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Abstract—Due to the rapid increases in both the population
of mobile social users and the demand for quality of experience
(QoE), providing mobile social users with satisfied multimedia
services has become an important issue. Media cloud has been
shown to be an efficient solution to resolve the above issue, by
allowing mobile social users connecting it through a group of
distributed brokers. However, as the resource in media cloud is
limited, how to allocate resource among media cloud, brokers and
mobile social users becomes a new challenge. Therefore, in this
paper, we propose a game theoretic resource allocation scheme
for media cloud to allocate resource to mobile social users though
brokers. Firstly, a framework of resource allocation among media
cloud, brokers and mobile social users is presented. Media cloud
can dynamically determine the price of resource and allocate
its resource to brokers. Mobile social user can select his broker
to connect media cloud by adjusting the strategy to achieve the
maximum revenue, based on the social features in the community.
Next, we formulate the interactions among media cloud, brokers
and mobile social users by a four-stage Stackelberg game. In
addition, through the backward induction method, we propose an
iterative algorithm to implement the proposed scheme and obtain
the Stackelberg equilibrium. Finally, simulation results show that
each player in the game can obtain the optimal strategy where
Stackelberg equilibrium exists stably.

Index Terms—Mobile social networks (MSNs), Media cloud,
Resource allocation, Stackelberg game.

I. INTRODUCTION

RECENTLY with the rapid advance of mobile social
networks (MSNs), more and more mobile social users

can obtain various multimedia content by having interaction
with each other [1]-[3]. Related studies [4] show that the
number of mobile social users keeps increasing and the traffic
of mobile data will be nearly tenfold in 2019, compared with
that in 2014. Especially, with the popularity of shared data
plan in the near future, mobile social users may not only obtain
and but also share more multimedia contents with others who
have social relations with them. Therefore, providing mobile
social users with efficient multimedia services becomes more
important than before.

However, to provide mobile social users with satisfied
multimedia services, there exist some new problems to be

resolved. On one hand, due to the explosive growth of volume
of multimedia and the high demand of quality of experience
(QoE), providing mobile social users with multimedia services
needs a large amount of resource. But, the local mobile devices
in mobile social users always have a limited resource such as,
capacity, bandwidth, buffer etc. New consideration needs to
be give to reduce the consumed resource. On the other hand,
multimedia content servers are remotely placed from mobile
social users. It takes time for mobile social users to obtain
the requested multimedia content, resulting in a further QoE
degradation. For example, if a mobile social user wants to
watch a movie with his mobile device, the content of movie
has to be retrieved from a remote multimedia content server
to him through a large number of routing nodes.

To resolve the above issues, media cloud has been advocated
with the following reasons [5]. Firstly, media cloud can deploy
cloud resource to process multimedia tasks. Some complicated
computations or large-sized multimedia content storage which
need extra resource can be performed at the side of media
cloud, where the required resource can be reduced for mobile
social users. Therefore, the media cloud can help mobile social
users to save their resource. Secondly, a broker [6] can be
placed between media cloud and mobile social users. As the
broker can act as a proxy which is close to mobile social
users, mobile social users can connect media cloud through the
broker for obtaining multimedia services. With the high-speed
communication links between media cloud and the broker,
mobile social users can obtain multimedia services faster than
contacting the remote multimedia content servers.

As the resource to be allocated among media cloud, brokers
and mobile social users is limited, resource allocation becomes
a very important challenge to apply media cloud to provide
mobile social users with multimedia services. However, the
conventional resource allocation schemes can not be directly
used to allocate resource among these three parties. There are
some reasons as follows. First, there exist some significant
social features in media cloud with mobile social users. For
example. mobile social users within the same community may
have the same interest and social activities [7]-[9], resulting in
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the similar demand of QoE for multimedia services. Therefore,
social features should be considered to determine the resource
allocation. Besides, mobile social users in the same community
can know the information of each other. Thus, the decision of a
mobile social user on the selection of broker may be influenced
by others. As a result, the affection and competition among
different parties should also be taken into consideration for
resource allocation.

Although some related studies have been carried out to
study resource allocation about cloud computing and mobile
networks [10] [11], few of works have studied the resource
allocation problem based on the social features in media cloud.
In addition, most of them mainly focus on behaviors of servers,
instead of three parties including media cloud, brokers and
mobile social users. Therefore, it is still a new and open
problem to design resource allocation scheme of media cloud
with mobile social users.

In this paper, based on the competitions among media
cloud, brokers, and mobile social users on cloud resource, we
propose a novel resource allocation scheme in media cloud
with mobile social users for maximizing the utilities of the
above three parties. Specifically, media cloud sells the cloud
resource to brokers to obtain revenue. The brokers employ the
cloud resource to process media tasks for mobile social users.
Mobile social users determine their own brokers to connect
to obtain cloud service according to the competition with
each other. Besides, to model the interactions among media
cloud, brokers, and mobile social users on cloud resource,
the resource allocation problem is formulated by a four-
stage Stackelberg game. In addition, an iteration algorithm
is proposed to obtain the Stackelberg equilibrium. The main
contributions of this paper can be summarized as follows.

1)A framework of resource allocation among media cloud,
brokers, and mobile social users is presented. Media cloud
can dynamically allocate its resource to mobile social users
through brokers. And mobile social user can select his broker
by adjusting his strategy to achieve the maximum revenue,
based on the social features in the community.

2)The interactions among media cloud, brokers, and mobile
social users are modeled by a four-stage Stackelberg game.
For mobile social users, an evolution game is applied to study
their behaviors. Mobile social users in the same community
can observe and affect each other’s strategy. For brokers,
a non-cooperative game model is employed to study their
interactions. Their strategies are comprised of the size of
resource to lease and the price to charge mobile social users.

3)An iteration algorithm is proposed to obtain the Stackel-
berg equilibrium of the proposed scheme. Simulation results
show that each player can obtain the optimal strategy and the
Stackelberg equilibrium exists stably.

The rest of this paper is organized as follows. The related
work is reviewed in section II. In section III, the detailed
system model is described. In section IV, we present the
problem formulation and define utility functions. In section V,
the analysis of the formulated Stackelberg game is proposed.
In section VI, we show the performance evaluation of the
proposal. Finally, in section VII, we give the conclusion.

Fig. 1. System model.

II. RELATED WORK

A. Multimedia Social Networks with Mobile Users

Recently, there has been an increasing interest in studying
models and schemes for multimedia social network with
mobile users. Chang et al. [12] presented a general architecture
of MSNs where the major components are client devices,
wireless access network, and server, to increase the social
connection and improve the quality of social service. Wu
et al. [13] designed a novel routing scheme by considering
the internal social features of nodes, including both social
feature extraction and multi-path routing. Wang et al. [14]
presented a cloud-based multicast scheme in MSNs, where the
message forwarding strategy is based on a metric iteratively
refined from the feedback control mechanism. Lu et al. [15]
designed a community based distributed set-cover algorithm
to identify the users who have the maximum influence on
information diffusion in MSNs. Li et al. [16] proposed a novel
data forwarding approach with a space-crossing community
detection method to improve the data forwarding efficiency
in MSNs. Yin et al. [29] proposed a photography model to
assist mobile users for capturing high quality photos with
mobile devices and crowd sourced social media. Wang et
al. [30] proposed a novel mobile streaming framework with
two main parts: adaptive mobile video streaming and efficient
social video sharing. We have developed an analytical model
[35] to mimic information dissemination among mobile social
users. By introducing pre-immunity and immunity elements,
the proposed model can show the change of mobile nodes’ in-
terests during information dissemination efficiently. Although
these works have studied several aspects of multimedia social
networks with mobile users, the details on resource allocation
problem with media cloud have not been given.
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B. Resource Allocation with Media Cloud

The resource allocation in media cloud have been studied
extensively. Alasaad et al. [17] proposed an algorithm for
resource reservation in media cloud based on the prediction
of demand for streaming capacity. It can maximally exploit
the discounted rates offered in the tariffs, while ensuring the
sufficient resource to be reserved. Hong et al. [18] presented a
media task QoS based resource allocation algorithm in media
cloud, by considering the service satisfaction of multitask.
Magedanz et al. [19] evaluated the effects of multiple factors
in a large-scale cloud environment, by defining the metric
for assessing the performance of cloud brokering systems.
Yin et al. [20] studied the operations of cloud computing
and wireless networks in mobile computing environments by
considering not only the spectrum efficiency but also the
pricing information in the cloud. Sardis et al. [21] introduced
a novel concept of cloud-based mobile media service delivery
in which services run on the localized public clouds. Ren et
al. [26] developed an online algorithm that cloud operator can
dynamically adjust the resource provisioning according to the
time-varying wireless channel conditions. Aggarwal et al. [27]
introduced a generalized framework to compute the amount
of resource to support media services with a generic cost
function. Lu et al. [28] proposed a service provisioning model
to manage the resources in the hybrid cloud where the profit
can be maximized. We have presented an incentive scheme
[36] for the relay selection to encourage selfish mobile nodes
to participate in bundle delivery, where the relay resource can
be allocated based on a game theoretical model. Although
the above works have made a lot of efforts for the resource
allocation, the characteristics of mobile users have not been
considered enough. In addition, how to efficiently use cloud
brokers to allocate cloud resource has not been mentioned
either.

III. SYSTEM MODEL

A. System Model

As it is shown in Fig.1, there are three parts which are
media cloud, brokers, and mobile social users within the
communities, respectively. The media cloud is composed of
a large number of servers which can be used to compute,
store, and provide media contents and media application. The
brokers can be seen as proxies to process the media tasks
of mobile social users, where the brokers receive the media
tasks from mobile social users and then buy the corresponding
resources to process the tasks. Mobile social users with the
similar interest can form a community. In the community,
mobile social user can select a broker to obtain the resource
and observe others’ strategies on the selections of brokers. The
system model consists of the following components:

• Mobile social users: With mobile devices, mobile social
users can have the demands for media applications and
send tasks to media cloud for processing [32][33]. A
social community is formed by a group of mobile social
users, who have the similar interests, goals or locations.
Usually, the users in the same community have social re-
lations with each other, where a user can know the infor-

mation of others. Let J = {1, 2, · · · , J} denote the set of
communities in the network, where the number of com-
munities is J. The set of mobile social users in community
j is denoted as Uj = {uj,1, uj,2, · · · , uj,k, · · · , uj,Nj}
and there are Nj mobile social users in this community.

• Cloud brokers: The set of cloud brokers is denoted as
I = {1, 2, · · · , I} , where there are I cloud brokers in
total. The cloud brokers are placed closely to mobile
social users. Besides, the media cloud and cloud brokers
are connected with high speed communication links. In
practice, the cloud brokers [6] can be seen as the proxy
between media cloud and mobile social users, where
the cloud brokers receive the media tasks from mobile
social users and then buy the corresponding resources to
process the tasks. The advantages of introducing cloud
brokers are as follows. Firstly, due to the high speed
communications between media cloud and cloud brokers,
the service response time can be significantly reduced so
that mobile social users can obtain the media services
quickly. Secondly, for media cloud, as it directly connects
cloud brokers and the number of brokers is less than
mobile social users, media cloud can decrease the cost
of access control and transmission.

• Media cloud: Media cloud can provide virtual resources
(computing, storage, and cloud service etc) to mobile
social users via cloud brokers. Based on [34], in this
paper the resource of media cloud can be described as
the processing rate which media cloud can provide to deal
with the multimedia tasks. Media cloud is responsible to
process mobile social users’ media tasks sent from cloud
brokers, and then return the corresponding results to mo-
bile social users via broker with an allocated processing
rate. We assume that the media cloud can totally provide
B resource to mobile social users via brokers.

Based on [38], the broker in our system can have five mod-
ules, which are high speed communication module, wireless
communication module, price decision-making module, task
receiving module and task delivering module. The high speed
communication module is used to communicate with media
cloud through the wired connection with high speed. The
wireless communication module is used to communicate with
model devices with wireless connection. The price decision-
making module is to decide the price of resource to sell to
mobile social users. In addition, the task receiving module is
to sell resource to mobile social users and receive tasks from
mobile devices. The task delivering module is to buy resource
from cloud and deliver tasks to media cloud for processing.

Mobile devices can connect with brokers through wireless
connection, where there is a wireless communication module
in each broker. Firstly, the brokers buy the resource from the
media cloud after determining the price of resource. Then, mo-
bile social users determine the optimal strategy on the resource
demand. Next, mobile social users send the corresponding
tasks to brokers with wireless communication. In addition, the
brokers deliver the tasks to media cloud by wired module. At
last, the results of tasks are delivered back to mobile social
users.
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Mobile social user can adjust and change his section of
broker based on the strategies of others in the community.
Specifically, if a mobile user observes another’s utility is larger
than his utility, this user can change his selection. The selection
of mobile social users can be modeled as the evolution game,
where the result of game is that all mobile users in the
community have the identical utility. Besides, mobile social
users can check the brokers which are in the communication
coverage and then determine one broker of them to connect.
Therefore, mobile social user can determine a suitable broker
to obtain its maximum utility based on the geolocation and
communication range.

B. QoE Model

QoE is to measure mobile social users’ satisfactory when
multimedia services are provided. In this paper, due to the
feature of media cloud, we present a QoE model by defining
the obtained cloud processing rate of r, where Q(r)=h(r).
Moreover, based on [31], we assume that the QoE function
has the following properties:

• h(r) is positive;
• h(r) is concave with respect to r;
• h(r) is continuous and twice differentiable for r.
Note that mobile social users QoE follows the logarithmic

law and QoE function can be modeled in the logarithmic form
for applications of multimedia task [22]. Therefore, we adopt
the QoE model as the logarithmic function, which is defined
as

Q(r) = h(r) =


qmax, r > rmax

α log2(βr), rmin ≤ r ≤ rmax

qmin, r < rmin

(1)

where α and β are two constant parameters. Both of
them are positive and can be different for various types of
applications. The qmaxis the maximum of QoE when mobile
social user obtains the highest processing rate rmax , and the
qmin is the minimum of QoE when mobile social user obtains
the lowest process rate rmin.

As QoE function is continuous, rmin can be obtained by

rmin =
2
qmin
α

β
(2)

Similarly, rmax can be obtained by

rmax =
2
qmax
α

β
(3)

C. Design Goals

Our design goals have two desirable objectives as follows:
on one hand, mobile social user can obtain sufficient cloud
resource from media cloud to achieve a satisfied QoE. On the
other hand, media cloud can achieve the maximum profit with
an optimal price of cloud price.

IV. PROBLEM FORMULATION

In this section, we propose a resource allocation among
mobile social users, brokers, and media cloud. Firstly, the
resource allocation framework is introduced. Then the utility
function of each player is defined. Next, the structure of game
is elaborated in detail.

A. Resource Allocation Framework

There are three parties in the resource allocation framework,
which are media cloud, brokers, and mobile social users.
Media cloud determines the price of cloud resource p, which
denotes the unit of resource to be paid by brokers. Each broker
i decides the amount of cloud resource Ei to buy, and then
announces the price of the bought resource pi to mobile social
users. Each mobile social user decides a broker to connect
for acquiring media service and obtaining the satisfied QoE.
Due to the social features of MSNs, mobile social users in
the same community are friends who can communicate with
each other. Thus, in the same community, each user can know
the information of others’ connections and then compare the
utility of his connection with others. If someone’s utility is
better than his, he can change his connection.

The choices of three parties can mutually affect the decision
of each other. The higher price of resource is determined by
a media cloud, the less cloud resource that the brokers may
decide to purchase, even this broker having heavy tasks. At the
same time, if one broker announces a higher price to mobile
social users, the mobile social user will connect other broker
who announces lower price.

To allow the coordination among three parties to choose
the proper parameter for enhancing performances, we propose
a resource allocation framework with four steps. Firstly, the
media cloud determines the price of its cloud resource and
broadcasts it to brokers, aiming to acquire the revenue. There is
a tradeoff between the revenue and the price for media cloud,
e.g., if the price is too high, the demand of cloud resource will
be reduced, which will affect the overall revenue. Secondly,
after receiving the price of resource, each broker can buy a
certain size of cloud resource from the media cloud to satisfy
the demand of mobile social users who connect to this broker.
Thirdly, each broker decides the price of resource to achieve
revenue from mobile social users. At last, each mobile social
user will select a broker for connection and send his task to
the broker.

B. Utility Functions

The utility functions of mobile social users: To quantify
the utility obtained from the resource, mobile social user
utility considers the price of resource and the processing rate
according to acquired resource. According to the logarithmic
function of allocated resource [23], the payoff of a mobile
social user can be formulated as

s(r) = ε log ((1 + f(r)) (4)

where ε is a payoff parameter and f(r) is the function of the
acquired cloud resource from the connected broker.
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Here, mobile social user in community j will select a proper
broker to buy cloud resource, aiming to maximize his payoff
with the least cost. Therefore, the utility function of a mobile
social user in community j is defined as the difference between
the payoff and cost on resource by

Ui,j(ri) = si,j(ri)− Ci,j(ri) (5)

where si,j(ri) denotes the payoff of a mobile social user in
community j who connects broker i, and Ci,j(ri) is defined as
the cost for buying the cloud resource from broker i. According
to (4), the payoff can be obtained by

si,j(ri) = εi,j log

(
1 +Qi,j(

ri
ni

)

)
(6)

Here, Qi,j(
ri
ni
) denotes the QoE of a mobile social user in

community j who connects broker i. And broker i has bought
ri resource from media cloud. ni is the number of mobile
social users who connect broker i. As users in the same
community may share the resource of broker i, mobile social
users have the identical amount of resource when connecting
broker i. Thus, the QoE of mobile social users j connecting
broker i can be defined as

Qi,j = αi,j log2

(
βi,j

ri
ni

)
(7)

Here αi,j and βi,j are two constants of a mobile social
user in community j who connects broker i, and they are
related to media applications, which imply the sensitivity of
a mobile social user on satisfaction of the obtained resource.
For example, the sensitivity of watching video is higher than
listening to the music with media cloud.

The cost for buying the cloud resource from broker i can
be obtained by

Ci,j(ri) = pi (8)

where pi is the price of resource. Therefore, the utility function
of a mobile social user in community j who has the connection
with broker i can be defined as

Ui,j(ri) = εi,j log

(
1 + αi,j log2(βi,j

ri
ni

)

)
− pi (9)

The objective of mobile social user is to achieve a large
QoE with a cost as low as possible, in order to maximize its
utility. Thus, the optimization problem for a mobile social user
in community j connecting broker i can be formulated by

max
ri

Ui,j(ri) (10)

s.t.

{
ri ≥ 0

log2

(
βi,j

ri
ni

)
> 0

(11)

The utility functions of brokers: For each broker, it
provides the cloud resource for processing mobile social users’
media tasks. The utility of broker is the revenue obtained from
mobile social users minus the cost to buy cloud resource from
media cloud. Thus, the utility of broker i can be defined as

Ui(pi, Ei) = Ri(pi)− Ci(Ei) (12)

where Ri(pi) is the revenue through selling cloud resource
from broker i to mobile social users, and Ci(Ei) denotes the
cost to obtain cloud resource from the media cloud.

We can obtain the revenue from selling the cloud resource
by

Ri(pi) = nipi (13)

According to the pricing strategy of media cloud, the cost
function can be denoted by

Ci(Ei) = p(Di + Ei) (14)

where p is the real-time price of cloud resource. Di denotes
the cloud resource to support the basic operation of broker
i, It can be seen as the reserved resource which is provided
to brokers by media cloud. Ei denotes the additional cloud
resource to conduct the media task when broker i is busy.
Therefore, the utility function of broker i is

Ui(pi, Ei) = nipi − p(Di + Ei) (15)

We assume that there is a discount when brokers obtain
cloud resource from media cloud due to the transmission loss
between media cloud and brokers. Thus,

ri = ςEi (16)

where ς is the discount parameter.
The objective of broker is to achieve the revenue and reduce

the cost as much as possible, for maximizing its utility. Thus,
the optimization problem for broker i can be formulated as

max
pi,Ei

Ui(pi, Ei) (17)

s.t.


ri = ςEi

pi ≥ 0

Ei ≥ 0

(18)

The utility function of media cloud: By selling the cloud
resource with a certain price to brokers, media cloud can obtain
the corresponding revenue. In addition, the cost for processing
media task should be also considered. Thus, the utility function
of media cloud is defined as the difference between the revenue
and the cost by

Ur(p) = Rr(p)− Cr (19)

where Rr(p) denotes the revenue that cloud resource can
obtain and Cr is the cost of media cloud for operation.

The revenue of media cloud by selling of cloud resource
can be obtained by

Rr(p) =

I∑
i=1

p(Di + Ei) (20)

The cost for processing tasks is defined as

Cr =

I∑
i=1

cr(Di + Ei) (21)

where cr denotes the unite cost. Therefore, the utility function
of cloud becomes

Ur(pr) =

I∑
i=1

p(Di + Ei)−
I∑

i=1

cr(Di + Ei) (22)
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The objective of media cloud is to achieve a large revenue
for maximizing its utility. Thus, the optimization problem for
media cloud can be formulated as

max
p

Ur(p) (23)

s.t.p ≥ 0 (24)

C. Four Stage Stackelberg Game

We formulate the above problem as a four stage Stackelberg
game, by considering the utility maximization of media cloud,
brokers and mobile social users. In stage I, as a leader in the
Stackberg game, media cloud offers a real-time cloud resource
price p to brokers. In stage II, as a follower in Stage I, the
broker decides the amount of cloud resource Ei based on the
price offered by media cloud. Next, the broker acts as the
leader in stage III, and offers the resource price to mobile
social users. In stage IV, each mobile social user selects a
proper broker to connect to acquire media service, based on
the resource price and availability of cloud resource offered
by the broker.

V. ANALYSIS OF THE PROPOSED FOUR STAGE GAME

In this section, we analyze the proposed four-stage Stackel-
berg game, and obtain its Stackelberg equilibrium. Based on
the above analysis, it is known that each stage’s strategy may
affect other stages’ strategies. Therefore, we use a backward
induction method to analyze the proposed game, as it can
capture the sequential dependence of the decision in each stage
of the game.

A. Evolution Game among Mobile Social Users in Stage IV

Communities are formed by groups of mobile social users
with media service demands. Especially, mobile social users
in the same community are friends of each other. They can
communicate with each other, where the information can be
exchanged among them. Therefore, mobile social users in
the same community can observe others’ decisions on the
selection of brokers, and then adjust his strategy to be optimal.
We propose an evolutionary game model to solve the broker
selection problem. In the evolutionary game, mobile social
users are the players of the game. The community can be
seen as a population in the game.

Replicator dynamic is crucial to analyze the evolution game
to obtain the game equilibrium, where the utility of all users
in a community are identical. And no player will change his
current strategy because the rate of strategy change is zero.
For community j, the proportion of mobile social users who
select broker i to acquire media service becomes

xi,j =
ni,j
Nj

(25)

where ni,j is the number of mobile social users in community
j to connect broker i, and Nj is the number of mobile social
users in community j. We denote the state of community as the
proportions of mobile social users to connect brokers. Thus,
the state of community j can be obtained by

xj = [x1,j , x2,j , · · · , xi,j , · · · , xI,j ] (26)

In the replicator dynamic, the share of a strategy in com-
munity grows at a rate which is directly proportional to the
difference between the users utility and the average utility. It
can be denoted as

ẋi,j(t) = λxi,j(t)(Ui,j(t)− Ũj(t)) (27)

where λ is the multiplier of the difference between the user’s
utility and the average utility. Ũj(t) is the average utility of
the entire community j. It can be calculated by

Ũj(t) =

I∑
i=1

xi,jUi,j(t) (28)

From (8), it can be obtained
∑I

i=1 ẋi,j(t) = 0, therefore∑I
i=1 ẋi,j = 1 is satisfied during the broker selection process.

Substituting (9) into (27) , we have

ẋi,j(t) = λxi,j(t)

(
εi,j log(1 + αi,j log2(βi,j

ri
Ni

))

−pi −
I∑

i=1

xi,j(εi,j log(1 + αi,j log2(βi,j
ri
Ni

))− pi)
)

(29)
We consider the evolutionary equilibrium as the solution

to the broker selection game among mobile social users. An
evolutionary equilibrium is a fixed point of the replicator
dynamic. At the fixed point, which can be obtained numer-
ically, the payoff of all users in community j are identical. In
other words, since the rate of strategy adaptation is zero, the
equilibrium can be obtained by solving

ẋi,j(t) = 0, 1 ≤ i ≤ I, 1 ≤ j ≤ J (30)

To evaluate the stability at the fixed point x∗i,j , which
is obtained by solving (30), the eigenvalues of the Jacobian
matrix which is corresponding to the replicator dynamic needs
to be evaluated. The fixed point is stable if each eigenvalue
has a negative real part [24]. Here we have the evolutionary
equilibrium for any community j as follows.

x∗j =
(
x∗1,j , x

∗
2,j , · · · , x∗i,j , · · · , x∗I,j

)
(31)

B. Non-cooperative Game among Brokers in Stage II and
Stage III

Based on the result of the evolutionary game for mobile
social users, the brokers compete with each other and choose
the proper strategies on the price to obtain the maximum util-
ities. Thus, the non-cooperative game is introduced to model
the competition among brokers, and the Nash equilibrium is
considered as the solution to the game.

According to the price of the cloud resource determined by
media cloud, each broker decides the amount of cloud resource
to purchase and then determines the price of cloud resource
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to charge. Considering the competition, the utility of broker i
can be defined as

Ui(Ei, pi,E−i,p−i) = pi

J∑
j=1

x∗i,jNj − p(Di + Ei) (32)

Here E−i denotes the vectors of the resource size that brokers
have, except broker i. p−i means the price of cloud resource
offered by brokers, except broker i.

The Nash equilibrium is considered as the solution of the
game, where each broker has an optimal strategy to maximize
the utility. In this case, we use the best response function of
each broker to find Nash equilibrium, which is the best strategy
of a broker based on others’ best strategies. Therefore, when
others’ strategies are determined, the best response function
of broker i can be defined by

B(E−i,p−i) = argmax
Ei,pi

Ui(Ei, pi,E−i,p−i) (33)

Let p∗ = (p∗1, p
∗
2, · · · , p∗I) and E∗ = (E∗

1 , E
∗
2 , · · · , E∗

I )
denote Nash equilibrium of the cloud resource price and the
cloud resource size obtained from media cloud, respectively.
The Nash equilibrium of the game can be obtained by solving

p∗i = B(E−i,p∗
−i) (34)

E∗
i = B(E∗

−i,p−i) (35)

where p∗
−i and E∗

−i is the set of Nash equilibrium of brokers
except broker i.

From the above analysis, for a broker to obtain the Nash
equilibrium, the strategy of other brokers and the evolutionary
equilibrium of evolutionary game among mobile social users
are needed. However, this information may not be available
in a practical broker system. Therefore, each broker can only
employ the local information and mobile social users demands
to adapt the offered prices and the obtained cloud resource.
Then, each broker should adjust its strategy in the direction
of utility maximization. Therefore, broker i updates the price
of cloud resource and the cloud resource size by

pi(τ + 1) = pi(τ) + ωi,p
∂Ui(E(τ),p(τ))

∂pi(τ)
(36)

Ei(τ + 1) = Ei(τ) + ωi,E
∂Ui(E(τ),p(τ))

∂Ei(τ)
(37)

Here pi(τ) and Ei(τ) are the price of cloud resource to
sell and the size of cloud resource purchased from the media
cloud. Both of them are determined by broker i at iteration τ .
ωi,E and ωi,p are used to control the speed of adjustment on
the cloud resource size and cloud resource price. The marginal
payoff can be used to update the strategy for each broker [25].
It can be calculated by the variation in payoffs with a small
variation ϕ(e.g., ϕ = 10−4 ) as follows.

∂Ui(E(τ),p(τ))
∂pi(τ)

≈ Ui(· · · , pi(τ) + ϕ, · · · )− Ui(· · · , pi(τ)− ϕ, · · · )
2ϕ

(38)

∂Ui(E(τ),p(τ))
∂Ei(τ)

≈ Ui(· · · , Ei(τ) + ϕ, · · · )− Ui(· · · , Ei(τ)− ϕ, · · · )
2ϕ

(39)

C. Strategy of Media Cloud in Stage I

The cloud resource can be sold to the broker to obtain
revenue by media cloud. Thus, the media cloud hopes to
choose a proper price of cloud resource to obtain the maximum
utility. For media cloud, the optimization problem can be
formulated as

p∗ = argmax
p

Ur(E, p) (40)

where p∗ is the optimal strategy of media cloud on the price
per cloud resource unit, E is the vector of cloud resource
purchased by each broker, which is E = [E1,E2, · · · ,EI ]

T .
Similar to the broker iteration, we also present a media

cloud iteration to adjust the cloud resource price to obtain
the maximum utility. The media cloud updates its price by

p(t+ 1) = p(t) + ωr
∂Ur(E(t), p(t))

∂p(t)
(41)

where ωr is used to control the speed of adjustment on the
price of cloud resource price.

The marginal payoff can be calculated by

∂Ur(E(t), pr(t))
∂p(t)

≈ Ur(E(t), p(t) + ϕ)− Ur(E(t), p(t)− ϕ)
2ϕ

(42)

Here, when all mobile social users obtain the maximum
utilities with the optimal strategies, the evolution game reaches
the equilibrium. If someone tries to adjust his selection to
connect the broker, the number of connection of this broker
will become larger and the utilities of mobile social users
in the same community to connect with this broker will
decrease. If we assume that the equilibrium state is not Pareto
efficiency, the utility of a mobile social user can be larger
by adjusting strategy, where other mobile social users in
the same community may imitate this selection to obtain
higher utilities with the result that all mobile social users in
the same community have the identical utility. In the above
assumed situation, the state in evolution game is not stable,
which is not the equilibrium. Therefore, as the equilibrium
can be obtained which is opposite to the above assumption,
the equilibrium of evolution game in our work is Pareto
efficiency. In addition, when the Stackberg game reaches to
the equilibrium, each broker or media cloud only has one
optimal strategy. Therefore, each party can not adjust strategy
to obtain higher utility when other two parties choose the
optimal strategy. It also proves the Pareto efficiency of the
proposal.
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D. Algorithm Design for Scheme Implementation

Based on the above analysis of four-stage Stackberg game,
we present an iteration algorithm to implement our scheme.
For the cloud resource, it can update its cloud resource price
to obtain a maximum utility and then announce this price to all
brokers. Since the media cloud is not aware of the duration of
each adjustment, the media cloud sets a waiting time Tw,mc for
the next strategy update. Similarly, as each broker is not aware
of the duration of each evolution, it sets a waiting Tw,b for the
next strategy to update the size of the purchased cloud resource
and the price to charge mobile social users. In the evolutionary
game, each mobile social user randomly selects a broker to
connect initially, and then changes his strategy to maximize
his own utility. If a mobile social users utility is lower than
the average utility of his community, this mobile social user
may change his connection with a probability, denoted by

θ =
Ũj − Ui,j

Ũj

(43)

where Ũj is the average utility of community j . When all users
in the same community obtain an equal utility, the evolution
will be completed. We present the algorithm by Algorithm 1.

Algorithm 1 Resource allocation iteration algorithm
1: Initially, the media cloud announces the price p(0) to all

brokers.
2: Repeat
3: while t ≤ Tw,mc do
4: Each broker randomly determines the size of leased

resource Ei and the price pi.
5: Repeat.
6: while t ≤ Tw,b do
7: Each mobile social user randomly makes connection.
8: Repeat.
9: Compute each mobile social user’s utility by (22).

10: Exchange connection information with each other in
the community.

11: Calculate the average utility U j by (28).
12: if U j > Ui,j then
13: Change the connection with probability θ.
14: else
15: Maintain the connection.
16: end if
17: Until all mobile social users in the same community

have the equal utility.
18: end while
19: Update cloud resource size Ei(τ) and the cloud re-

source price pi(τ) by equation (36)-(39).
20: τ = τ + 1
21: Until Ei and pi are both unchanged.
22: end while
23: Update the price p(t) by equal (41), (42).
24: t = t+ 1
25: Until p is unchanged.

TABLE I
SIMULATION PARAMETERS

Parameter Value
J: the number of communities 2

N1, N2:the number of mobile social users in community
1 and community 2 20, 20

I:the number of cloud brokers in the network 2

B:the maximum of resource can be allocated
by media cloud 100k(tasks/s)

{α1,j , β1,j}, j ∈ {1, 2}:the parameters on QoE
of mobile social users in community 1 {2, 10}

{α2,j , β2,j}, j ∈ {1, 2}:the parameters on QoE
of mobile social users in community 2 {1.5, 10}

{ε1,j , ε2,j}:the payoff parameters of mobile
users in community 1 and community 2 in (16) {2, 2}

Di:the reserved resource provided to brokers 0

ς:the discount parameter in (16) 1

Tw,mc:the waiting time for strategy adjustment
of media cloud 500

Tw,b:the waiting time for strategy adjustment
of a broker 100

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
game-based cloud resource allocation.

A. Simulation Setup

In the simulation, there is a media cloud to lease cloud
resource to brokers. The total size of cloud resource is
B = 100k which denotes that the cloud can process 100x103

tasks per unit time. In addition, the MSN has two brokers and
two communities. In each community, there are 20 mobile
social users. The media cloud waits Tw,mc = 500 for the next
strategy update and each broker waits Tw,b = 100 for the next
generation strategy update. The speed of adjustment for each
broker on the bought resource size and price are wi,p = 0.1
and wi,E = 1, respectively. The speed of adjustment for media
cloud on price of resource is wr = 0.01 . The detailed values
of parameters in this simulation are listed in Table I.

B. Numerical Results

Firstly, we study the evolutionary behavior of mobile social
users. We set the cloud resource size and the price of two bro-
kers as E1 = E2 = 20 and p1 = 0.1, p2 = 0.5 , respectively.
Fig. 2 shows the convergence of the evolutionary behavior
of mobile social users when the initial state of community
is (x1,1, x1,2) = (0.4, 0.4). From Fig.2, we can observe that
both of utilities of mobile social users in community 1 and
community 2 are converged to be optimal with several iteration
steps. In addition, it can be known that the utilities of all
mobile social users in both community 1 and community 2
are nearly identical.

Fig. 3 shows the best response of each broker on the size of
cloud resource purchased from media cloud. We set p0 = 0.1
and choose two types of cloud service price for comparison,
which are p1 = p2 = 0.3 and p1 = p2 = 0.5 , respectively.
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Fig. 2. Convergence of the evolution among mobile social users to the
equilibrium.

Fig. 3. Best response of each broker on the size of cloud resource purchased
from the media cloud. BR1 and BR2 represent the best response functions
of broker 1 and broker 2.

From Fig.3, when p1 = p2 = 0.5 , if broker 2 has more cloud
resource, broker 1 also has a larger size of cloud resource to be
the best response. When p1 = p2 = 0.3 , the best response of
each broker firstly increases and then decreases. In addition,
with each price, there is only one intersection point in Fig.
3. It demonstrates the existence and uniqueness of the Nash
equilibrium when the cloud service price is fixed.

Fig. 4 shows the convergence of the price determined by
media cloud. We set four different initial prices of the cloud
resource determined by the media cloud for comparison. And
we set E2 = 10 to study the influence between the price of
cloud resource and the cloud resource demand of broker 2.
From Fig. 4, we can observe that the price of cloud resource
is converged to an optimal price with several steps.

In Fig. 5, we compare the proposed scheme with the existing
approaches, which are Uniform Resource Allocation (URA)
and Random Resource Allocation (RRA), respectively. In the
URA, the total resource of media cloud is uniformly allocated
to all users in the network. In the RRA, each user can obtain
cloud resource from the media cloud randomly. From Fig. 5, it

Fig. 4. Price of cloud resource determined by the media cloud versus iteration
step. The initial prices po(0) are 0.1,0.2,0.4,0.5, respectively.

Fig. 5. Utility of each mobile social user in community 1, where the initial
price of the resource determined by the media cloud is p(0) = 0.5.

can be known that the proposed scheme outperforms the other
two existing approaches, where mobile social user can obtain
the best utility. In the URA, as the cloud resource is uniformly
allocated to mobile social users, too much resource may be
allocated to someone whose demand is low, while mobile
social users who need more resource can not obtain enough
resource. In RRA, as the resource is allocated to mobile social
users randomly, mobile social users cannot obtain the resource
according to their needs. In the proposed scheme, mobile
social users can obtain their wanted resource according to their
demands. Furthermore, with the theoretical game model, the
price gradually tends to be reasonable. It makes possible that
all parties can obtain the maximum utilities.

To test the performance with dynamical demands, Fig.6
shows the utility of a mobile social user in community 1
when the value of in community 1 is changed from 2 to 3.5,
which shows the variation of a user’s resource demand [37].
From Fig.6, it can be observed that all utilities with dynamic
demands decrease and reach to the stable finally. The mobile
social user with higher demand has the higher utility. The
reason is that the mobile social user with higher demand can
be more sensitive to the resource than the one with lower
demand.
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Fig. 6. The utility of mobile user in community when the demand is changed.

Fig. 7. Comparison of the media response ratio.

We carry out the next experiment to evaluate the media
quality of the proposal. Based on [39], we define the metric
to show the media quality as Media Response Ratio (MRR) =
Media Runtime / Task Processing Time. The above metric can
measure the quality of the media when delivering content to
mobile social users through media cloud. With a given media
runtime, if the task processing time is long, MRR becomes
low where the playback speed of media content is slow and
the media may be stunk. In opposite, if the task processing
time is short, MRR becomes large where mobile social users
can enjoy a high quality of media and content can be played
fluently.

We compare the MRR of the proposal with RRA, URA, and
the local execution scheme. Here, the local execution scheme
means that the mobile device does not connect to media cloud
and processes the media data on local device. According to
[39], in the experiment the file size of media is determined
as 307MB and the runtime is 1291 seconds. Without the
cloud, the task process rate of local device is 500 tasks/s.

For the task process rate of the proposal, it is decided by the
proposed algorithm shown in Sect.V.D. The task process rate
of RRA and URA are determined at random and uniformly,
respectively. From Fig.7, we can see that the proposal can
achieve the highest MRR compared to other schemes. The
reason is that mobile social users can adjust the strategy to
achieve the maximum revenue based on the social features in
the community.

In the above experiments, it can be known that all mobile
social users can choose the best strategies to obtain the optimal
utility. Each broker can determine its optimal strategy on cloud
service price and size to obtain the maximum utility. The price
of cloud resource determined by media cloud is converged
to the optimal. Therefore, the proposed resource allocation
scheme is converged and the Stackelberg equilibrium exists.

VII. CONCLUSION

In this paper, based on the competition among media cloud,
brokers and mobile social users, we have presented a resource
allocation scheme for mobile social users to achieve satisfied
QoE with media cloud. In the proposal, the media cloud can
determine a certain price to lease cloud resource to brokers.
Each broker can determine the size of cloud resource to buy
and then provide the cloud resource for mobile social users
with a certain price. The mobile social user can adjust his strat-
egy to decide his connecting broker. The resource allocation
problem has been formulated as a four stage Stackelberg game.
Through the backward induction method, we have proposed
an iterative algorithm to obtain the Stackelberg equilibrium to
implement the proposed scheme. Simulation results have been
presented to demonstrate the performance of the proposal.

As for the future work, we will investigate the model of
information spreading during the cloud resource allocation in
mobile cloud.
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