
Gauging away the electron–electron interaction
by the local phase of complex wave functions in
two-electron systems

言語: English

出版者:  Springer

公開日: 2017-09-05

キーワード (Ja): 

キーワード (En): 

作成者: 太田, 勝久

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/10258/00009462URL



Gauging away the electron-electron interaction by the local phase

of complex wave functions in two-electron systems

Katsuhisa Ohta1

1 Applied Chemistry Research Unit, Graduate School of Engineering,

Muroran Institute of Technology, Muroran, Hokkaido, 050-8585, Japan

E-mail: ohta@mmm.muroran-it.ac.jp

Abstract

The electron-electron interaction is eliminated in the expectation values of the electronic Hamil-

tonian for two-electron systems. The part of the Hamiltonian referring to the repulsive interaction

is gauged away by the local phase of the complex wave functions, much like a gauge field transfor-

mation, thereby leading to a one-electron Hamiltonian. Despite the appearance of complex wave

functions, the expectation values of the total momentum operator vanish and Löwdin’s criterion

holds for the stationary states.

PACS numbers:
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I. COMPLEX WAVE FUNCTIONS FOR STATIONARY STATES

The appearance of complex wave functions is one of the mathematical necessities re-

quired in solving the time-dependent Schrödinger equation[1]. Moreover, for non-degenerate

stationary states, the complex degree of freedom of wave functions has sometimes been in-

troduced for computational convenience. For example, complex one-electron orbitals in a

single-determinantal wave function are convenient in describing energy crossings[2, 3].

The appropriateness of real functions for many-electron wave functions corresponding

to stationary states has been discussed based on physical and mathematical requirements.

First, the use of real wave functions is inevitable if Löwdin’s criterion for stationary states

is hold; that is, by a result of Ehrenfest’s theorem, the conservation of total momentum is

⟨
Ψ
∣∣P̂ ∣∣Ψ⟩ = 0 . (1)

Hence the use of the real wave functions is by no means solely for mathematical

convenience[4]. Second, if we write Ψ = ReΨ+ i ImΨ and set H̄[Ψ] =
<Ψ|Ĥ|Ψ>
<Ψ|Ψ>

, we have

Min
(
H̄[ReΨ], H̄[ImΨ]

)
≤ H̄[Ψ] , (2)

obtained from variational calculations for the stationary states. Despite the substantial

complex freedom, the wave function does not provide a minimum energy[5, 6].

In this paper we report another feature of complex wave functions for stationary states.

The electron-electron interaction is formally eliminated from the expectation values of the

electronic Hamiltonian for two-electron systems. In particle physics[7, 8], interactions be-

tween particles are introduced by local-gauge transformations. Conversely, the interactions

can be gauged away formally by wave functions with local phase. We have adopted similar

equations to eliminate the electron-electron interaction in the expectation values. Despite

complex wave functions, the expectation values of the total momentum operator vanish and

Löwdin’s criterion Eq. (1) for stationary states is satisfied. The difficulty in applications to

systems with more than three electrons is also discussed.
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II. GAUGING AWAY THE POSITIVE POTENTIALS BY THE LOCAL PHASE

OF COMPLEX WAVE FUNCTIONS

A. Local phase of complex wave functions

We consider complex wave functions corresponding to stationary states of one-particle

systems. A polar decomposition of Ψ(r) is introduced with local phase S(r),

Ψ(r) = eiS(r)Φ(r) . (3)

where S and Φ are real functions. The wave function Φ is also normalized with the standard

boundary condition for bounded systems

lim
|r|→∞

Φ(r) = 0 . (4)

The Schrödinger equation with the vector potential A is[
1

2
(p̂−A)2 + V − E

]
Ψ(r) = 0 . (5)

If V = 0 and A = 0 are set, we have[
−1

2
∆− E

]
Ψ(r) = 0 , (6)

and [
−1

2
∆ +

1

2
∇S · ∇S − i

2
(∆S + 2∇S∇)− E

]
Φ(r) = 0 . (7)

If we multiply Eq. (7) by Φ from the left and integrate, the contribution from the imaginary

part of Eq. (7) is rewritten as∫
V

Φ(∆S + 2∇S∇)Φ dv =

∫
V

∇(Φ2∇S) dv =

∮
Σ

Φ2∇S dσ , (8)

according to the Gauss theorem. If Φ2∇S vanishes in infinity with the boundary condition

Eq. (4), the surface integral is equal to zero. So we have⟨
Ψ

∣∣∣∣−1

2
∆

∣∣∣∣Ψ⟩ =

⟨
Φ

∣∣∣∣−1

2
∆ +

1

2
∇S · ∇S

∣∣∣∣Φ⟩ , (9)

in the form of expectation values. In the right-hand side of Eq. (9), the second term can be

seen as a new positive potential for Φ, which is originated from the localized phase S as

V̂+ =
1

2
∇S · ∇S . (10)
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Eq. (10) is considered to be another proof of the inequality Eq. (2).

Conversely, we can absorb some positive part of the potential into the local phase S of

the complex wave function. If a positive potential V̂+ is separated in a given Hamiltonian

Ĥ as

Ĥ = Ĥ0 + V̂+ , (11)

we can then eliminate V̂+ in the expectation value of the Hamiltonian Ĥ with an appro-

priately prepared local phase S by Eq. (10). Note that the diagonal element of the density

matrix with the complex wave function Ψ remains equal to that with the real function Φ as

ρΨ(r, r
′)|r=r′ = Ψ∗(r)Ψ(r′)|r=r′ ,

= e−iS(r)Φ(r)eiS(r
′)Φ(r′)

∣∣∣
r=r′

= ρΦ(r, r
′)|r=r′ . (12)

B. One-dimensional systems

Here we exemplify the use of Eq. (10) with a simple system. If we consider a power law

in the coordinate x for the local phase,

S(x) = α|x|β , (13)

we can generate the positive potential

V̂+(x;α, β) =
1

2
∇S(x) · ∇S(x) =

1

2
α2β2|x|2(β−1) . (14)

We notice that the positive potential Eq. (14) has even parity under space inversion sym-

metry. Moreover, if the system is subjected only to a positive potential V̂+(x;α, β) with the

asymptotic behavior limx→±∞ V̂+(x;α, β) = 0, the entire system becomes unbounded. In

this instance, it is impossible to gauge away the positive potential by the local phase of the

complex wave function using the boundary condition Eq. (4). Therefore, V̂+(x;α, β) should

satisfy the asymptotic behavior as limx→±∞ V̂+(x;α, β) = ∞. This condition is ensured if

β > 1 in Eq. (14).

For example, if we consider a harmonic oscillator which corresponds to β = 2, the Hamil-

tonian is

Ĥ = −1

2

d2

dx2
+

k

2
x2 = Ĥ0 +

k

2
x2, (k > 0) . (15)
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The local phase which absorbs this harmonic potential is

S(x) = ±
√
k

2
x2 , (16)

and the complex wave function Eq. (3) is written as

Ψ(x) = eiS(x)Φ(x) = e±i
√
k
2

x2

Φ(x) . (17)

The energy expectation value formally reduces to that of the free-particle Hamiltonian Ĥ0

with complex wave function Ψ; that is

E =
⟨
Φ
∣∣∣Ĥ∣∣∣Φ⟩ =

⟨
Φ

∣∣∣∣−1

2

d2

dx2
+

k

2
x2

∣∣∣∣Φ⟩ =

⟨
Ψ

∣∣∣∣−1

2

d2

dx2

∣∣∣∣Ψ⟩ ,

=
⟨
Ψ
∣∣∣Ĥ0

∣∣∣Ψ⟩ . (18)

If we use exact wave functions of the harmonic oscillator for Φ, we have

Ψn(x) = eiS(x)Φn(x) =

√
1

2nn!

(√
k

π

) 1
4

Hn

(
k

1
4x
)
e−(1±i)

√
k
2

x2

, (19)

where Hn are Hermite polynomials. Although the wave function is complex, the expectation

value of the momentum is zero,

p̄x =

∫ ∞

−∞
Ψ∗(x)

(
−i

d

dx

)
Ψ(x) dx ,

=

∫ ∞

−∞
Φ2

(
dS

dx

)
dx− i

∫ ∞

−∞
Φ

(
dΦ

dx

)
dx = 0 , (20)

where the first term
∫∞
−∞Φ2

(
dS
dx

)
dx vanishes, because the parity of Φ2 is even under spatial

inversion symmetry of the potential Eq. (14) and the parity of
(
dS
dx

)
is odd by Eq. (16).

After partial integration, the second term
∫∞
−∞Φ

(
dΦ
dx

)
dx also vanishes on applying by the

boundary condition Eq. (4). Löwdin’s criterion Eq. (1) for stationary states is satisfied.

C. Elimination of the repulsive electron-electron interaction in two-electron sys-

tems

We next consider a two-electron system for which the electronic Hamiltonian is written

as

Ĥ =
2∑

i=1

(
−1

2
∇i ·∇i −

M∑
A=1

ZA

|ri −RA|

)
+

1

|r1 − r2|
,

= Ĥ0 +
1

|r1 − r2|
, (21)
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in au, where Ĥ0 is just a sum of one-electron operators. If only a repulsive potential V̂+ =

1
|r1−r2| is present, the Hamiltonian does not correspond to a bounded system and we cannot

use boundary conditions such as Eq. (4). However, there are attractive nuclear-potentials

in the one-electron Hamiltonian Ĥ0 for which the whole system is a bounded system. We

then assume an asymptotic behavior for the two-electron wave function Φ(r1, r2, σ1, σ2) =

Φ(x1, y1, z1, x2, y2, z2, σ1, σ2),

lim
x1→±∞

Φ(x1, y1, z1, x2, y2, z2, σ1, σ2) = 0 , (22)

and similarly for the other coordinates; here σ1 and σ2 denote electronic spin coordinates.

The local phase S(r1, r2) is presumed symmetric under the exchange of electrons,

S(r1, r2) = α
[
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2
] 1

4 = α |r1 − r2|
1
2 , (23)

by imposing the Pauli principle on Φ(r1, r2, σ1, σ2). The positive potential for the local

phase Eq. (23) becomes

1

2
∇S ·∇S =

1

2

2∑
i=1

[(
∂S

∂xi

)2

+

(
∂S

∂yi

)2

+

(
∂S

∂zi

)2
]
,

=

(
α2

4

)
1

|r1 − r2|
. (24)

Then, setting α = ±2, the repulsive interaction is absorbed into the local phase of the com-

plex wave function as in gauge field transformations, and leads to a one-electron Hamiltonian

Ĥ0 operator[7, 8]. The complex electronic wave function becomes

Ψ(r1, r2, σ1, σ2) = eiS(r1,r2) Φ(r1, r2, σ1, σ2) ,

= e± i 2
√

|r1−r2|Φ(r1, r2, σ1, σ2) . (25)

The expectation value for the Hamiltonian Ĥ is formally reduced to that for the one-electron

Hamiltonian Ĥ0 with Ψ,

E =
⟨
Φ
∣∣∣Ĥ∣∣∣Φ⟩ =

⟨
Φ
∣∣∣e−iS Ĥ0 e

iS
∣∣∣Φ⟩ =

⟨
Ψ
∣∣∣Ĥ0

∣∣∣Ψ⟩ . (26)

Eq. (25) is a local unitary of the wave function Φ to Ψ that is part of a local gauge transforma-

tion. The transformation, however, has a definite form determined by the given Hamiltonian

Ĥ. Therefore, the freedom associated with the variational calculations remains only in Φ.
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Next we consider the expectation value of the total momentum operator

P̂ = p̂1 + p̂2 = (−i∂x1− i∂x2 , −i∂y1− i∂y2 , −i∂z1− i∂z2) . (27)

For brevity, we present the calculation for the x component. Denoting other variables as

τ = (y1, z1, y2, z2, σ1, σ2), we have

p̄x1 =

∫ [∫ ∞

−∞

∫ ∞

−∞
Ψ∗(x1, x2, τ) (−i∂x1)Ψ(x1, x2, τ) dx1 dx2

]
dτ ,

=

∫ [∫ ∞

−∞

∫ ∞

−∞
(∂x1S) Φ

2 dx1 dx2

]
dτ , (28)

using the boundary condition Eq. (22). For the local phase Eq. (23), we have

∂S

∂x1

=
(α
2

) [
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2
]− 3

4 (x1 − x2) ,

= − ∂S

∂x2

. (29)

Hence the x component of the total momentum vanishes as

P̄x = p̄x1 + p̄x2 =

∫ [∫ ∞

−∞

∫ ∞

−∞

(
∂S

∂x1

+
∂S

∂x2

)
Φ2 dx1 dx2

]
dτ = 0 . (30)

The other components also vanish in the same way and we have collectively

P̄ =
⟨
Ψ
∣∣∣P̂ ∣∣∣Ψ⟩ = (P̄x, P̄y, P̄z) = 0 . (31)

For stationary states, Löwdin’s criterion Eq. (1) is satisfied.

Unfortunately, it is difficult to eliminate the electron-electron interaction in systems hav-

ing more than three electrons. For N -electron systems, we need M = N(N−1)
2

valuables to

describe the electron-electron interaction potentials. The local phase factor S with the M

valuables will generate their coupling terms in the calculation of potentials. For example,

if we consider a function such as S = fa(r1, r2) + fb(r2, r3) + fc(r3, r1) for three-electron

systems to eliminate V̂+ = 1
|r1−r2| +

1
|r2−r3| +

1
|r3−r1| , there remain some coupling terms like(

∂S
∂x1

)2
=
[
∂fa(r1,r2)

∂x1

]2
+
[
∂fc(r3,r1)

∂x1

]2
+ 2

[
∂fc(r1,r2)

∂x1
· ∂fa(r3,r1)

∂x1

]
in Eq. (24). The last term

is a type of three-electron operator which cannot be reduced to some simple one-electron

operator. Only for two-electron systems, any coupling does not occur.
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III. SUMMARY

By adding local phases to the complex wave functions, the repulsive electron-electron

interaction has been eliminated from the expectation values of the Hamiltonian in two-

electron systems. Similar to a gauge field transformation, this elimination leads to a one-

electron Hamiltonian operator. The expectation value of the total momentum operator

vanishes and Löwdin’s criterion Eq. (1) for stationary states is satisfied.
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