
Triple-L: Improving CPS Disk I/O Performance in
a Virtualized NAS Environment

言語: English

出版者: IEEE

公開日: 2017-08-23

キーワード (Ja):

キーワード (En): Cyberphysical systems (CPS), disk I/O,

image file, network-attached storage (NAS),

virtualization

作成者: LI, Dingding, DONG, Mianxiong, TANG, Yong,

YANG, Laurence T., 太田, 香, ZHAO, Gansen

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10258/00009439URL

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY 2015 1

Triple-L: Improving CPS Disk I/O Performance in
a Virtualized NAS Environment

Dingding Li, Mianxiong Dong, Yong Tang, Laurence T. Yang, Kaoru Ota, and Gansen Zhao

Abstract—Network-attached storage (NAS) provides cyber-physical systems (CPS) with the scalable, efficient and reliable backing
storage, such as the mobile virtual desktop based on cloud infrastructure. Within this storage architecture, virtual machine instances
(VMs) running in the NAS client usually receive data from the complex physical world and then persist them in the neat cyberspace in
NAS sever. In this paper, we propose Triple-L to improve VM disk I/O performance in the NAS architecture. According to the specific
storage semantic, Triple-L decouples VM image file into several sub-files at the host layer, and then selectively moves them into NAS
client. In such a way, a VM disk I/O request may be proceeded locally in NAS client, instead of walking the external networking path
repetitively between NAS server and client. We have implemented Triple-L in a Xen-based NAS system. An accessory solution for
dealing with storage failure as well as VM live migration on Triple-L is also discussed and evaluated. The experimental result shows
that our work can effectively improve the disk I/O performance of VMs. Meanwhile, it brings moderate overhead for VM live migration.

Index Terms—Cyber-physical systems, virtualization, disk I/O, network-attached storage, image file.

F

1 INTRODUCTION

A typical cyber-physical system (CPS) produces mas-
sive and various (big) data from the complex phys-

ical world and thus challenges the storage in cyberspace
from performance, reliability, real-time and scalability. To
meet these requirements, modern CPS usually adopts the
network-attached storage (NAS) to act as the backing stor-
age, presenting the feature of cloud-integrated CPS (CCPS)
[1] [2]. Taking mobile virtual desktop as an illustrative ex-
ample, a mobile device in the wild connects a cloud desktop
environment via virtual networking computing protocol
(VNC), and the end-users could operate their documents
in the mobile environment just as in a local-desktop system
[3] [4]. Specifically, this kind of desktop environment is often
provided by a virtual machine (VM) in the cloud infrastruc-
ture, through the maturing technology called virtualization.

Modern public cloud infrastructures usually use virtu-
alization to split the underlying host resource into multi-
ple virtual computing resources [5]. Each of them can be
encapsulated as the specific operating system (OS), called
virtual machine (VM) or guest operating system, and then
be rented to external physical system components (e.g.,
sensors, mobile device, robots, etc.) for deploying their own
cyberspace services or CPS-based applications (e.g., virtual
desktop), with hardware-level isolation among each other
[6] [7]. In such a server consolidation way, cloud provider in
a CPS system achieves improving the hardware utilization,

• D. Li, Y. Tang and G. Zhao are with the School of Computer Science,
South China Normal University, Guangzhou 510613, China.
E-mail: {dingdly.scnu, zhaogansen}@gmail.com, ytang4@qq.com.

• M. Dong and K. Ota are with the Department of Information and
Electronic Engineering, Muroran Institute of Technology, Muroran 050-
8585, Japan.
E-mail: {mx.dong, ota}@csse.muroran-it.ac.jp

• L. Yang is with the Department of Computer Science, St. Francis Xavier
University, Antigonish, NS, B2G 2W5, Canada.
E-mail: ltyang@stfx.ca

Manuscript received January XX, 2015; revised XXX XX, 2015.

saving the energy cost and enhancing the rental income of
computing capabilities in their background systems [8].

At the storage subsystem, as shown in Figure 1, cloud
providers in a CPS system incline to storing VM’s disk
image file in NAS server [9]. Each VM disk image file
corresponds to the specific persist data spawned by one
or more external physical system components. In this way,
the block data from the physical world are focused into
a few of dedicated storage servers (namely NAS servers),
allowing system administrators to apply a more flexible,
reliable and scalable policy to manage the persistent data
of a CPS system [10]. For example, compared with direct-
attached storage (DAS), in which VM live migration must
copy a block of disk data from one source host to another
destination host [11], NAS can significantly accelerate this
procedure without moving persistent data.

However, due to VM disk I/O request being required
to traverse the network link, NAS has the longer processing
chain on VM’s storage path, incurring the extra round-trip
latency. On the other hand, NAS also implicitly narrows this
storage path because a batch of VM disk I/O requests from
one NAS client may congest another clients’ requests at the
central or edge switch, resulting in the jammed and delayed
NAS connection. And besides, the transformation of data
granularity along a typical virtualized NAS protocol stack
will further complicate this situation.

Figure 2 illustrates the above procedure. When a CPS-
based application running in a VM produces a read/write
system call (byte-granularity), denoted by Rvf , to its file
system, Rvf will be converted into a group of virtual block-
level I/O requests (denoted by {Rvb}) at the block layer
(kilobytes-granularity), even though Rvf only reads/writes
a few of bytes from/to the underlying virtual block device.
For example, the target data of Rvf , T , crosses the boundary
of two adjacent disk blocks in the virtual block device,
requiring at least two block-level requests to finish this
I/O invocation. After that, frontend driver passes {Rvb}

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY 2015 2

⋯⋯⋯⋯

⋯⋯

⋯⋯

Fig. 1. Following the C/S design, NAS acts as the backing storage for a
CCPS system. Generally, in NAS client a VM with CPS-based applica-
tion will interact with NAS server via networking when the application or
its resided file system issues disk I/O request. Thus, the NAS connection
may be congested if a large amount of VMs or CPS-based applications
issuing the concurrent disk I/O requests.

into the backend driver and then be transformed into a
set of physical read/write system calls, denoted by {Rhf},
in hypervisor layer [12]. Finally, backend driver transfers
{Rhf} to the NAS server via the specific NAS protocol (e.g.
Samba and NFS). Depending on the particular nature of a
network environment (e.g. MTU), {Rhf} may further being
splitted into more network packages, denoted by {NMTU}.
In summary, even the I/O target data of a CPS-based
application only covers a few of bytes, the complicated
virtualized NAS storage stack will entrain extra innocent
data to be transferred over NAS connection [13].

Even worse, in the CPS environment with virtualized
NAS system, many external physical system components
would connect the shadow VM and transfer the data col-
lected in the wild into cyberspace. During this procedure,
physical system varies irregularly alongside the time elaps-
ing, thus producing the sustained and small random I/O in
the storage system of cyberspace. Therefore, compared with
a general virtualized environment, a CPS environment may
stress more scatter and uncertain I/O on the shared storage
server. In a general environment, instead, the I/O behav-
ior of VM associates heavily with the end-users operating
styles, in which the difference of most of them are veiled
by the well-defined application interface, such as the text
editor. Finally, a general environment will present the more
compact and sequential disk I/O manner than the CPS one.

Therefore, a CPS system with the virtualized backing
NAS storage, experiences the longer and narrower storage
path than DAS, especially for those VMs who often carrying
read-modify-write I/O workloads. A simple write system call
issued by one VM’s CPS-based application, is required to
read the target data from NAS server first and then write
them back to server again, incurring multiple round-trip
latencies and thus inevitably producing adverse effects on
the whole CPS disk I/O performance.

1.1 Case Study

We have studied this issue in a small-scale CCPS which
based on the virtual desktop infrastructure (VDI) [14] [15]. A
certain number of users (from 1 to 25) boot their VMs within

a very narrow time frame. A NAS server and five clients
constitute the initial experimental platform. All of them
have dual Quad-Core Intel Xeon(R) 1.6GHz processors, 8GB
DDR3 RAM, 160GB S-ATA II hard drive with 7200 RPM,
and dual Full-duplex Intel Pro/1000 Gbit/s NIC. A Gigabit
Ethernet network switch is used to connect them. The driver
domain (namely the host OS) in NAS client is running
64-bit CentOS 6.5 distribution and the hypervisor is the
newest Xen 4.4 with Linux 3.10.1 kernel. The VMs in NAS
client (namely VMs) are running the minimum installation
of CentOS 6.5, each with 512MB memory allocation, 16GB
disk capacity, QCOW2 image format, Linux 2.6.32 kernel,
GNOME3 desktop and the ext4 file system. NFS data trans-
fer buffer sizes are set to 64KB (rsize) and 256KB (wsize).
NFS server sets the synchronous flag to async, trying to
keep the network bandwidth saturated.

⋯⋯

Fig. 2. Virtualized NAS I/O stack. Even a CPS-based application read-
ing/writing a few of bytes from/to the underlying file system, the com-
bination of VM and NAS will complicate and deepen the I/O path of a
simple system call which derives from a VM’s application.

1.2 Analysis and Background
According to different configurations, Table 1 depicts the
VM startup time as well as the amount of transferred data
over NFSv3 protocol. 1-VM-DAS, in which only one VM
interacting with local disk, acts as the baseline to compare
with the NAS ones. For 1-VM-NAS-1-Client, where only
one VM connecting with the NAS server, spends about 42
seconds to finish the startup procedure, without any inter-
ventions from another VMs. It achieves 71.4% performance
of 1-VM-DAS due to the extra network delay between VM
and its persistent data. It should be noted that about 11MB
data is added into the network transferring, from 231MB to
240MB, on account of the data encapsulation along NFSv3
protocol stack, as Figure 2 illustrating.

Five co-located VMs boot simultaneously in the case
of 5-VMs-NAS-1-Client. Since only one client is used
in this scenario, the procedure of VM startup, a read-
intensive workload, forms a performance bottleneck in the
server’s network adapter, thus congesting the data sender.
In this case, end-users only gains only 32.6% performance of
1-VM-DAS and feels an explicit stagger subjectively. Finally,
25-VMs-NAS-5-Clients aggravates this congestion by
multiplying the number of VM from 5 to 25, in which each
client hosts 5 running VMs. The NAS connections between
server and client are overwhelmed by these booming data

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY 2015 3

requests. On average, one end-user waits up to 380 second,
which is 13 times longer than 1-VM-DAS, to completely
acquire his virtual desktop. This problem, being termed as
boot storm, causes the interaction of virtual desktop slow
and unresponsive, even makes a VDI-based CPS project
unpopular among end-users.

TABLE 1
Time spent and the amount of data transferred over NFSv3 protocol

during VM startup. The VM startup time is the sum of VM booting, user
logging and system initialization. We use the mean of 5 trials by

recording the average time of all end-users launching their virtual
desktops.

Configuration VM Startup Time
(Seconds)

Data Transferred
(MB)

1-VM-DAS-1-Client 30 231
1-VM-NAS-1-Client 42 240
5-VMs-NAS-1-Client 92 1,267
25-VMs-NAS-5-Clients 388 6,320

Unfortunately, in addition to boot storm, there are quite
a few similar issues in current VM-based cloud infrastruc-
tures. For example, auto-update routine in user VM is usually
being triggered at the fixed time in a day. At cluster-scale,
this operation perhaps spawns a lot of concurrent write-
intensive workloads (a read-modify-write style) to flood the
underlying NAS connection, resulting in the poor VM disk
I/O performance. Swapping, for another example, needs to
exchange pages from disk to memory when the system
memory runs out. NAS deepens this swapping path in light
of the extra network delay, and a NAS congestion would
further deteriorate the VM’s swapping velocity.

In summary, with a large amount of live VMs, how
to effectively improve the VM disk I/O performance in
a congested NAS environment has been a big challenge.
Upgrading network equipment, such as migrating a 1Gb
network to the 10Gb one, is a potential solution to relieve
above issues, but it comes at cost of huge investment on
hardware. Only taking switch as an example, Cisco 10Gb
switches are up to about 18 times (on average) more expen-
sive than the 1Gb ones according to the latest price list on
Amazon.com [16]. Therefore, there is tradeoff here between
VM disk I/O performance and hardware investment.

1.3 Our Contributions
In this paper, we propose a software-based method, Triple-
L, to improve the VM disk I/O performance in a typical
CCPS environment. Triple-L decouples VM image file at
different storage semantics and then distributes these sub-
files into the NAS clients, where is usually capable of the
persistent storage to act as the local NAS cache. In this way,
instead of experiencing the NAS connection with uncertain
performance, VM disk I/O requests who targeted at these
sub-files can be served locally, thus walking the shorter and
wider storage path than NAS.

Specifically, Triple-L includes three sub-optimizations:

• Shadow-base, transfers the VM base image into NAS
client. When VM issues read requests into the base
image file, they can be satisfied locally, thus improv-
ing their performance while decreasing the amount
of network transmission from NAS server to clients.

This mechanism is quite useful in the event of boot
storm.

• Log-Split, redirects VM’s journal block device (JBD)
into NAS client. By extra tuning on the journaling
mode, the completion of VM write can be asynchro-
nized to the checkpoint routine of this local JBD, thus
eliminating the time overhead for transmitting VM’s
dirty data over NAS connection.

• Local-Swap, decouples virtualized swapping device
from VM’s image file and then re-locates swap I/O
into the local disk. So every swapping operation can
be proceeded in the NAS client, instead of delivering
out to NAS server.

We have implemented aforesaid optimizations in a spe-
cific virtualized system based on NFSv3. An initial solution
to storage failure as well as VM live migration is also
presented or discussed. The experimental result shows that
our methods can avoid up to 77.6% network traffic when
multiple VMs issue disk I/O requests simultaneously under
a 1Gb network. In the mean time, the performance of
VM disk I/O achieves 17%-82% improvement in different
experimental scenarios.

The rest of this paper is organized as follows. We present
the design of our methods in section 2 while discussing
the potential downside and its preliminary improvement.
Section 3 shows the implementation of our method on a
specific virtualized cloud system. Section 4 describes the ex-
perimental methodology and discusses the result. In section
5, we discuss the related work. Finally, section 6 concludes
the paper and talks about the future work.

2 DESIGN

In this section, we first describe the sub-optimizations in
Triple-L in turn, and then give a discussion about their
potential side effects upon system failure and VM live
migration. The initial solutions to them are also presented.

2.1 Shadow-Base
For rapid VM provisioning and snapshotting, many cloud
infrastructures use QCOW-like image format to organize the
VM’s disk data on the side of NAS server. As the right side
of figure 2 showing, a read-only base image file, usually
containing the minimum file system of VM, is shared among
VMs’ private virtual disks. Each private virtual disk of VM
is an incremental image file to the base image and be allo-
cated by the strategy of copy on write (COW). According to
the documented details of QCOW2 [17], VM’s write request,
excluding rewrite one, appends new data to the end of an
incremental image file. In doing so, VM’s physical disk data
can be allocated on the demand of end user.

In the procedure of bootstrap, VM reads a certain
amount of files from the base image in NAS server, includ-
ing the necessary kernel information to boot an OS and some
applications which are pre-installed to the particular users.
Therefore, when many VMs boot in a short time, a batch
of read-intensive workloads targeting on the base image
will form boot storm. This motivates our first improvement,
called Shadow-Base, puts a replica of the base image into

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY 2015 4

NAS client, allowing the read traffic on the base image to
be isolated into the local file system of VM. Intuitively, this
DAS/NAS hybrid architecture could substantially reduce
the network traffic on {NMTU}1 in the event of boot storm,
while improving the responsiveness of a certain part of
{Rhf}. Another similar usage scenario of Shadow-Base is
anti-virus storm, which happens when a significant number
of VMs are scheduled to run malware scans at the same
time. This activity also involves read-intensive workloads
focused on the base image, where a lot of system-critical
files are stored.

With Shadow-Base, NAS server needs to distribute the
replicas of base image into every NAS client. To avoid
the network rush hour, this work is often proceeded at
the free time, such as weekends and holidays. However,
an emergency update to the base image, such as fixing
vulnerability in user VM, introduces a challenge of quick
replica updating, which is required to be addressed in a
short time and to cover all base image files across the related
NAS clients.

We improve this issue by a technique called Inplace-
Update. When a VM is alive, any updates or rewrites upon
its base image file (denoted by BC) are only reflected on one
particular and local incremental image file (denoted by IC),
which stores in NAS client to avoid the NAS connection.
Meanwhile, the original base image file in NAS server,
denoted by BS , is immediately patched with the interven-
tion of system administrator when new patches are ready.
Correspondingly, a particular incremental image file, IS , is
created to apply this update into BS . Then, when the whole
system has came at the free period, Inplace-Update makes
two new base image files, BNC and BNS , by combining
IC , IS into BC , BS respectively, on either side of NAS client
and server. During this procedure, Inplace-Update will check
the consistency between BNC and BNS by using the SHA-1
hash function [18]. If a difference is detected, BNC will be
replaced with BNS , to ensure that the update operations
applied on BC only derives from the procedure of VM
patching.

2.2 Log-Split
With copy-on-write manner, an ordinary VM write re-
quest overwrites or appends the incremental image file in
NAS server. For example, when a user in one VM installs
his favorite personal software, the associated data will be
persisted by the incremental image file at host layer. It
should be noted that this kind of VM write is different
from the update/rewrite one which targeted on the base
image file in Inplace-Update. They are all required to traverse
the network path and aim to the incremental image file.
Unfortunately, journaling (or logging), which is widely used
in modern file systems, slows this write procedure by the
characteristic of double writes [19].

In general, journaling file system persists the writing
data twice in the underlying storage device, one is in the
journal area, the other is in the main file system. In such
a way, by checking the small and dedicated journal area,
the file system can be brought back on-line quickly and less
likely become corrupted in the event of a power failure or

1. The symbol is defined in Figure 2.

Applications

File System(FS)

Block Layer

Frontend Driver

Applications

File System(FS)

Block Layer

Frontend Driver

VM Hypervisor

Backend Driver

Network-based

File System

NAS Client

Rvf

{Rvb}

{NMTU}

{Rhf}

Journaling

Block Device

{Rhf - Rvj}

NAS

Server

Local

Disk

{Rvj}

CheckPointing

Fig. 3. Illustration of Log-Split. The logging data is decoupled from the
block-level VM disk I/O requests and then being redirected into the local
disk device. If a certain condition is true, such as the journal area is full
or a timer is expired, the checkpointing resided in the VM journal block
device will be triggered to synchronize the local journal data into NAS
server.

system crash [20]. However, the strict serialization of double
writes would defer the completion of an ordinary VM write
request in NAS. For example, an application in one VM
issues an ordinary write request. With ordered-mode in ext3
file system, (i) the application must wait until the regular
data to be successfully transferred into the main file system
in NAS server and then (ii) wait the related meta-data to be
persisted in the journal area over NAS connection again.
Therefore, if this ordinary VM write request is explicitly
synchronized from end-users, a delay may be perceived not
only due to the obvious network path but also due to the
uncertain performance on NAS connection.

To improve VM write performance, we propose the
second sub-optimization called Log-Split. As figure 3 illus-
trating, Log-Split identifies the semantic of VM logging in
{Rhf}, allowing NAS client to treat the VM logging flows
separately. In detail, Log-Split extracts the VM logging flow,
denoted by {Rvj}, from {Rhf}, and then redirects them into
the local block device on the side of NAS client. In doing
so, the transmission of VM logging data is asynchronized
from {Rhf}, thus improves the logging performance as well
as reduces the amount of {NMTU} delivered over NAS
connection. 2

Eventually, the logging data stored in NAS client will be
transferred into NAS server by the checkpointing routine
of local journaling block device (JBD), both for recycling
the space of journal area and for a consistent VM image
file. However, there is a potential benefit hazard in the
case of VM sustaining a write-intensive workload, in which
the checkpointing routine will be frequently invoked to
clean the journal space, thus blocking the incoming logging
requests. We treat this result as a justified feedback from
the system, since an I/O intensive VM should accept the
performance punishment for its irregular behavior. But Log-
Split needs to enforce an isolation mechanism on the local
JBD, preventing the co-located VMs from being disturbed.
Currently, we simply set a fixed journal size for each VM,

2. An ordinary write request of a VM can even be completed locally
with Log-Split under some particular logging modes, such as journal-
mode in Ext4, not only for the logging request.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY 2015 5

while adding the FIFO (First-In-First-Out) queue on each
journal area with fixed size too.

2.3 Local-Swap
Since the limited amount of memory are sharing among co-
located VMs, swapping is necessary in a virtualized cloud
system [8]. This process exchanges the allocated but inactive
VM memory pages out into disk and makes room for
those being accessed frequently ones. In NAS, the memory-
intensive workloads from multiple VMs, whose demand for
memory resource exceeds the total size of physical memory,
must experience the longer and narrower swapping path
as figure 2 showing. For example, one memory page in a
certain VM, denote by p, is being swapped out from VM
memory. Since the swap partition or file is mapped in the
VM incremental image file, p should walk the NAS connec-
tion to contact with NAS server if it missed the swap cache,
thus incurring network delay. Moreover, an uncertain per-
formance provided by the jammed NAS connection would
further slow this procedure. The same situation may also
exist in the case of p being swapped in. Therefore, consider the
memory operation is critical to a typical OS, the swapping
performance of VM is challenged in the presence of NAS
storage architecture.

We propose the third sub-optimization in Triple-L, called
Local-Swap, to improve the swapping performance of a
virtualized NAS architecture. The idea behind Local-Swap
is similar with Log-Split. We decouple {Rvs}, the disk I/O
of VM swapping, from {Rhf} and then isolate the VM
swapping I/O into the local disk device of NAS client. By so
doing, all swapping I/Os from VMs will be handled locally,
eliminating the corresponding network traffic as well as the
potential jammed NAS connection.

Local-Swap can cooperate well with the memory bal-
loon driver in hypervisor [21]. By sampling the velocity
of swapping I/O efficiently in an inflating VM, our sub-
optimization over a virtualized NAS system can improve
the reaction speed of balloon driver, allowing this inflated
VM to be deflated quickly without a significant performance
degradation. On the other hand, Local-Swap is orthogonal to
the other sub-optimizations in Triple-L. In fact, some special
VM workloads can even obtain the resultant benefit from
all of them. For example, co-located VMs in a NAS client
are launched simultaneously (Shadow-Base). Then, due to
physical memory pressure in this host, hypervisor swaps
any pages out into backing storage (Local-Swap). Meanwhile,
system log is recording the information of user logging in
and thus produces several write requests to its file system
(Log-Split).

2.4 Discussion
This subsection answers the following two questions: (1)
How does Triple-L respond to storage failure? (2) How does Triple-
L handle with VM live migration?

2.4.1 Storage Failure
From a coarse-grained taxonomy, storage failure in Triple-
L may happen at two places: (i) NAS client and (ii) NAS
server. Upon NAS client failure, Triple-L may lead a portion
of CPS data to be lost due to its local cache. Specifically,

Log-Split suffers such a loss in that the logging data may
have not been synchronized into NAS server once failure
appeared. Therefore, this sub-optimization on VM write
performance delivers a recovery point objective (RPO) of
non-zero (i.e., non-zero data loss) [22]. To deal with this
issue, Triple-L explicitly reminds users when a new VM is
allocating to them, giving user an obvious option to activate
Log-Split or not. On the other hand, Shadow-Base is capable
of finding these data back in light of Inplace-Update in NAS
server. Local-Swap could also ignore this kind of loss on VM
swapping data, who have not being flushed into backing
storage, because the ordinary OS has treated data in DRAM
as unreliable.

When the storage of NAS server confronted with a
failure, Triple-L can only restart a VM from the base image
file persisted by NAS client with Shadow-Base. The data
created in the incremental image file in NAS server may
be lost. They are only able to being restored by the inherent
backup mechanism in NAS server such as deploying RAID
1 system.

In summary, compared with the original NAS architec-
ture, Log-Split in Triple-L trades off the reliability of VM
logging data, perhaps leading a portion of user data to
be lost. VMs that cannot risk any data loss should disable
Log-Split or apply another enhancement techniques into the
storage reliability of NAS client.

2.4.2 VM Live Migration

Compared with the original NAS architecture, Triple-L com-
plicates the procedure of VM live migration [23] in that local
sub-files in Log-Split and Local-Swap are both required to
transferred into the destination host, except for Shadow-Base,
which avoids this procedure by virtue of the replica of VM
base image file existing in NAS Server.

Algorithm 1 describes the detail procedure of Triple-
L handling with VM live migration. Generally, Triple-L
uses memory balloon driver to deflate this migrating VM,
allowing the size of active swapping area to be become as
small as possible. Then, the pre-copy technique is used
to transferring the memory data of VM. This process firstly
sets all pages of the VM as dirty, then successively scans VM
memory and copies dirty ones from source to destination
repetitiously [24]. When the remaining dirty pages to be
copied is smaller than a pre-defined value, which would not
produce the obvious VM downtime to user, journaling block
device in source VM triggers the checkpointing routine to
archived the committed logging transactions to NAS server
thus reducing the size of active ones. After that, the VM
execution is suspended. At this time, both data of active logs
and swap areas are copied, and the remaining dirty pages
are also sent to the destination completely. Finally, the fully
consistent VM on the destination is resumed. Meanwhile,
the source VM is killed.

Aside from deflation and checkpointing, LZ4 compres-
sion algorithm [25] [26] is applied into the copying pro-
cedure of active logging and swapping data, further de-
creasing the underlying network traffic to lively migrate
a running VM. Besides, Triple-L also supports the feature
of VM snapshot [27] with a similar solution. When a user
or system administrator explicitly invokes the snapshot

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY 2015 6

Algorithm 1: Description of Triple-L Handling with
VM Live Migration

Input: External event triggers VM live migration
Output: Success (true) or failure (false)

1 m = false;
2 /*m is a flag to determine if the remaining dirty pages of

VM are small enough.*/;

3 Deflate VM(void);

4 while (!m) do

5 PreCopy(Memory, m);

6 end

7 Check Pointing(Journal);
8 Pause VM at Source(void);
9 Copy to Destination(ActiveLog,ActiveSwap);

10 MigratingVM(void);
11 Restore VM at Destination(void);

12 return (true);

interface, deflation on VM memory as well as checkpointing
on logging data will also be applied.

3 IMPLEMENTATION

We implement all above three sub-optimizations in a NAS
architecture based on NFSv3 protocol. The NAS client is
virtualized by Xen hypervisor.

To Shadow-Base, we first put the replica of a base image
into the local disk device of NAS client. Then we modify
the VM boot configuration, allowing the path of base image
to point to the local replica, instead of the NFS partition
mounted on NFS client. A block-level filter in Xen blktap2
is interposed to the QCOW2 path, allowing the write request
targeted on base image file to be redirected into the local
backing storage (Inplace-Update).

To Log-Split, we pass an extra physical block device
(denoted by Bj), which built in the local disk device of NAS
client, into the VM. By using the Xen split driver model, VM
can identify Bj and format it with the suitable file system
such as Ext2. Then we move the VM’s journal file into Bj .
The reason for the choice of Ext2 is the unnecessary of
double journaling inside a VM [28] as well as the small size
of Bj (e.g. 16MB). An additional refinement for boosting the
concurrent writing performance of co-located VMs in a NAS
client is coalescing different Bjs into a gathered storage
area in the host layer. In doing so, the local disk device of
NAS client can receive a more sequential I/O flows thus
improving its throughput.

Local-Swap shares the similar implementation with Log-
Split. On the side of NAS client, we first allow a dedicated
physical block device in host layer (denoted by Bs) to be
visible in a VM, and then create a new swap partition up
on Bs. This work is often done when VM is off-line. After
this configuration, the page fault from VM will be handled
locally atop Bs. Due to the large size of Bs (e.g. 1GB), which
is usually recommended as the double size of a VM memory,
Local-Swap would not merge the swap devices among co-
located VMs for the negligible benefit.

To VM live migration on Triple-L, we first use xm
mem-set MEMORY_UPPERLIMIT command to replenish
the available memory resource into this migrating VM, trig-
gering its swapped data to be paged in. Then, we leverage
ioctl() to devise an interface on the JBD of VM, allowing
the log_do_checkpoint() routine to be invoked explic-
itly to checkpoint the underlying logging data. Finally, xm
migrate command is used for migrating this VM, in which
pre-copy technique has been built-in to copy dirty pages in
rounds. Note that a simple copy process which transferring
the VM active logging and swapping data to destination, is
interposed between the two time points of VM pause and
resume.

4 EVALUATION

This section presents the experimental results in five scenar-
ios, including (1) boot storm simulation, (2) write-intensive
workload, (3) memory consumption test, (4) virtual-desktop
responsiveness and (5) VM live migration. The prior three
scenarios are independently evaluating the effect of Shadow-
Base, Log-Split and Local-Swap in turn. The two other tests
are used to check the comprehensive influence of Triple-L
on the realistic desktop workloads and VM live migration
respectively. We use five NAS clients and one NAS server
to constitute the experimental platform. All detail configu-
rations have described in section I.A.

4.1 Boot Storm

In this scenario, 25 VMs, in which each NAS client hosts
5 VMs, will be cold-booted simultaneously. At first, we
measure the local boot time of a single VM to acted as
the performance baseline. After an experiment with three
rounds, we find that a single VM bootstrap from the local
disk device (NAS client) will last about 30 seconds on
average, in which further divides into three phases: VM
booting, system initialization and user logging. The prior
two phases reads about 163MB data from the underlying
local disk device while the last one reading about 69MB.

Figure 4 shows the result. Under the original NAS archi-
tecture, approximately 6.3GB data is transferred via the 1Gb
network. The startup time of each VM is 388s on average,
increasing the time delay by about 13 times compared
with the baseline, from 30 to 388. We find the network
utilization on the NAS sever keeps saturated throughout
the boot storm period. Therefore, this cost is partly due to
the network transmission from NAS server to client and
then be amplified by the network congestion. In addition,
a local contention of the shared disk device in NAS server
deteriorates this situation, since up to 25 I/O threads are
established to concurrently read the same base image.

Shadow-Base achieves 77.6% reduction of network traffic
load from 6.3GB to only 1.68GB, by distributing replicas of
the base image among NAS clients. The rest of network
traffic derives from the disk I/O of user logging, whose
block data is user-specific and thus be often stored in the
incremental image file in NAS server. On the other hand,
the VM startup time is also improved by 81.7% from 388s
to 71s. This benefit is mainly due to the short data path of
base image, where is located in the NAS client. Compared

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY 2015 7

NAS Shadow Base
0

1000

2000

3000

4000

5000

6000

71 seconds

388 seconds
N

et
w

or
k

Tr
af

fic
 L

oa
d

(M
B)

Fig. 4. Network traffic load on NAS server in the case of boot storm. The
numeric value atop the bar is the startup time of each VM on average.

with the original NAS architecture, fewer VMs, from 25 to 5,
share the same base image on the local disk device, relieving
the resource contention of reading the base image. This is
another contributor of Shadow-Base to boost the performance
of VM startup.

We also simulate a scenario to test the effect of Inplace-
Update. Firstly, in every VM we prepare Ubuntu Desktop
13.10 release to end user. Then, we explicitly set each VM
to download the newer upgrade package (14.04 release)
via Update Manager. The package size for each VM is
around 800MB. When this data has been ready, we launch
all upgrade procedures of 25 VMs concurrently, by using
do-release-upgrade command with shell script. Table
2 gives the result.

TABLE 2
Time elapse and network traffic load during VM upgrade (Discounting

the download phase). We use the mean of 5 trials by recording the
average time of each VM. Baseline means the case that a VM runs on

the DAS architecture.

Configurations Upgrade Time
(Minutes)

Total Network Traffic
(MB)

Baseline (1 VM) 46 566
NAS (25 VMs) 116 9,049

Triple-L (25 VMs) 62 4,542

As baseline, a VM takes 46 minutes to complete its
upgrade procedure, while 566MB data being written to the
local backing storage. Note that there is a difference existed
between the size of upgrade package (800MB) and the actual
writing data (566MB), since a portion of software packages
were the latest version in this VM. For the original NAS,
VMs spend about 2 hours to finish this work on average,
which is 2.6 times longer than the baseline. Meanwhile, ap-
proximately 9GB data are transfered over NAS connection
and be written to NAS server. Triple-L reduces this time
overhead by 46.5% from 116 to 62. There is 4.5GB data still
be transferred to NAS server, but saved by 49.8% from 9,049
to 4,542. The transferred data via NAS connection derives
from the older user-specific applications, which are stored
in NAS server and thus be updated in this upgrade storm.

NAS (Ordered) Log-Split (Ordered) NAS (Journal) Log-Split (Journal)
0

200

400

600

800

1000

1200

1400

142

78

77

N
et

w
or

k
Tr

af
fic

 L
oa

d
(M

B) 90

Fig. 5. Network traffic load on NAS server in the case of write-intensive
flow. The numeric value atop the bar is the IOPS (Input/Output Opera-
tions Per Second) of each VM on average.

NAS Local-Swap
0

20

40

60

80

100

661 Seconds

1749 Seconds

N
et

w
or

k
Tr

af
fic

 L
oa

d
(M

B)

Fig. 6. Network traffic load on NAS server when VMs running memory
intensive workloads. The numeric value atop the bar is the average
benchmark runtime of each VM.

4.2 Write Intensive Workload

In this scenario, we use the benchmark IOmeter [29] to
test the effect of Split-Log. The testing file is 1GB and each
I/O operation issued by IOmeter is 4KB in target size with
100% random write operation. The journaling size is set to
128MB for each VM.

Figure 5 shows the result. In the ordered journal mode of
VM file system, Log-Split transfers the almost identical net-
work traffic with the original NAS architecture. We conclude
this result is due to the specific behavior of ordered journal
mode, although the metadata is immediately logged in the
journal area of NAS client. However, this cached metadata
in NAS client is required to move to the NAS server later,
thus finally reaping the almost same network traffic with
original NAS. Note that the procedure is asynchronized
from the path of VM normal write by checkpointing inside
VM’s journaling block device (JBD). Therefore, Log-Split still
improves the IOPS of VM by 17%, from 77 to 90. In other
words, the performance gains are due to the local logging
of VM metadata, allowing a part of VM write requests to be
finished in NAS client.

In the journal mode, Log-Split reaps 35.3% reduction

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY 2015 8

0 15 30 45 60 75 90 105 120 135 150 165 180 195

0

500

1000

1500

2000

2500

3000

VM downtime begins

VM downtime ends in original NAS

IO
PS

Time Line (Seconds)

 NAS
 Triple-L

VM live migration starts
VM downtime ends in Triple-L

0

500

1000

1500

2000

2500

3000

IO
PS

Fig. 8. Variations of IOPS during a single VM live migration. The available network bandwidth for VM live migration is set to 250Mbps to simulate a
jammed condition.

0 1000 2000 3000 4000 5000 6000

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f R
es

po
ns

e
Ti

m
es

Response Time (Millisecond)

 Baseline
 NAS
 Triple-L

Fig. 7. CDF plot of the average interactive response times of 25 VMs
in NAS client. The response time is measured by the time difference
between the event of user input (e.g. user clicking a menu entry) and
the corresponding change on current desktop environment (e.g. a dialog
box being popped up). The case of baseline means a single VM running
the recorded trace under DAS architecture.

effect of network traffic load on NAS server compared to the
original NAS architecture. This improvement derives from
that JBD with journal mode can log both metadata and data
locally, in which absorbs a part of VM write as rewrite, thus
eliminating their network transmissions during a short time
window. On the other hand, Log-Split with journal mode
surprisingly archives 82% improvement from 78 to 142 in
VM IOPS compared to the original NAS. It has even the 58%
improvement over the Log-Split with ordered mode, from 90
to 142. We conclude this benefit comes from that fsync()
issued by VM application under the journal mode can be
finished when the metadata and the data are once logged
into the local JBD, rather than the ordered one, in which
fsync() must wait until the data have been transferred
into NAS server.

4.3 Memory Intensive Workload

Java faces a challenge in a virtualized system as its garbage
collector causes a pathological situation of degraded perfor-
mance when the physical memory allocated to the guest is
smaller than the Java virtual machine (JVM) working set.
Therefore, in this scenario we use the Eclipse workloads
that are part of the DaCapo Java benchmark suite [30] to
produce the memory intensive workload to test the effect of
Local-Swap. The memory size of all VMs in this experimental
scenario are set to 128MB. All 25 VMs use OpenJDK and a
128MB heap. In doing so, we can lead the VM to frequently
swap in/out its memory pages.

Figure 6 depicts the benchmark result. Clearly, Local-
Swap achieves the reduction of network traffic by 68%,
from 97MB to 31MB. The remainder of network activities
are aroused by the disk I/O of VM running DeCapo Java
benchmark. Similarly, a 62.2% performance benefit, from
1,749 seconds to 661 seconds, is obtained due to the short
path of VM swapping, where is only experienced inside
NAS client.

4.4 Realistic Virtual-Desktop Workload

Here we evaluate the responsiveness of a practical virtual-
desktop workload on Triple-L in which the logging manner
in Log-Split is set to journal mode. We first use VNCPlay
[31], a cross-platform tool for measuring interactive per-
formance of GUI-based systems, to record a group of user
interactive behaviors on a VM GNOME3 desktop. The user-
behavior includes a huge amount of user desktop opera-
tions, such as editing documents by Eclipse-Luna-SR1
(4.4.1) and browsing web-pages by Firefox 33. Then,
we replay this recorded trace inside all 25 VMs in NAS
client, which are sequenced by following the Poisson
distribution [32]. Therefore, a mixed workload consisted of
memory- and write-intensive operations is produced.

Figure 7 shows the average result among 25 VMs. Com-
pared to baseline, Triple-L incurs a moderate performance
punishment, in which the user operations exceeded 200ms
accounting for 25% (only 10% in baseline). We conjecture
this overhead mainly comes from NAS connection due to

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY 2015 9

the user-specific applications being stored in NAS server,
thus confronting with the longer response time on their
operations. On the other hand, user experience in the case
of original NAS is deteriorated sharply. More than 40% user
operations exceed 200ms. Of these slow operations, there
are still 50% user operations even incurred at least 4,800
millisecond delay, which could lead to an explicit stag-
ger during user interacting with his desktop environment.
Since the write operations of VM were finished quickly in
NAS client, Triple-L eliminates most of this kind of delay.
Moreover, a local swapping procedure allows the VMs with
memory pressure to handle their page faults locally, thus
further accelerates the response time of virtual desktop.

4.5 VM Live Migration

Compared with the original NAS architecture, Triple-L
needs to copy extra disk data from source host to the
destination in VM live migration. This scenario is devised to
test this influence brought by Triple-L. We first use Iometer
to enforce a sustained I/O flow on a single VM. The testing
file is 1GB and each I/O operation issued by Iometer is
4KB in size with 100% random write operation. Meanwhile,
we also replay the recored user trace which has collected in
section IV.D in this VM. Therefore, we ensure that there is
an active logging data as well as the swapping area existed
in the migrating VM.

Figure 8 depicts the variations of IOPS along a single VM
live migration. Triple-L achieves 77.8% migration perfor-
mance against the original NAS from 14s to 18s to finish the
underlying VM down time. It concludes that our methods,
namely checkpointing and deflation before the phase of VM
stop-and-copy, incur a moderate overhead for copying
the extra logging and swapping data. We speculate that this
overhead mainly derives from the active transaction in JBD
under the sustained write flow. A potential improvement on
this downside is using the pre-copy technique over JBD in
NAS client. We will verify this point in our future work. On
the other hand, Triple-L has a 12.8% performance advantage
over the original NAS in IOPS if excluding the phase of VM
downtime. The reason is that Triple-L uses Log-Split with
journal mode to improve the write path of VM. But this
benefit is limited by the fixed space of each VM, namely
128MB, leading checkpoint routine to be frequently invoked
to clean space while blocking the incoming write requests.

5 RELATED WORK

Currently, there are some existed works which have ex-
plored the performance problem of concurrent VMs sending
disk I/O requests over NAS networking. These works can
also be applied into a CPS system.

Chen et al propose a BitTorrent-like P2P protocol to
accelerate the provisioning of VM image files by leveraging
the NAS clients’ upload capacity [33], thus improving the
traditional bandwidth bottleneck of NAS server. Shadow-
Base further improves this method by absorbing a lot of
network traffic which targeted on the NAS client, rather
than consuming any NAS clients’ upload links.

Peng et al present VDN [34], a chunk-level topology-
aware collaborative sharing for distributing VM image files.

This technique is based on the observation that the conven-
tional P2P sharing strategy may not be applicable since the
number of same VM instances is not big. VDN differs from
Triple-L in that VDN only accelerates VM read operations
while Triple-L improves both directions of VM read and
write and swapping I/O.

Nicolae et al introduce a lazy VM provision mechanism
that acquires VMs’ target I/O data as demanded by the
application running in the VM [35], to ease the pressure
on the VM storage for heavily concurrent disk I/O re-
quests. Meanwhile, an improvement against VM snapshot
is presented in their works. Triple-L does not involve VM
snapshot, but focuses on improving VM performance of
launching, logging and swapping. Shadow-Base technique
in Triple-L completely isolates VM disk I/O from NAS
networking, instead of a lazy fetching scheme which still
produce the uncertainty of network traffic.

Reich et al propose VMTorrent [36] to enable effective
VM image streaming. Compared with Triple-L, this work
mainly aims to quickly launch a single fresh VM and load
its critical applications. It differs from Shadow-Base in that
VMTorrent will spawn a lot of network traffic when any
VMs want to acquire the booting data. Instead, by the local
persistent cache where stored the VM base image, Shadow-
Base may eliminate this data exchange between NAS client
and server.

Capo [37] reduces disk I/O traffic load by using local
disk as persistent cache, using a preloading technique to
broadcast read results across a cluster, and by imposing
differential durability to divide a VM’s file system into
regions of varing writeback frequency. Our work shares the
similar idea with Capo, but differs from it in that: (i) Shadow-
Base shares a base image inside every host (NAS client) and
thus eliminates the network traffic of Capo broadcasting the
associated data about base image across hosts; (ii) Capo
divides VM image file into more pieces by leveraging the
semantic of OS-dependent directories. This restricts Capo
to be a single solution focusing on the Windows-based
VM, complicating its implementation across various OSes.
Instead, our design overcomes this handicap by using a
more high-level abstraction to organize VM image file.
This feature makes our design more generic among certain
specific systems.

FVD [38] is an enhanced image format of QEMU. To
reduce the load on storage server, it embeds three features,
namely copy-on-write, copy-on-read and adaptive prefetch-
ing, into the VM image file. Compared with our work, FVD
improves QCOW2 at the host file system, without involving
any interior semantic of VM, thus it can be combined with
our three sub-optimizations as a complementary method.

Tarasov et al [9] study the transformation of existing
NAS I/O workloads due to server virtualization. They find
great changes, including the disappearance of file system
meta-data operations at the NAS layer, not only varies the
I/O size, but increases randomness. Based on the observa-
tions, they develop new benchmarks that correctly represent
NAS workloads in a virtualized data centers. This work
provides insight into the virtualized NAS architecture and
motivates our improvements.

On the host-side flash-based cache, Koller et al de-
velop two write caching policies in the environment of

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY 2015 10

networked storage to strike new and useful tradeoffs across
performance, consistency and staleness dimensions [22].
This work focuses on the block-level VM requests at host
level, irrespective of the specific VM interior semantic. It
offers opportunities to our work for mutual enrichment and
cooperation. For example, these write policies can wrap our
Split-Log and provide an option of the balance between the
reliability of VM write and its performance.

By decoupling the control of IO flows from the data
plane, IOFlow [39] can offer flexible service and routing
properties in data centers, thus is capable of applying the
end-to-end policy into the I/O path from VM (NAS client)
to the shared storage (NAS server). hClock [40] is another
similar work to IOFlow. It is a hierarchical bandwidth allo-
cation algorithm and provides rich QoS (Quality of Service)
controls for network allocation in a hypervisor. Thus, hClock
can also be used to handle the disk I/O of VM in a cloud
platform. More recently, through a combination of priority
and token-bucket rate-limiting, Zhu et al presents Priori-
tyMeister [41], a proactive QoS system that attains end-
to-end tail latency SLOs (Service Level Objectives) across
multiple stages. IOFlow, hClock and PriorityMeister are
complemented to Triple-L since the end-to-end policy can
preserve the available bandwidth to the specific VM and
even to the internal storage semantic, such as the check-
pointing flow in Log-Split, thus further improving the VM
disk I/O performance.

6 CONCLUSION

In a CCPS environment with virtualized NAS backing stor-
age, the combination of VM and NAS protocol has the
advantage of reducing costs and simplifying management,
but a significant drop in the performance of VM disk I/O
is observed due to the introduction of complicated storage
layers, including the network delay between NAS server
and client. We propose a set of optimizations, which are
designed around the high-level semantic carried in the VM
file system, to improve such a performance bottleneck. We
use three high-level semantics to organize the VM image
file, namely (i) the minimum and common VM file system
(VM base image), (ii) JBD and (iii) swapping area. By break-
ing down the original VM image file into several pieces
according to these semantics, a portion of disk I/O would
be isolated in the local file system of NAS client. Then,
we use typical experimental scenarios to verify our design
and it shows a substantial improvement. Finally, we also
devise a specific scenario to test the influence on the VM
live migration. The result is also promising.

ACKNOWLEDGMENTS

This work is supported by the following projects: Project
funded by China Postdoctoral Science Foundation (No.
2014M552214); The PhD Start-up Fund of Natural Sci-
ence Foundation of Guangdong Province of China (Grant
No. 2014A030310238); CCF-Tencent Open Fund (Grant No.
CCF-TencentIAGR20140102), JSPS KAKENHI Grant No.
26730056, 15K15976, JSPS A3 Foresight Program; National
High-Technology Research and Development Program (863
Program) of China (Grant No. 2013AA01A212); National

Natural Science Foundation of China (Grant No. 61272067,
61370178); Natural Science Foundation of Guangdong
Province of China (Grant No. S2012030006242); Science
and Technology Support Program of Guangdong Province
of China (Grant No. 2012A080104019, 2011B080100031);
MOE-China Mobile Research Fund (No. MCM20121051);
Guangzhou Research Infrastructure Development Fund
(No. 2012224-12); Guangzhou Zhujiang Science and Tech-
nology Future Fellow Fund (No. 2011J2200089).

REFERENCES

[1] H. Li, P. Li, S. Guo, X. Liao, and H. Jin, “Modeap: Moving Desktop
Application to Mobile Cloud Service,” Mob. Netw. Appl., vol. 19,
no. 4, pp. 563–571, Aug. 2014.

[2] M. Dong, K. Ota, X. Li, X. Shen, S. Guo, and M. Guo, “HARVEST:
A Task-objective Efficient Data Collection Scheme in Wireless
Sensor and Actor Networks,” in Proceedings of the 3th International
Conference on Communications and Mobile Computing (CMC 2011),
April 2011, pp. 485–488.

[3] S. Mills, “Putting the Classroom in the Cloud with Virtual Desk-
tops and Bring-Your-Own-Device,” eLearn, vol. 2014, no. 4, Apr.
2014.

[4] M. Dong, K. Ota, H. Li, S. Du, H. Zhu, and S. Guo, “Rendezvous:
towards fast event detecting in wireless sensor and actor net-
works,” Computing, vol. 96, no. 10, pp. 995–1010, 2014.

[5] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, and
V. Zolotarov, “OSv—Optimizing the Operating System for Virtual
Machines,” in Proceedings of the 2014 USENIX Annual Technical Con-
ference (USENIX ATC 14). Philadelphia, PA: USENIX Association,
Jun. 2014.

[6] J. Ouyang and J. R. Lange, “Preemptable Ticket Spinlocks: Im-
proving Consolidated Performance in the Cloud,” in Proceedings of
the 9th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE 2013). New York, NY, USA: ACM,
2013, pp. 191–200.

[7] M. Dong, K. Ota, M. Lin, Z. Tang, S. Du, and H. Zhu, “UAV-
assisted data gathering in wireless sensor networks,” The Journal
of Supercomputing, vol. 70, no. 3, pp. 1142–1155, 2014.

[8] O. Agmon Ben-Yehuda, E. Posener, M. Ben-Yehuda, A. Schuster,
and A. Mu’alem, “Ginseng: Market-driven Memory Allocation,”
in Proceedings of the 10th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE 2014). New
York, NY, USA: ACM, 2014, pp. 41–52.

[9] V. Tarasov, D. Hildebrand, G. Kuenning, and E. Zadok, “Virtual
Machine Workloads: The Case for New Benchmarks for NAS,” in
Proceedings of the 11th USENIX Conference on File and Storage Tech-
nologies (FAST 2013). Berkeley, CA, USA: USENIX Association,
2013, pp. 307–320.

[10] R. Birke, M. Bjoerkqvist, L. Y. Chen, E. Smirni, and T. Engbersen,
“(Big)Data in a Virtualized World: Volume, Velocity, and Variety in
Cloud Datacenters,” in Proceedings of the 12th USENIX Conference
on File and Storage Technologies (FAST 2014). Santa Clara, CA:
USENIX, 2014, pp. 177–189.

[11] A. J. Mashtizadeh, M. Cai, G. Tarasuk-Levin, R. Koller,
T. Garfinkel, and S. Setty, “XvMotion: Unified Virtual Machine
Migration over Long Distance,” in Proceedings of the 2014 USENIX
Annual Technical Conference (USENIX ATC 14). Philadelphia, PA:
USENIX Association, Jun. 2014.

[12] S. Gamage, C. Xu, R. R. Kompella, and D. Xu, “vPipe: Piped I/O
Offloading for Efficient Data Movement in Virtualized Clouds,” in
Proceedings of the 5th ACM Symposium on Cloud Computing (SOCC
2014). New York, NY, USA: ACM, 2014, pp. 27:1–27:13.

[13] K. Dey, D. Mishra, and P. Kulkarni, “Vagabond: Dynamic Net-
work Endpoint Reconfiguration in Virtualized Environments,” in
Proceedings of the 5th ACM Symposium on Cloud Computing (SOCC
2014). New York, NY, USA: ACM, pp. 21:1–21:13.

[14] H. Kim, S. Kim, J. Jeong, and J. Lee, “Virtual Asymmetric Multi-
processor for Interactive Performance of Consolidated Desktops,”
in Proceedings of the 10th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE 2014). New
York, NY, USA: ACM, 2014, pp. 29–40.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY 2015 11

[15] D. Li, H. Jin, X. Liao, and J. Yu, “Improving Write Amplification
in a Virtualized and Multimedia SSD System,” Multimedia
Tools and Applications, pp. 1–21, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s11042-013-1497-6

[16] “Amazon Online Shopping,” 2015, http://www.amazon.com.
[17] K. Razavi and T. Kielmann, “Scalable Virtual Machine Deploy-

ment Using VM Image Caches,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis (SC 2013). New York, NY, USA: ACM, 2013, pp. 65:1–
65:12.

[18] F. Chen, T. Luo, and X. Zhang, “CAFTL: A Content-aware Flash
Translation Layer Enhancing the Lifespan of Flash Memory Based
Solid State Drives,” in Proceedings of the 9th USENIX Conference
on File and Stroage Technologies (FAST 2011). Berkeley, CA, USA:
USENIX Association, 2011, pp. 77–90.

[19] K. Shen, S. Park, and M. Zhu, “Journaling of Journal is (Almost)
Free,” in Proceedings of the 12th USENIX Conference on File and
Storage Technologies (FAST 2014). Berkeley, CA, USA: USENIX
Association, 2014, pp. 287–293.

[20] A. Ma, C. Dragga, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “ffsck: The Fast File System Checker,” in Proceedings of
the 11th USENIX Conference on File and Storage Technologies (FAST
13). San Jose, CA: USENIX, 2013, pp. 1–15.

[21] L. Chen, Z. Wei, Z. Cui, M. Chen, H. Pan, and Y. Bao, “CMD:
Classification-based Memory Deduplication Through Page Access
Characteristics,” in Proceedings of the 10th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE
2014). New York, NY, USA: ACM, 2014, pp. 65–76.

[22] R. Koller, L. Marmol, R. Rangaswami, S. Sundararaman, N. Tala-
gala, and M. Zhao, “Write Policies for Host-side Flash Caches,”
in Proceedings of the 11th USENIX Conference on File and Storage
Technologies (FAST 2013). San Jose, CA: USENIX, 2013, pp. 45–58.

[23] J. Zheng, T. S. E. Ng, K. Sripanidkulchai, and Z. Liu, “COMMA:
Coordinating the Migration of Multi-tier Applications,” in Proceed-
ings of the 10th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE 2014). New York, NY, USA:
ACM, 2014, pp. 153–164.

[24] A. J. Mashtizadeh, M. Cai, G. Tarasuk-Levin, R. Koller,
T. Garfinkel, and S. Setty, “XvMotion: Unified Virtual Machine
Migration over Long Distance,” in Proceedings of the 2014 USENIX
Annual Technical Conference (USENIX ATC 2014), Jun. 2014, pp. 97–
108.

[25] “LZ4: Extremely Fast Compression Algorithm,” 2014,
https://code.google.com/p/lz4/.

[26] D. Harnik, R. Kat, D. Sotnikov, A. Traeger, and O. Margalit,
“To Zip or Not to Zip: Effective Resource Usage for Real-Time
Compression,” in Proceedings of the 11th USENIX Conference on File
and Storage Technologies (FAST 2013). San Jose, CA: USENIX, 2013,
pp. 229–241.

[27] Y. Xiang, H. Liu, T. Lan, H. Huang, and S. Subramaniam, “Opti-
mizing Job Reliability via Contention-free, Distributed Scheduling
of VM Checkpointing,” in Proceedings of the 2014 ACM SIGCOMM
Workshop on Distributed Cloud Computing (DCC 2014). New York,
NY, USA: ACM, 2014, pp. 59–64.

[28] D. Le, H. Huang, and H. Wang, “Understanding Performance Im-
plications of Nested File Systems in a Virtualized Environment,”
in Proceedings of the 10th USENIX Conference on File and Storage
Technologies (FAST 2012). San Jose, CA: USENIX, 2012.

[29] “Iometer benchmark,” 2014, http://www.iometer.org.
[30] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.

McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann, “The DaCapo Benchmarks: Java Benchmarking
Development and Analysis,” in Proceedings of the 21st Annual
ACM SIGPLAN Conference on Object-oriented Programming Systems,
Languages, and Applications (OOPSLA 2006). New York, NY, USA:
ACM, 2006, pp. 169–190.

[31] N. Zeldovich and R. Chandra, “Interactive Performance Mea-
surement with VNCPlay,” in Proceedings of the USENIX Annual
Technical Conference, FREENIX Track. USENIX, 2005, pp. 189–198.

[32] C. Daskalakis, I. Diakonikolas, and R. A. Servedio, “Learning
Poisson Binomial Distributions,” in Proceedings of the Forty-fourth
Annual ACM Symposium on Theory of Computing (STOC 2012).
New York, NY, USA: ACM, 2012, pp. 709–728.

[33] Z. Chen, Y. Zhao, X. Miao, Y. Chen, and Q. Wang, “Rapid Pro-
visioning of Cloud Infrastructure Leveraging Peer-to-Peer Net-

works,” in Proceedings of the 29th IEEE International Conference on
ICDCS Workshops ’09., June 2009, pp. 324–329.

[34] C. Peng, M. Kim, Z. Zhang, and H. Lei, “VDN: Virtual machine
image distribution network for cloud data centers,” in Proceedings
of the 2012 IEEE INFOCOM, March 2012, pp. 181–189.

[35] B. Nicolae, J. Bresnahan, K. Keahey, and G. Antoniu, “Going Back
and Forth: Efficient Multideployment and Multisnapshotting on
Clouds,” in Proceedings of the 20th International Symposium on High
Performance Distributed Computing (HPDC 2011). New York, NY,
USA: ACM, 2011, pp. 147–158.

[36] J. Reich, O. Laadan, E. Brosh, A. Sherman, V. Misra, J. Nieh,
and D. Rubenstein, “VMTorrent: Scalable P2P Virtual Machine
Streaming,” in Proceedings of the 8th International Conference on
Emerging Networking Experiments and Technologies (CoNEXT ’12).
New York, NY, USA: ACM, 2012, pp. 289–300.

[37] M. Shamma, D. T. Meyer, J. Wires, M. Ivanova, N. C. Hutchin-
son, and A. Warfield, “Capo: Recapitulating Storage for Virtual
Desktops,” in Proceedings of the 9th USENIX Conference on File and
Storage Technologies (FAST 2011). Berkeley, CA, USA: USENIX
Association, 2011, pp. 31–45.

[38] C. Tang, “FVD: A High-Performance Virtual Machine Image For-
mat for Cloud,” in Proceedings of the 2011 USENIX conference on
USENIX Annual Technical Conference (USENIX ATC 2011). Berke-
ley, CA, USA: USENIX Association, 2011.

[39] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron,
T. Talpey, R. Black, and T. Zhu, “IOFlow: A Software-defined
Storage Architecture,” in Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (SOSP 2013). New
York, NY, USA: ACM, 2013, pp. 182–196.

[40] J.-P. Billaud and A. Gulati, “hClock: Hierarchical QoS for Packet
Scheduling in a Hypervisor,” in Proceedings of the 8th ACM Euro-
pean Conference on Computer Systems (Eurosys 2013). New York,
NY, USA: ACM, 2013, pp. 309–322.

[41] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and G. R.
Ganger, “PriorityMeister: Tail Latency QoS for Shared Networked
Storage,” in Proceedings of the 5th ACM Symposium on Cloud Com-
puting (SOCC 2014). New York, NY, USA: ACM, 2014, pp. 29:1–
29:14.

http://dx.doi.org/10.1007/s11042-013-1497-6

