx power pdim,max, p

c
km,max 200 mW (23 dBm)

Constant circuit power pcir 10 mW (10 dBm)
Thermal noise power N0 10

−7 W
Number of D2D pairs Nm 16
Number of cellular UEs Km 16
PA efficiency η 35%
QoS of cellular UEs Cc

km,min 0 ∼ 1 bit/s/Hz
Number of RRHs M 7

pkim,max = pkjm,max,∀m ∈ M,∀i, j ∈ Nm, i 6= j, the
number of optimization parameters and inequality constraints
are further reduced to

∑
m∈MKm and

∑
m∈M (Km + 1),

respectively. As a result, current fronthaul technologies are
indeed able to provide enough capacity to implement the
proposed interference cancellation and mitigation algorithm,
which provides an flexible tradeoff between energy efficiency
improvements and fronthaul overhead.

VI. SIMULATION RESULTS

In this section, the proposed hybrid energy-efficient algo-
rithm, labeled as “hybrid scheme”, is compared with previous
works [31], [32], which are labeled as “conventional scheme”.
The values of simulation parameters are based on [9], [27],
[28], [31], and are summarized in Table II. The maximum
transmission power of cellular UEs is the same as D2D UEs,
i.e., pckm,max = pdim,max = 200 mW (23 dBm). The channel
gain between the transmitter i and the receiver j is calculated
as d−2

i,j |hi,j |2, where di,j is the distance between the transmitter
i and the receiver j, hi,j is the complex Gaussian channel
coefficient that satisfies hi,j ∼ CN (0, 1). The simulation
results are averaged through a total number of 103 simulations.
The locations of cellular UEs and D2D UEs are generated
randomly in each simulation.

Fig. 4 shows the infeasibility ratio corresponding to various
QoS requirements. The minimum QoS requirement of cellular
UEs Cckm,min is increased from 0 to 1 bits/s/Hz with a step
of 0.1, and the corresponding infeasibility ratio is obtained
through simulations. We observe that as the QoS requirement
increases, the infeasibility ratio of the conventional algorithm
increases dramatically due to the severe interference. In com-
parison, the proposed hybrid scheme achieves a nearly “zero”
infeasibility ratio.

Fig. 5 shows the average channel selection error rate versus
the normalized mean square error (NMSE) of channel esti-
mates. A channel selection error is defined that the channel
should have been selected but was not, or otherwise. The total
number of errors is divided by the total number of selections,
and averaged over 105 simulations. NMSE is defined as [45]

NMSE =
1

N

N∑
n=1

∣∣∣ ĥi,j − hi,j
hi,j

∣∣∣2, (34)
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where ĥi,j is the estimate of hi,j . As shown in Fig. 5, the
proposed algorithm is robust to small estimation errors, e.g.,
it achieves an average channel selection error rate of 10−2

when NMSE = −14 dB. As the NMSE increases, the average
channel selection error rate continually increases to 0.5.

Fig. 6 and Fig. 7 show the average EE of cellular UEs
and D2D UEs corresponding to the number of game iterations
respectively. We assume that both cellular and D2D UEs are
forced to stop transmission and reschedule resource if the QoS
requirement cannot be satisfied due to interference. In this
way, we have taken infeasible scenarios into considerations
and avoided only using good channel conditions of feasi-
ble scenarios for comparison. Fig. 6 shows that the hybrid
scheme improves the EE performance by 91% and 300%
for Cckm,min = 0.2 and Cckm,min = 0.7 respectively. The
improvement continues to increase as the QoS requirement
increases. The reason is that as the QoS requirement increases,
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Fig. 6. The average energy efficiency of cellular UEs corresponding to the
number of game iterations (Nm = Km = 16, m = 1, · · · , 7, Cc

km,min =
0.2, 0.7 bits/s/Hz).
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the infeasibility ratio also increases and both D2D and cellular
UEs have to wait a much longer time for rescheduling resource
allocation.

Fig. 7 shows an amazing result that D2D UEs can also ben-
efit from interference mitigation. The hybrid scheme improves
the EE performance by 27% and 102% for Cckm,min = 0.2
and Cckm,min = 0.7 respectively. The reasons that D2D UEs
can also improve EE performance even with more strict trans-
mission power constraints are two folds: first, the constraint
reduces the interference caused to cellular UEs and thus
requires less transmission power from cellular UEs. Since the
transmission power of cellular UEs is usually much higher
than D2D UEs due to longer transmission distances between
cellular UEs and RRHs, this transmission power reduction in
turn reduces the severe interference to D2D UEs and improves
the EE performance; second, it reduces the infeasibility ratio
dramatically, which in turn reduces the idle time of D2D UEs
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and improves the EE performance since both cellular and D2D
UEs are forced to stop transmission and wait for resource
reallocation when the QoS requirement cannot be satisfied.
However, we also observe that the improvement for D2D UEs
is less than that of cellular UEs since cellular UE has a higher
priority and strict QoS requirements. In addition, both Fig.
6 and Fig. 7 also demonstrate that the proposed algorithm
converges efficiently to the optimum strategy within 3 ∼ 4
iterations.

VII. CONCLUSION

In this paper, we proposed a hybrid resource allocation
algorithm for D2D communications underlaying C-RAN based
LTE-A networks. The proposed algorithm consists of a central-
ized interference mitigation algorithm that is performed in the
centralized BBU pool, and a distributed joint channel selection
and power allocation algorithm that is performed by individual
UEs with the aid of distributed RRHs. Simulation results show
that the proposed scheme achieves a nearly “zero” infeasibility
ratio, and improves the EE performance by 300% for cellular
UEs and 102% for D2D UEs with a QoS requirement of 0.7
bits/s/Hz. The results validate the effectiveness of the proposed
algorithm.

APPENDIX A
PROOF OF THE THEOREM 3

According to [46], a Nash equilibrium exists if the utility
function is continuous and quasiconcave, and the set of strate-
gies is a nonempty compact convex subset of a Euclidean
space. Taking the EE objection function defined in (12) as
an example, after the relaxation of skim from a Boolean value
to a real value, the numerator Cdim defined in (1) is a concave
function of skimp

k
im

, ∀i ∈ N , k ∈ K,m ∈M. The denominator
defined in (10) is an affine function of skimp

k
im

. Therefore,
Edim is quasiconcave (Problem 4.7 in [42]). The set of the
strategies {sdim ,p

d
im
} is a nonempty compact convex subset

of the Euclidean space. Similarly, it is easily proved that the
above conditions also hold for the cellular UE. Therefore, a
Nash equilibrium exists in the noncooperative game.

If the strategy set {sd∗im ,p
d∗
im
} obtained by the iterative

algorithm is not the Nash equilibrium, the D2D transmitter
can choose the Nash equilibrium {ŝdim , p̂

d
im
} ({ŝdim , p̂

d∗
im
} 6=

{sd∗im ,p
d∗
im
}) to obtain the maximum EE qd∗im . However, by The-

orem 1 and Theorem 2, qd∗im can also be achieved by choosing
{sd∗im ,p

d∗
im
}, and qd∗im is unique. As a result, {sd∗im ,p

d∗
im
} is also

part of a Nash equilibrium. A similar proof holds for {pd∗km}.
However, despite that there may be multiple equilibria, the

maximum EE obtained by the iterative algorithm is unique.
The proof is similar to the proof of Lemma 4 in [39] of the
resubmitted manuscript, which proves that the optimum result
obtained by nonlinear fractional programming is unique. This
completes the proof.
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