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Abstract 

An interatomic potential for the classical molecular dynamics (MD) simulation of sodium silicate glasses 

was proposed. The ionic charges for this interatomic potential were determined by Mulliken population 

analysis via the density functional theory (DFT) calculation of alkali silicate crystals. The Si-O interatomic 

potential energy curve was determined by molecular orbital (MO) calculation of SiO2+. The results of classical 

MD simulations using the new interatomic potential were consistent with the experimental trends in 

interatomic distance, thermal expansion coefficient, molar volume, Si-O-Si bond angle distribution, and Qn 

ratio with respect to the sodium composition of the silicate glass. The proposed interatomic potential improves 

the reproducibility of the ring size distribution in silicate glasses compared to conventional potentials. 

Key words: molecular dynamics simulation, sodium silicate glasses, first-principles calculation, material 

design 

 

1. Introduction 

The physical properties of glasses, including the self-diffusion coefficient of ions, electrical conductivity, 

thermal expansion, bulk modulus, specific heat, and glass transition temperature, are known to be related to 

the glass composition. For example, the thermal expansion coefficient of sodium silicate glasses increases 

with increasing Na2O/SiO2 ratio [1]. This effect is attributed to the change in atomic structure from a three-

dimensional network structure to a two-dimensional flexible structure as the Na2O/SiO2 ratio increases [2]. 

Because the physical properties of glasses are closely related to the atomic structures of those glasses, the 
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development of techniques to predict glass properties based on glass composition is important for the study 

of new functional glasses.  

First-principles calculations have been widely used to investigate new functional crystals. However, 

simulations of glasses involve many nuclei and electrons, and the nonperiodic structures of glasses require 

large calculation models. In addition, the derivations of the self-diffusion and viscosity coefficients of glasses 

require calculations with long time scales [3]. Molecular dynamics (MD) simulations based on classical 

mechanics are suitable for the investigation of glasses because of their lower computational cost compared to 

first-principles calculations. 

Interatomic potential function for application in classical MD simulations of oxide glasses have been 

developed using first-principles calculations. The interatomic potentials for Si-O, P-O, and Al-O pairs were 

determined from first-principles calculations of tetrahedron clusters [4-7]. These interatomic potentials were 

then applied to classical MD simulations of silicate crystals/glasses, aluminophosphate crystals, and 

aluminosilicate crystals [4-7]. The development of these interatomic potentials has enhanced the reliability 

of classical MD simulations; however, this method, used to derive the above potentials, cannot necessarily be 

applied to generate the interatomic potentials needed to simulate all oxide glasses. 

Silicate, aluminosilicate, and phosphate glasses essentially form only tetrahedral structural units, whereas 

borate glasses are formed by two structural units: BO3 and BO4. In these cases, the interatomic potentials 

cannot be easily derived from first-principles cluster calculations. Cluster models for the first-principles 

calculation of glasses without experimental structural data are also difficult to obtain.  
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 The Si-O bonds in SiO2 glass are weakened when network-modifying oxides (e.g., Li2O and Na2O) are 

introduced [8]. Noritake et al. [9] and Cormack et al. [10] used empirical formulae to determine the charges 

of silicon and oxide ions as functions of the Na2O/SiO2 ratio in sodium silicate melts/glasses for classical MD 

simulation. Sawaguchi et al. [11] also simulated lithium borate glasses/melts using classical MD with ionic 

charges determined by empirical equations depending on the Li2O/B2O3 ratio. However, no method to 

determine the optimal ionic charges based on glass composition for use in classical MD simulation has been 

established. 

The target of this study is sodium silicate glass, which is a basic component of practical glasses. First, 

choosing a function as the interatomic potentials applying to classical MD simulations of the glasses, then we 

studied a method of finding an appropriate parameter values appeared in the potential function by first-

principles calculations. The Si-O bond distance does not vary with glass composition [12-15], suggesting that 

the equilibrium distance of the Si-O interatomic potential must be fixed independent of the glass composition 

at ordinary temperature and pressure. In contrast, the charges of silicon and oxide ions are thought to depend 

on glass composition; this dependency is considered to contribute to the weakening of the Si-O bond with 

increasing alkali oxide ratio in silicate glasses [8]. This relationship must be reflected in the depth of the Si-

O interatomic potential for each glass composition.  

In this study, an Si-O interatomic potential was developed based on the results of nonempirical molecular 

orbital (MO) calculations of an SiO2+ cluster. We selected this diatomic molecular cluster so that the 

coordination number of the polyhedron can correspond with changes due to temperature and pressure [16]. 
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Based on these calculations, the shape of the Si-O interatomic potential function was fixed, with the exception 

of the potential depth, which changed with glass composition. The ion charges of silicate glasses were 

estimated from the results of density functional theory (DFT) calculations of alkali silicate crystals with 

related sodium silicate glass composition. The results of the two different calculations were combined to 

develop the complete Si-O interatomic potential function. Finally, a unique interatomic potential for the 

classical MD simulation of sodium silicate glass was obtained for each glass composition as described by the 

Na2O/SiO2 ratio. MD simulations of sodium silicate glasses with several compositions were then performed 

using the obtained interatomic potentials, and the results were evaluated using experimental results.  

 

2. Determination Method of Interatomic Potentials 

2-1. Interatomic Potential Function 

  In this study, we applied the interatomic potential function reported by Sakuma et al. [17], which has been 

shown to accurately reproduce the physical properties and structures of oxide crystals. The interatomic 

potential, Uij(rij), is shown in 

   

 

where rij is the distance between ions i and j. The first term is the Coulomb force term, where z is the ionic 

charge, ε0 is the dielectric constant of vacuum, and e is the elementary charge. The second term is the short 

repulsive force term, where ai and bi are parameters, and the third term is the van der Waals force term with 
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parameter ci. The fourth term is added as a covalent force term to account for Si-O interactions, where D1ij, 

β1ij, D2ij, and β2ij are parameters. The constant f0 is 4.185 kJ nm−1 mol−1. 

 

2-2. Determination of Ionic Charges 

The ionic charges zi were determined by DFT calculations of alkali silicate crystals using the CASTEP 

code [18]. A plane-wave basis and norm-conserving pseudopotential method with the GGA PBE exchange-

correlation function [19] were applied. The target crystals [20-32] and applied k-point set are listed in Table 

1. The charges of ions in crystals of lithium silicate and potassium silicate systems were also calculated for 

comparison. The following norm-conserving pseudopotentials were used: Li, 2s1; Na, 2s22p63s1; K, 3s23p64s1; 

Si, 3s23p2; and O, 2s22p4
. 

The crystal structures were optimized using a cutoff energy of 1500 eV and an SCF tolerance of 5.0 × 10−7 

eV/atom. The optimized lattice parameters are listed in Table 1 along with error based on the literature values 

[20-32]. The largest error was 2.88%. The ionic charges zi in (1) for silicate crystals were calculated from 

Mulliken population analysis [33, 34] for each crystal. The validity of this calculation method was confirmed 

by MD simulations of alkali silicate crystals and glasses in previous works [16, 35]. The cutoff distance used 

to count electrons belonging to each nucleus was fixed to 0.3 nm for all target crystals. Figure 1 shows the 

Mulliken charges of ions in alkali (A) silicate crystals with compositions of xA2O-(1-x)SiO2. The charges of 

the silicon and alkali ions decrease with increasing x. The absolute values of Mulliken charges are recognized 

as having low reliability [33]. MD simulations of sodium silicate glasses using charges based on the Hirshfeld 
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method [36], which is another charge analysis method, poorly reproduced the glass structures [16]. In contrast, 

the trends in Mulliken charge with chemical composition seem to be meaningful; thus, Mulliken charges were 

used in this study. The ionic charges zNa, zSi, and zO were given by (2-1), (2-2), and (2-3), respectively, as 

functions of composition x:  

 

 

 

 

The constants in (2-1) and (2-2) were determined in consideration of the empirical values of zNa and zSi 

used in a previous study [11]. Equation (2-3) for zO was obtained from the charge neutrality of the crystals.  

 

2-3. Determination of Parameters ai, bi, ci, D1ij, β1ij, D2ij, and β2ij in the Interatomic Potential Function   

The values of ai, bi, ci, D1ij, β1ij, D2ij, and β2ij in (1) for the Si-O interatomic potential were determined by 

fitting an interatomic potential curve to an Si-O energy surface derived from a nonempirical MO calculation 

of an SiO2+ cluster model, as in [4, 5, 7]. The MO calculation used the Gaussian09 code [37] with the second-

order Møller-Plesset (MP2) method [38] and 6-311+g(d) [39] basis set. The values of parameters ai, bi, ci, 

D1ij, β1ij, D2ij, and β2ij for Si and O were determined for each x because the ionic charge zi also depends on x, 

as shown in (2-1), (2-2), and (2-3). The reliability of the interatomic potential was confirmed by the 

reproducibility of the Si-O distance in the MD simulations of alkali silicate crystals. 
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Figure 2 shows the calculated Si-O potential energy surface and the fitting result for silicate glass (x = 0). 

The equilibrium Si-O distance derived from the SiO2+ model was 0.146 nm. Table 2 shows the determined 

interatomic potential parameters for each composition, where aNa, bNa, and cNa are empirically determined 

values [9].  

 

3. Classical MD Simulation Method 

 MD simulations of sodium silicate glasses were performed using the MXDORTO code [40] with a step time 

of 2.0 fs. The Ewald method was applied to calculate the Coulomb force and potential. Although constant-

volume conditions were applied in previous works [10, 41, 42], the NPT ensemble was chosen in this work 

to allow the simulation of a wide temperature range. For each composition, 4950 particles (N) were placed in 

a cubic MD cell with side lengths of 4.5 nm using a random-number method. Next, 250,000 steps were run 

at 0.1 MPa (P) at 3000 K (T) for structural relaxation. It was confirmed that the internal energy became stable. 

The glassy state of the system was obtained using a stepwise cooling scheme with a cooling rate of 0.01 

K/step. To obtain a stable state, isothermal simulation was performed following the cooling step using the 

following sequence: 250,000 steps at 3000–2100 K and 500,000 steps at 1800–300 K. The steps at 1800-300 

K were increased step time for structural relaxation because the movement of ions in the process from melt 

to glass slows down. In order to investigate the glass structure at room temperature and the reproducibility of 

the expansion rate, 10,000 step analysis data of 300 K and 600K was used.  

  In this work, two different interatomic potentials were applied in MD simulations of glasses with different 
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compositions: (1) the interatomic potential derived in this work based on first-principles calculations, named 

IP1, and (2) the interatomic potential determined empirically in a previous work [11], named IP2. The 

abbreviations IP1 and IP2 are also used to denote the results of MD simulations using the respective potentials.  

 

4. Results 

 Table 3 shows the MD simulation results for the first neighboring interatomic distances (dSi-O and dNa-O) in 

sodium silicate glasses. The values of dSi-O and dNa-O were determined as the peak top position of the nearest 

peak of pair correlation function. The dSi-O values determined from IP1 simulations of glasses with different 

compositions are consistent with reported results based on X-ray diffraction [12], EXAFS [13-15], and crystal 

structure data [20-32]. Similarly, the values of dNa-O for all x determined by the IP1 simulations are consistent 

with EXAFS results [13-15] and crystal structure data [27, 28]. The values of dSi-O and dNa-O determined from 

the IP2 simulations are shorter than the IP1 values for all x.  

Figure 3 shows the simulated molar volumes, V, of xNa2O-(1-x)SiO2 glasses. The IP1 simulations 

reproduced the downward trend in molar volume with increasing x reported in the literature [43, 44]; however, 

the absolute values of the IP1 molar volumes are larger than the literature values [43, 44]. The molar volumes 

of the IP2 simulations are consistent with the literature value [43, 44] for all x. 

 The thermal expansion coefficients of xNa2O-(1-x)SiO2 glasses were calculated by (3) using the molar 

volumes at 300 and 600 K: 
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  where V, T, and V300K are the molar volume, temperature, and molar volume at 300 K, respectively. Figure 

4 shows thermal expansion coefficients of xNa2O-(1-x)SiO2 glasses determined by MD simulations. The IP1 

and IP2 simulations successfully reproduced the increasing trend in thermal expansion coefficient with 

increasing x along with the absolute values reported in the literature [2]. 

Figure 5 shows the distributions of O-Si-O bond angles (θO-Si-O) and Si-O-Si bond angles (θSi-O-Si) in the 

simulated xNa2O-(1-x)SiO2 glasses. The θO-Si-O distributions for the IP1 and IP2 simulations are centered at 

109° for all x, and the distributions become sharper with increasing x. This suggests that strain on the SiO4 

tetrahedra in the glasses decreases with increasing x. The θSi-O-Si angles for the IP1 simulation are distributed 

between 120° and 180° for all x, whereas those for the IP2 simulation are distributed between 110° and 180°. 

The θSi-O-Si distribution of the IP1 simulation showed two peaks at 140° and 160°for x = 0. The distribution 

around 140°increased with increasing x. The distribution around 160°peak decreased with increasing x.  

  Qn is the ratio of classified SiO4 tetrahedron for all SiO4 unit, where n indicates the number of bridging 

oxygen atoms in a unit [45]. Figure 6 shows the Qn distribution of xNa2O-(1-x)SiO2 glasses at 300 K. In both 

the IP1 and IP2 simulations for x = 0 and 0.1, one or two three-coordinated silicon atoms were observed; 

these are recognized as abnormal structures caused by the limited simulation time scale and space. Therefore, 

the Qn values were determined in exclusion of the three-coordinated silicon atoms. Maekawa et al. [46] 

investigated the variation in Qn with x using 29Si MAS-NMR for glasses with 0.2 ≦ x ≦ 0.4 and reported 

that Q2 and Q3 increased with increasing x, whereas Q4 decreased. The IP1 simulation better reproduced Qn 
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compared to the IP2 simulation for 0.4 ≦ x ≦ 0.5.  

 

5. Discussion 

 Figure 7 shows the Si-O and Na-O Coulomb force zizj of IP1 and IP2 simulations. The Si-O of Coulomb 

force zSizO of IP1 and IP2 was increased with increasing x. Moreover, the IP1 simulations gradually increased 

in zSizO than the IP2 simulations. As shown in Table 2 (b), the zNazO of the IP2 simulations set by fixing the 

formal charge for all x. On the other hand, the charge of sodium of the IP1 simulations set so that it decreased 

as the x increased from the (2-1). The Na-O of Coulomb force zNazO of the IP1 simulations increases and the 

IP2 simulations decreases with increasing x. As denoted in Table 3, the Si-O bond lengths, dSi-O, of glasses 

were greater in the IP1 simulation than in the IP2 simulation. This is attributed to the decrease in the Coulomb 

interaction between Si and O. The Na-O distances, dNa-O, were also the same reason.  

In generally, the interatomic potential for MD simulations of glasses is determined to reproduce the glass 

structures and the physical properties by trial and error [10, 11]. In the case of the conventional MD simulation 

of glasses [10, 11], the interatomic potential has been applied to even if the quantitative ratios of the elements 

were changed, as long as they were composed only of the same element. However, it had been found that 

applying the same interatomic potential to each composition deteriorates the reproducibility of the glass 

structure. For this reason, only the ionic charge (zSi and zO) of the Coulomb force term had been empirically 

responsible for the compositional change correspondence [11]. IP2 is also reproduced the molar volumes of 

literature value in sodium silicate glasses by trial and error. As shown in Figure 3, the molar volumes 
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determined by the IP2 simulations are consistent with literature values [43, 44]. However, the Si-O distances 

for every glass composition simulated by IP2 are shorter than corresponding literature values (Table 3), 

indicating that the glass structures simulated by IP2 are distorted. On the other hand, IP1 is determined for 

each composition by the first-principles calculations. Since the IP1 is not determined by trial and error, the 

time required for the setting procedure can be shortened over IP2. Figure 3 shows that the molar volumes of 

the IP1 simulation do not coincide with the literature [43, 44], although the decreasing tendency of molar 

volume as x increases from 0 to 0.5 is reproduced; we regard this tendency as important to understand the 

dependence of the glass structure on composition. The reproducibility of the value of physical properties and 

structure of glasses is deviated from the difference between the simulation and the actual system due to 

difference in environmental conditions. It is considered that the value of molar volume of IP1 simulation is 

larger than the literature value due to the influence of the fast cooling rate of simulation. In order to reduce 

the difference between this simulation and the literature value, it is conceivable to greatly increase the particle 

number and time scale. However, we think that it is difficult in terms of time cost to fill the difference 

efficiently in material design. Because IP2 is represented the simulation result that matches the molar volume 

of the literature value without considering the fast cooling rate of the simulation, it is considered that the 

distorted network structure is simulated. Although consistency between simulation results and literature 

values is very important, we believe that the material design simulation is required to the high reproducibility 

of tendency of structure and physical property corresponded with composition. The tendency of the molar 

volume corresponding the composition change of IP1 simulation improved the SiO2 rich composition range 
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as compared with IP2 simulation. In addition, the composition dependences of the network structure (e.g. Qn 

ratio) determined by the IP1 simulations are reasonable better than those of the IP2 simulations. Therefore, 

considering the particle number and the time scale difference of the actual system and simulation, we believe 

that the molar volumes of IP1. Comparing the thermal expansion calculated by IP1 and IP2 simulations with 

measured values, there is not much difference. This suggests that IP1 can simulate with the same precision 

as the determination method for fitting interatomic potential to literature values by trial and error like IP2. 

The θSi-O-Si angle in silicate glasses has been reported to be distributed between 120° and 180° [12]; 

similarly, 17O DAS-NMR investigation of 0.2K2O-0.8SiO2 glass determined angles in the range of 120° or 

130° to 180° [47]. The angle distributions determined in this work (Figure 5) are similar to the literature 

values [12, 47], and results of the IP1 simulations were more accurate than those of the IP2 simulations.  

Figure 8 shows the Si-O ring size distributions for the simulated xNa2O-(1-x)SiO2 glasses. The ring size is 

defined by the number of Si atoms in each ring. For the IP1 simulation with x = 0, six- to eight-membered 

rings were more abundant than small-sized rings, and the number of six- to eight-membered rings decreased 

with increasing x. In generally, three- to five-membered rings are considered to be composed of smaller angles 

than 6- to 8-membered rings. From Figures 6 and 8, it is considered highly likely that the three- to five-

membered ring and the six- to eight-member ring correspond to the angle peaks of 140 ° and 160 °, 

respectively. Henderson et al. [13] reported that the nearest Si-Si distance became shorter with increasing x 

based on an investigation of the XANES Si-K-edge energy shifts in Na2O-SiO2 glasses; the observed shifts 

in θSi-O-Si angles in this work are consistent with these experimental results. In Figure 5, the distributions of 
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θSi-O-Si angles shift towards smaller angles with increasing x. On the other hand, there are more three-

membered rings in glasses with x = 0.4 and 0.5 in the IP2 simulations compared to in the IP1 simulations; the 

presence of these three-membered rings in the IP2 simulations might reflect the distortion of the glass 

structure. 

As shown in Figure 6, the Qn ratios derived from the IP1 and IP2 simulations do not agree with the NMR 

result [46]. It is difficult to simulate using an enough cooling rate to reproduce the actual glass density in the 

MD simulation under NPT ensemble in the state close to real system. Moreover, there is a difference between 

the particle number of the model simulated and the calculation time compared with the real system. Therefore, 

it is conceivable that the calculated Qn ratio value does not match the result of the actual system.    

From the viewpoint of new glass material design, we think that it is important to reproduce the tendency 

of the structure and the physical properties corresponded with composition change from little or no 

experimental data. Since IP 1 is set using first principles calculation, we think that only basic crystal structure 

data can correspond to various compositions. IP1 is determined the interatomic potentials for each 

composition based on the results of the first-principles calculations and showed that the reproducibility of 

tendency of the structure and the physical property values of sodium silicate glasses with composition is 

better than IP2. We think that IP1 will be an effective determination method of interatomic potential for MD 

simulation of glass material design. 
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6. Summary 

An interatomic potential for application in the classical MD simulation of sodium silicate glasses was 

developed using first-principles calculations. The ionic charges applied in the interatomic potential were 

determined by Mulliken population analyses of alkali silicate crystals. The Si-O interatomic potential was 

determined by fitting to a potential energy surface of an SiO2+ model established based on nonempirical MO 

calculations. The MD simulations using this new interatomic potential reproduced experimental trends in 

interatomic distance, molar volume, thermal expansion coefficient, Si-O-Si bond angle distribution, and Qn 

ratio. Further investigation is needed to evaluate this improved interatomic potential for simulated glasses 

containing three or more components (e.g., sodium ions and other alkali ions). 
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Figure 1: Mulliken charges of ions in several xA2O-(1-x)SiO2 crystals (listed in Table 1).  
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Figure 4: Thermal expansion coefficients of xNa2O-(1-x)SiO2 glasses obtained from simulations at 300 and 

600 K. 
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Figure 5: Distribution of O-Si-O (θO-Si-O) and Si-O-Si (θSi-O-Si) bond lengths in xNa2O-(1-

x)SiO2 glasses simulated at 300 K using IP1 (a) and IP2 (b). Dashed and solid lines show θO-

Si-O and θSi-O-Si, respectively. 
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Figure 8: Ring size distributions in xNa2O-(1-x)SiO2 glasses simulated at 300 K using IP1 (a) and 

IP2 (b). 
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Table 1: The deviation denotes the difference of structural optimization by DFT. 

Crystals ref. Lattice parameter (deviation, %) k-points Number of  

ions in cell 

  a / nm b / nm c / nm α / deg. β / deg. γ / deg.   

α-SiO2 [20] 0.49134 (2.20) 0.49134 (2.20) 0.54052 (1.95) 90 (0) 90 (0) 120 (0) 3×3×4 9 

Li2Si3O7 [21] 1.9648 (1.27) 0.59969 (0.73) 0.48691 (1.37) 90 (0) 90 (0) 90 (0) 1×2×3 48 

Li2Si2O5 [22] 0.5807 (1.09) 1.4582 (1.30) 0.4773 (1.51) 90 (0) 90 (0) 90 (0) 2×1×3 36 

Li2SiO3 [23] 0.9392 (0.47) 0.5397 (0.54) 0.466 (1.71) 90 (0) 90 (0) 90 (0) 2×3×3 24 

Li6Si2O7 [24] 0.7715 (0.67) 0.7715 (0.67) 0.488 (0.79) 90 (0) 90 (0) 90 (0) 2×2×3 30 

Li4SiO4 [25] 0.7519 (0.74) 0.5648 (0.56) 0.5031 (0.61) 124.15 (0.05) 97.18 (0.21) 100.26 (0.34) 2×3×3 18 

Li8SiO6 [26] 0.54243 (0.31) 0.54243 (0.31) 1.0626 (0.23) 90 (0) 90 (0) 120 (0) 3×3×2 30 

Na2Si2O5 [27] 0.6409 (1.35) 1.5422 (1.44) 0.4896 (1.40) 90 (0) 90 (0) 90 (0) 2×1×3 36 

Na2SiO3 [28] 1.043 (2.11) 0.602 (2.63) 0.481 (1.50) 90 (0) 90 (0) 90 (0) 1×2×3 24 

Na4SiO4 [29] 0.5576 (1.34) 0.5576 (1.47) 0.8393 (1.78) 80.92 (0.17) 71.84 (0.09) 67.44 (0.19) 3×3×2 18 

K2Si2O5 [22] 1.63224 (2.88) 1.1243 (1.25) 0.9919 (1.90) 90 (0) 115.97 (0.61) 90 (0) 1×1×2 108 

K6Si2O7 [30] 0.6458 (0.81) 0.8887 (0.75) 1.0879 (1.25) 90 (0) 125 (0.23) 90 (0) 3×2×2 30 

K4SiO4 [31] 1.037 (0.74) 0.6392 (1.51) 1.0366 (0.88) 90 (0) 112.83 (0.63) 90 (0) 1×2×1 36 

Li2O [32] 0.4628 (0.65) 0.4628 (0.65) 0.4628 (0.64) 90 (0) 90 (0) 90 (0) 4×4×4 12 

Na2O [32] 0.555 (1.24) 0.555 (1.24) 0.555 (1.24) 90 (0) 90 (0) 90 (0) 4×4×4 12 

K2O [32] 0.6436 (0.74) 0.6436 (0.74) 0.6436 (0.74) 90 (0) 90 (0) 90 (0) 2×2×2 12 
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Table 2: Determined interatomic potential parameters for the simulation of xNa2O-(1-x)SiO2 glasses.  

(a) IP1 
    

x = 0 z a / nm b / nm c / (kJ mol)1/2 nm3 

O neutrality 0.18464 0.01411 0.05605 

Si −0.50x+2.4 0.10007 0.00799 0.00000 

 D1ij / kJ mol−1 β1ij / nm−1 D2ij / kJ mol−1 β2ij / nm−1 

Si-O 627600.00 52.05 83680.00 34.21 

     

x = 0.1 z a / nm b / nm c / (kJ mol)1/2 nm3 

O neutrality 0.18421 0.01401 0.05605 

Si −0.50x+2.4 0.09967 0.00798 0.00000 

 D1ij / kJ mol−1 β1ij / nm−1 D2ij / kJ mol−1 β2ij / nm−1 

Si-O 627600.00 52.06 83680.00 34.20 

     

x = 0.2 z a / nm b / nm c / (kJ mol)1/2 nm3 

O neutrality 0.18397 0.01396 0.05605 

Si −0.50x+2.4 0.09944 0.00797 0.00000 

 D1ij / kJ mol−1 β1ij / nm−1 D2ij / kJ mol−1 β2ij / nm−1 

Si-O 627600.00 52.06 83680.00 34.19 

     

x = 0.3 z a / nm b / nm c / (kJ mol)1/2 nm3 

O neutrality 0.18362 0.01391 0.05605 

Si −0.50x+2.4 0.09930 0.00797 0.00000 

 D1ij / kJ mol−1 β1ij / nm−1 D2ij / kJ mol−1 β2ij / nm−1 

Si-O 627650.21 52.01 83680.00 34.17 
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x = 0.4 z a / nm b / nm c / (kJ mol)1/2 nm3 

O neutrality 0.18326 0.01386 0.05605 

Si −0.50x+2.4 0.09914 0.00796 0.00000 

 D1ij / kJ mol−1 β1ij / nm−1 D2ij / kJ mol−1 β2ij / nm−1 

Si-O 627696.23 51.96 83680.00 34.15 

     

x = 0.5 z a / nm b / nm c / (kJ mol)1/2 nm3 

O neutrality 0.18300 0.01383 0.05605 

Si −0.50x+2.4 0.09902 0.00796 0.00000 

 D1ij / kJ mol−1 β1ij / nm−1 D2ij / kJ mol−1 β2ij / nm−1 

Si-O 627725.52 51.92 83680.00 34.14 

     

 z a / nm b / nm c / (kJ mol)1/2 nm3 

Na −0.25x+1.0 0.13220 0.01150 0.01227 

     

(b) IP2 
    

 z[11] a / nm b / nm c / (kJ mol)1/2 nm3 

O neutrality 0.18610 0.01510 0.05605 

Si 2.4+1.6x/(3x-4) 0.10120 0.00830 0.00000 

Na 1.0000 0.13220 0.01150 0.01227 

 D1ij / kJ mol−1 β1ij / nm−1 D2ij / kJ mol−1 β2ij / nm−1 

Si-O 222170.40 50.00 13849.04 22.40 
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Table 3: Si-O and Na-O bond lengths in xNa2O-(1-x)SiO2 glasses estimated from the pair 

correlation function simulated at 300 K. 

x                               Distance / nm 

 IP1 IP2 References 

0 dSi-O  0.164 0.157 0.162(g)a / 0.1608(g)b / 0.159(c)c 

0.1 dSi-O 0.164 0.157 ――― 

 dNa-O 0.225 0.221 0.232(g)d 

0.2 dSi-O 0.164 0.157 0.1617(g)b 

 dNa-O 0.226 0.225 ――― 

0.3 dSi-O 0.164 0.157 0.1668(g)b  / 0.163(g)e†/ 0.156-0.163(c)f† 

 dNa-O 0.230 0.227 0.235(g)e†/ 0.228-0.237(c)f† 

0.4 dSi-O 0.164 0.158 0.1586(g)b 

 dNa-O 0.231 0.225 ――― 

0.5 dSi-O 0.164 0.158 0.155-0.167(c)g 

 dNa-O 0.232 0.223 0.224-0.244(c)g 

(g) : glass   (c) : crystal        † x = 0.33  

aref. [12]  bref. [13]  cref. [20]  dref. [14]  eref. [15]  fref. [27]  gref. [28]   

 


