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Abstract—When integrating device-to-device (D2D) commu-
nications with densely deployed cellular networks, both energy
efficiency (EE) and quality of service (QoS) will be severely de-
graded by strong intracell and intercell interference. To optimize
EE while guaranteeing QoS provisioning, a three-stage energy-
efficient resource allocation algorithm is proposed, which com-
bines centralized interference mitigation and distributed power
allocation algorithms by exploiting multi-cell cooperations, nonco-
operative game, nonlinear fractional programming, and Lagrange
dual decomposition. Simulation results have demonstrated that
the proposed algorithm achieves a nearly zero infeasibility ratio,
and improves EE performance significantly for both cellular and
D2D user equipments (UEs) compared to the previous distributed
scheme.

I. INTRODUCTION

Device-to-device (D2D) communication that enables ubiq-
uitous information acquisition and exchange among devices
over a direct link [1], is a key enabler to facilitate future 5G
mobile systems [2]. However, the integration of D2D commu-
nications with dense cellular networks poses new challenges
in resource allocation design. With continuously shrinking
cell size, user equipments (UEs) near the edge of a cell
suffer from not only the intracell interference but also the
intercell interference [3]. To meet quality of service (QoS)
requirements, UEs have to continuously increase transmission
power, which in turn increases aggregate interference levels of
the overall network. As a result, UEs can quickly run out of
battery if without careful energy optimization and interference
management design.

A few works have addressed the energy-efficient resource
allocation problem. Centralized resource allocation algorithms
in device-to-multi-device (D2MD) and D2D-cluster scenar-
ios were studied in [4] and [5], respectively. Auction based
resource allocation and D2D cooperative relay selection al-
gorithms were proposed in [6], [7]. A two-stage resource
allocation algorithm that employs fractional frequency reuse
(FFR) was proposed in [8]. A noncooperative game based
iterative power allocation algorithm was proposed in [9]. A
joint mode selection and resource scheduling optimization
algorithm that is based on coalition game was proposed in
[10]. The tradeoff between energy-efficiency (EE) and spectral
efficiency (SE) was studied in [11].

However, most of the previous works focus on either
centralized or distributed approaches, and have not taken
advantage of both of them. In addition, they lack the detailed

modeling of complex interference scenarios encountered when
deploying D2D communications in dense cellular networks, in
particular the intercell interference among D2D pairs, cellular
UEs (CUs), and base stations (BSs) located in different cells.

To optimize EE while guaranteeing QoS provisioning,
we propose a three-stage energy-efficient resource allocation
algorithm. The proposed algorithm has a hybrid structure,
which includes centralized interference mitigation schemes in
the first and second stages, and a distributed power allocation
scheme in the third stage. In the first stage, strong interference
caused by CUs is canceled by exploiting multi-cell cooperation
based interference reconstruction and cancellation techniques.
In the second stage, interference caused by D2D pairs is
suppressed by adaptively regulating the maximum transmission
power cap on each channel based on interference threshold.
Finally, the available power resources are scheduled by each
UE in an energy-efficient way by solving a distributed power
allocation problem. We adopt a game-theoretic approach to
model the distributed power problem as a non-cooperative
game, and derive an iterative algorithm based on nonlinear
fractional programming [12] and Lagrange dual decomposition
[13]. Implementation issues and algorithmic complexity are
discussed and analyzed. Simulation results also show that the
proposed algorithm outperforms the conventional distributed
scheme significantly, in particular when the QoS requirement
is high.

The structure of this paper is organized as follows: Section
II introduces the system model. Section III introduces the
problem formulation. The proposed algorithm is introduced
in Section IV. Section V introduces simulation parameters,
results and analyses. Section VI draws relevant conclusions.

II. SYSTEM MODEL

We consider uplink spectrum sharing in D2D communica-
tions underlaying cellular networks. Fig. 1 shows an example
of the complex interference environment of two cells. There are
two CUs (UE1 and UE2), and two D2D pairs (UE3 and UE4,
and UE5 and UE6 respectively). Since each CU is allocated
with an orthogonal link (e.g., an orthogonal resource block in
LTE), i.e., there is no intracell interference among CUs in the
same cell, but there is intercell interference among CUs located
in adjacent cells. Block fading model where the channel gain
is constant during a slot is adopted [14]. At the same time,
D2D pairs are allowed to reuse multiple channels allocated to



CUs in order to improve SE. As a result, the base station (BS)
BS1 suffers from the intercell interference caused by the CU
in the adjacent cell (UE2) as shown in Fig. 1(a), the intracell
interference caused by the D2D transmitter in the same cell
(UE3) as shown in Fig. 1(b), and the intercell interference
caused by the D2D transmitter in the adjacent cell (UE5) as
shown in Fig. 1(c). D2D receivers (UE4 and UE6) suffer from
the interference caused by CUs (UE1 and UE2) as shown in
Fig. 1(b), (c), and D2D transmitters that reuse the same channel
(UE5 and UE3 respectively) as shown in Fig. 1(d).

For a more general case, we consider a total of M
(M ≥ 2) adjacent cells. In the m-th cell (m ∈ M,M =
{1, 2, · · · ,M}), let Dm = {d1m , · · · , dNm} and Cm =
{c1, · · · , cKm} denote the sets of D2D pairs and CUs, respec-
tively. Let Km = {1, · · · ,Km} denote the set of orthogonal
channels. Km CUs occupy a total of Km orthogonal channels.
The SE (defined as bits/s/Hz) of the i-th D2D pair in the m-th
cell dim

on the k-th channel (k ∈ Km) is given by
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k∈Km

log2

(
1+

pk
im

gk
im

Id
im,1+ Id

im,2+ Ic
im,1+ Ic

im,2+ N0

)
,

(1)

where

Id
im,1 =

∑
djm∈Dm\{dim}

pk
jm

gk
jm,im

, (2)

Id
im,2 =

∑
m′∈M\{m}

∑
di

m
′ ∈D

m
′

pk
i
m

′ g
k
i
m

′ ,im
, (3)

Ic
im,1 = pc

km
gk

km,im
, (4)

Ic
im,2 =

∑
m′∈M\{m}

pc
k

m
′ g

k
k

m
′ ,im

. (5)

Id
im,1 and Id

im,2 denote the intracell interference and inter-
cell interference caused by D2D pairs to dim , respectively.
Ic
im,1 and Ic

im,2 denote the intracell interference and intercell

interference caused by CUs to dim
, respectively. pk

im
, pk

jm
,

and pc
km

are the transmission power of D2D pair dim
, djm

,

and CU ckm
on the k-th channel, respectively. pk

i
m

′ and pc
k

m
′

are the transmission power of D2D pair di
m

′ and CU ck
m

′

in the m
′
-th cell (m

′ ∈ M\{m}). gk
im

is the desired D2D

signal channel gain. gk
jm,im

denotes the intracell interference
channel gain between the transmitter of djm

and the receiver
of dim , and gk

km,im
denotes the intracell interference channel

gain between ckm
and the receiver of dim

. Similarly, gk
i
m

′ ,im

and gk
k

m
′ ,im

are the intercell interference channel gains for

the D2D interferer di
m

′ and the cellular interferer ck
m

′ in the

m
′
-th cell, respectively. N0 is the noise power.

The SE of the CU ckm is given by
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Fig. 1. The complex interference environment of two cells: (a). intercell
interference among CUs; (b). intracell interference among CUs and D2D pairs;
(c). intercell interference among CUs and D2D pairs; (d). intercell interference
among D2D pairs.

where
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Id
km,1 and Id

km,2 denote the intracell interference and intercell
interference caused by D2D pairs to ckm , respectively. Ic

im,2
denote the intercell interference caused by CUs to ckm

, respec-
tively. gc

km
is the desired cellular signal channel gain. gc

im,km
is

the intracell interference channel gains for the D2D interferer
dim

. gc
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′ ,km
and gc
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The total power consumptions are given by

pd
im,t =

∑
k∈Km

1
η
pk

im
+ 2pcir, (10)

pc
km,t =

1
η
pc

km
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where pd
im,t is the total power consumption of dim

, which
is composed of the transmission power over all of the Km

channels, i.e.,
∑

k∈Km

1
η pk

im
, and the circuit power of both the

D2D transmitter and receiver, i.e., 2pcir. The circuit power of
any UE is assumed as the same and is denoted as pcir. η is
the power amplifier (PA) efficiency, i.e., 0 < η < 1. pc

km,t is
the total power consumption of ckm

, which is composed of
the transmission power (1/η)pc

km
and the circuit power only

at the transmitter side. The power consumption of the BS is
not taken into consideration since BS is usually powered by
external grid power.



III. PROBLEM FORMULATION

Since each UE is only interested in optimizing its in-
dividual EE, the distributed power allocation problem can
be modeled as a noncooperative game G. The game G can

be described as the triplet G =
[
{S}, {A}, {U}

]
, wherein

S = {Cm,Dm,∀m ∈ M} is the set of active UEs participating
in the game, A = {pd

im
,pc

km
, dim ∈ Dm, ckm ∈ Cm,m ∈ M}

is the set of possible actions (strategies) that UEs can take,
where pd

im
= {p1

im
, · · · , pKm

im
}, and pc

km
= {pc

km
}, and

U = {Ud
im,EE , U c

km,EE , dim ∈ Dm, ckm ∈ Cm,m ∈ M} is

the set of UEs’ utilities which are based on EE. pd
im,max and

pc
km,max are the maximum transmission power constraints.

The EE of the dim
(including both the D2D transmitter and

receiver) is defined as
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The corresponding EE optimization problem is formulated as

max
(pd

im
)

Ud
im,EE(pd

im
)

s.t. C1 : 0 ≤
∑

k∈Km

pk
im

≤ pd
im,max. (13)

C1 is the maximum transmission power constraint, i.e., the
total transmission power allocated over all of the Km channels
should be no greater than pd

im,max. Since D2D pairs com-
municate in a cognitive way, we have not imposed any QoS
requirement for D2D pairs.

Similarly, the EE of ckm , i.e., U c
km,EE , is defined as
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The corresponding EE maximization problem is formulated as

max
(pc
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U c
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s.t. C2, C3. (15)
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, (16)

C3 : 0 ≤ pc
km

≤ pc
km,max. (17)

The constraint C2 specifies the QoS requirement in terms of
minimum SE.

There are two challenges when solving the above opti-
mization problems. Firstly, the problems are non-convex due
to the fractional form, which are computationally intractable
and NP-hard. Although We can use the bisection method [13]
for iteratively finding the optimum strategy by proving that
(13) and (15) are quasi-concave [15], it is still impossible to
derive a closed-form solution. Secondly, the CU’s transmission
rate defined in (6) depends on both intercell and intracell
interference. If the combined interference is strong, the QoS
constraint C2 cannot be guaranteed unless interference mitiga-
tion is employed. We adopt infeasibility ratio to measure the
probability that the QoS constraint C2 cannot be satisfied, i.e.,
Pr{max(pc

km
) U c

km,SE(pc
km

) < U c
km,SEmin

}, which is a key

performance measurement for D2D communications [16].

IV. THE ENERGY-EFFICIENT HYBRID RESOURCE

ALLOCATION ALGORITHM

In this section, we introduce the proposed energy-efficient
resource allocation algorithm that combines centralized and
distributed approaches. Firstly, we introduce how to transform
non-convex problems into a sequence of parameterized con-
vex problems. Then, we introduce the proposed centralized
interference mitigation scheme which can efficiently reduce
infeasibility ratio. Finally, we introduce the distributed power
allocation scheme.

A. Objective Function Transformation

Define qd∗
im

as the maximum EE of dim , which is given by

qd∗
im

= max
(pd

im
)
Ud

im,EE(pd
im

) =
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where pd∗
im

is the optimum strategy. The following theorem
can be easily proved [12]:

Theorem 1: The maximum EE qd∗
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is achieved if and only
if

max
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Theorem 1 shows that the transformed problem with an
objective function in subtractive form is equivalent to the non-
convex problem with an objective function in fractional form.
Then, the original problem (13) can be rewritten as

max
(pd

im
)

Ud
im,SE(pd

im
) − qd∗

im
pd

im,t(p
d
im

), s.t. C1. (20)

The new problem can be viewed as a weighted sum of SE
and power consumption, where the parameter qd∗

im
acts as the

price (negative weight) of the power consumption. Similarly,
the original problem (15) can be rewritten as

max
(pc

km
)
. U c

km,SE(pc
km

) − qc∗
km

pc
km,t(p

c
km

), s.t. C2, C3. (21)

It can be easily seen that both (20) and (21) are convex.
However, the specific values of qc∗

im
and qc∗

km
are still unknown,

and (21) may even be infeasible if C2 cannot be guaranteed.
In the next subsection, we introduce how to reduce the
infeasibility ratio.

B. Centralized Interference Mitigation Algorithms

We propose a multi-cell cooperation based interference
mitigation algorithm to reduce the infeasibility ratio.

In the first stage, the interference caused by CUs is
canceled by interference regeneration based techniques such
as network interference cancellation engine (NICE) [17].
We target CUs firstly because the transmission power of
CUs is usually much higher than D2D pairs due to longer
transmission distances between CUs and BSs. In particular,
CUs near the cell edge may cause significant interference.
NICE opportunistically performs interference cancellation by
exchanging decoded interferers’ data within cooperating BSs.
NICE is invoked only if the intercell interference exceeds a



certain threshold. To start, the suffering BS firstly performs
channel estimation to identify dominant interferers, and re-
quests decoded data associated with those dominant interferers
from cooperative BSs. Due to limited backhaul capacity, an
interfering signal is likely to be selected for cancellation only
if its signal strength is large enough. Secondly, the interfering
signal is reconstructed and then subtracted form the overall
received signal vectors. This results in a new post-cancellation
of the received signal vector with reduced interference level.
The detailed mathematical equations can be found in [17].

In the second stage, both the intracell interference and
intercell interference caused by D2D pairs are suppressed by
adaptively regulating the maximum transmission power cap on
each channel based on interference threshold. Then, D2D pairs
are forced to transmit at a power level that is lower than this
cap, which should not cause too much interference to CUs
using the same channel. The constraint C1 is replaced by the
following Km constraints:

Cim,1 ∼ Cim,Km : 0 ≤ pk
im

≤ pk
im,max,∀k ∈ Km. (22)

In addition, the power cap pk
im,max should also satisfy
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QoS constraint specified in C2, which is given by
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Define pd
max = {pk

im,max,∀m ∈ M,∀k ∈ Km,∀dim ∈ Dm},
which can be obtained by solving the following problem
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wk
im

is the weight of pk
im,max. If wk

im
= 1,∀m ∈ M,∀k ∈

Km,∀dim
∈ Dm, then the BS allocates resources based

on the instantaneous interfering channel gains. D2D pairs
that would cause stronger interference are allocated with less
resources. Alternatively, wk

im
can be designed to take fairness

into consideration such as the proportional fair scheduling [14].

C. The Distributed Power Allocation Algorithm

In this subsection, we introduce the iterative power allo-
cation algorithm based on the Dinkelbach method [12]. The
initial values of qd

im
or qc

km
can be set as a small positive

number near to zero, e.g., 10−4. At each iteration, the trans-
formed convex problems specified in (20) and (21) are solved
by replacing qd∗

im
and qc∗

km
with qd

im
and qc

km
respectively. It is

noted that if the D2D interference mitigation algorithm is used,

the constraint C1 should be replaced by Cim,1 ∼ Cim,Km
. The

impacts of using tighter power constraints for D2D pairs are
explored in detail in simulation results.

Since the transformed problem is convex, Karush-Kuhn-
Tucker (KKT) conditions and Lagrange dual decomposition
are used to find the optimum strategy [13]. Taking (20) as an
example, the associated Lagrangian with the constraint C1 is
given by

LEE(pd
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where αim is the Lagrange multiplier. The optimal value p̂k
im

corresponding to qd
im

is given by
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where [x]+ = max{0, x}. Equation (28) indicates a water-
filling algorithm, where the water level is determined by the
cost of allocating power, i.e., αim , as well as the current
cost of total power consumption given by qd

im
. The Lagrange

multipliers can be updated by using the gradient method [15]
as

αim(τ + 1)

=

[
αim(τ) + μim,α(τ)

( ∑
k∈Km

p̂k
im

(τ) − pd
im,max

)]+

,

(29)

where τ is the iteration index, μim,α is the positive step size.
We have adopted a constant step size to strike a balance
between optimality and convergence speed. If instead of C1,
constraints Cim,1 ∼ Cim,Km are employed, the optimal value
p̂k

im
is similar to (28) by replacing αim

with βk
im

, which is the

Lagrange multiplier associated with Cim,k. βk
im

is updated as

βk
im

(τ + 1) =
[
βk

im
(τ) + μk

im,β(τ)
(
p̂k

im
(τ) − pk
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)]+
(30)

Then, qd
im

is updated for the next iteration as

qd
im

=
Ud

im,SE(p̂d
im

)
pd

im,t(p̂
d
im

)
. (31)

The iteration process will continue until Ud
im,SE(p̂d

im
) −

qd
im

pd
im,t(p̂

d
im

) ≤ Δ, or the maximum iteration number is

reached. Δ is the maximum tolerance. Then we set pd∗
im

=
p̂d

im
, and calculate qd

im
as (18). The optimization problem (21)

can be solved in a similar way, which is omitted here due to
space limitation.

D. Implementation Issues and Complexity Analysis

When implementing the algorithm, channel estimation is
particularly important since the efficiency of both interference
mitigation and power allocation depends on channel estimation
accuracy. In the case of interference mitigation, a BS needs to
be aware of the reference symbols assigned by cooperative



BSs, and orthogonal or near orthogonal reference symbols
can be used to improve estimation accuracy. In this paper,
we assume that precise channel estimates are available. The
impacts of channel estimation errors will be discussed in future
works. In the distributed power allocation algorithm, each
D2D pair only needs to estimate the received interference
rather than know the specific transmission power strategies
of interferers. The reason is that sufficient information of
strategies are contained in the form of interference. CUs also
need to have the knowledge of interference, which can be
estimated firstly by powerful BSs and then fed back to CUs
for EE optimization.

The interference cancellation algorithm in the first stage
is, in essence, a multi-cell successive interference cancellation
(MC-SIC) technique with a low computation complexity that
is of the same order as conventional SIC receivers. The
optimization problem (26) of the second stage is a geometric
programming problem, and can be transformed to a convex
problem by a change of variables and a transformation of the
objective and constraint functions. It involves solving a convex
problem with

∑
m∈M NmKm optimization parameters, and∑

m∈M (Nm + Km) linear inequality constraints, which can
be solved in polynomial time [13]. If D2D pairs in the
same cell or clusters are allocated with the same resource,
e.g., pk

im,max = pk
jm,max,∀m ∈ M,∀dim , djm ∈ Dm, the

number of optimization parameters and inequality constraints
are further reduced to

∑
m∈M Km and

∑
m∈M (Km + 1)

respectively.

The iterative algorithm of the third stage produces an
increasing sequence of qd

im
and qc

km
values, which converges to

the optimum value qd∗
im

and qc∗
km

at a super-linear convergence
rate [15], respectively. Taking (20) as an example, the complex-
ity is dominated by the calculations given by (28), which leads

to a total complexity O(KmI loop
im

Idual
im

), where I loop
im

and Idual
im

are the numbers of iterations required for reaching convergence
and solving the dual problem respectively.

V. SIMULATION RESULTS

In this section, the proposed algorithm, labeled as “hybrid
scheme”, is compared with the works of [9], [11] without
centralized interference cancellation and mitigation, which are
labeled as “conventional scheme”. The values of simulation
parameters are based on [9], [18], [19], and are summarized as
follows. The cell radius is 1000 m, and the intercell distance
is 1800 m. The maximum D2D transmission distance is 50
m. The maximum transmission power of CUs is the same as
D2D pairs, i.e., pc

km,max = pd
im,max = 200 mW (23 dBm).

The constant circuit power pcir is 100 mW (20 dBm), and
the thermal noise power N0 is 10−7 W. We consider a total
of M = 6 cells. The channel gain between the transmitter
i and the receiver j is calculated as d−2

i,j |hi,j |2, where di,j

is the distance between the transmitter i and the receiver j,
hi,j is the complex Gaussian channel coefficient that satisfies
hi,j ∼ CN (0, 1). The numbers of CUs and D2D pairs in each
cell are Km = Nm = 10,∀m ∈ M. The PA efficiency η
is 35%. The simulation results are averaged through a total
number of 500 simulations. The locations of CUs and D2D
pairs are generated randomly in each simulation.

Fig. 2 shows the infeasibility ratio corresponding to various
QoS requirements. The minimum QoS requirement of CUs
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Fig. 2. Infeasibility ratio versus QoS requirements (Nm = Km = 10,
m = 1, · · · , 6, Uc

km,SEmin
= 0 ∼ 1 bits/s/Hz, 500 simulations).

U c
km,SEmin

is increased from 0 to 1 bits/s/Hz with a step
of 0.1, and the corresponding infeasibility ratio is obtained
through simulations. We observe that as the QoS requirement
increases, the infeasibility ratio of the conventional algorithm
increases dramatically, which shows that it is barely possible
to achieve higher QoS performance due to severe co-channel
interference. In comparison, the proposed algorithm that em-
ploys centralized interference mitigation schemes achieves a
nearly zero infeasibility ratio.

Fig. 3 and Fig. 4 show the EE performances of CUs and
D2D pairs corresponding to the number of game iterations,
respectively. We assume that both cellular and D2D pairs are
forced to stop transmission and wait for resource rescheduling
if the QoS requirement cannot be satisfied due to interference.
In this way, we take infeasible scenarios into considerations
and avoid using only good channel conditions of feasible
scenarios for unfair comparison. From Fig. 3 and Fig. 4,
simulation results show that the hybrid scheme improves the
EE performance of CUs by 14% and 71% and improves
the EE performance of D2D pairs by 8.29% and 65% for
U c

km,SEmin
= 0.2 and U c

km,SEmin
= 0.7, respectively. The

improvement is increasing as the QoS requirement increases
since the infeasibility ratio is much higher in higher QoS
requirement scenario. An amazing fact is that D2D pairs also
benefits from the proposed scheme, due to reduced aggregate
interference levels and improved infeasibility ratio. We also
observe that the improvement for D2D pairs is less than that
of CUs since CUs has a higher priority.

VI. CONCLUSION

In this paper, we proposed a hybrid resource allocation
scheme which takes advantage of both the centralized inter-
ference mitigation algorithms and distributed power allocation
algorithm. Simulation results show that the proposed scheme
achieves a nearly zero infeasibility ratio, and improves the EE
performance by 71% for CUs and 65% for D2D pairs when
U c

km,SEmin
= 0.7 bits/s/Hz. Future works will analyze the

impact of channel estimation errors.
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Fig. 3. Average energy efficiency of CUs versus the number of game iterations
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