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Abstract: More than 200,000 tons of scallop shells are disposed annually alone in Japan. 1 

Nanoparticles derived from scallop shells have the potential to adsorb gaseous 2 

formaldehyde; therefore such discarded shells have now been tested as additive filler in 3 

plywood adhesive by mixing high specific surface area, urea-modified shell nanoparticles 4 

with a resorcinol–formaldehyde resin; with this procedure it was found that the emission of 5 

formaldehyde from the resulting plywood could be substantially reduced. The 6 

urea-modified scallop shell nanoparticles were prepared by two different methods: (i) by a 7 

dry method in which the shells were treated with planetary ball-grinding under ambient 8 

conditions — a completely dried powder was obtained after addition of the 9 

surface-modifying urea solution; (ii) by a moist method by treating dry-ground shell 10 

particles in a wet grinding process with the urea solution, followed by the use of 11 

centrifugation to obtain a paste. The specific surface area of the nanoparticles obtained by 12 

both treatments was 42 ± 3 m2/g. Measurement of the subsequent formaldehyde emission 13 

showed that the addition of the modified scallop shell nanoparticles substantially reduced 14 

the formaldehyde emission from plywood; the reduction depends from the specific mass 15 

uptake of urea on the nanoparticles which especially was the case when resins containing 16 

nanoparticles processed by the moist method were used. 17 

 18 

Keywords: Nanosized scallop shell, Formaldehyde, Resorcinol-formaldehyde resin, 19 

Plywood, Specific surface area. 20 

 21 

 22 
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1. Introduction 1 

    Resorcinol–formaldehyde resins (RF) are used in laminated veneer lumber and 2 

laminated wood, yielding excellent durability and thermo-stability. However, all 3 

formaldehyde-based adhesives are known to emit formaldehyde, which was reclassified in 4 

2004 as a Group 1 human carcinogen by the International Agency for Research on Cancer 5 

(IARC); as a consequence it is extensively regulated in indoor environments (IARC 2006). 6 

Several plywood adhesives emit formaldehyde due to hydrolysis of weak chemical bonds 7 

both during the production of wood-based materials and during long-term use. Therefore, 8 

standards for regulation of the formaldehyde emission have been implemented, such as in 9 

Europe (EN 13986: 2005), Australia and New Zealand (AS/NZS 1859.1&2: 2004), USA 10 

(ANSI A 208.1&2: 2009), or Japan (JIS A 5905&5908: 2003). In order to reduce the 11 

formaldehyde emission from wood-based materials, scavengers such as natural compounds 12 

(Kim 2009; Kim et al. 2006), bisulfite salt (Costa et al. 2012; Costa et al. 2013), amine 13 

compounds (Boran et al. 2011), and urea (Park et al. 2008) have been proposed. Among 14 

these scavengers, urea is the most adaptable compound due to its high reactivity with 15 

formaldehyde and its low price; however, addition of urea can decrease the reactivity of the 16 

resins and considerably reduce the adhesive strength. 17 

    Scallop shells are a waste product from the seafood industry; Japan annually produces 18 

ca. 200,000 tons of scallop shell waste per year. Many applications for this material have 19 

been proposed, such as desulfurization (Kim et al. 2002), skin protection (Liu et al. 2002), 20 

phosphate removal (Yeom and Jung 2009), heavy metal adsorbtion (Abdallah and Gagnon 21 

2009; Ghimire et al. 2008), nutrition supplements (Liu and Hasegawa 2006), and 22 

antibacterial agents (Sawai et al. 2001; Sawai and Shiga 2006; Jeong et al. 2007; Xing et al. 23 
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2013). With these research efforts high added value could be achieved for a traditional 1 

waste product, hence contributing to a shift towards more sustainable social and economic 2 

development. In a previous paper, it was demonstrated that scallop shells have potential to 3 

adsorb gaseous formaldehyde (Yamanaka et al. 2013). A simple nano-grinding method had 4 

been described, in which nano-sized scallop shell particles with high specific surface area 5 

(~50 m
2
/g) are prepared by planetary ball milling under dry conditions, followed by water 6 

addition in order to exceed the limitations of dry grinding. 7 

    The aim of the work reported here was the effective use of discarded scallop shells as 8 

a filler of plywood adhesive; a new composite RF based adhesive system had to be 9 

developed which exhibits both, low formaldehyde emission and high adhesive strength; this 10 

aim should be achieved by mixing urea-modified shell nanoparticles with their high 11 

specific surface area into a standard RF resin. Formaldehyde emission and adhesive 12 

strength of plywood bonded by means of this adhesive system were tested, followed by 13 

discussion of the effects of urea absorption and dispersibility of the shell particles within 14 

the RF resin on the emission of formaldehyde. 15 

 16 

2. Experimental procedure 17 

2.1 Materials 18 

 Curing agent (TD-473, main component is paraformaldehyde) and RF resin 19 

(non-volatile content ca. 58 mass%) were provided by DIC Kitanihon Polymer, Japan. 20 

According to the manufacturer, the gel time of this RF resin is 35-50 min at 30˚C. The 21 

apparent viscosity of the RF resin measured using a viscometer (DV-1 Prime RV, Eko 22 

instruments, Japan) was 0.6 Pa·s at 25˚C. Scallop shell powder was purchased from 23 
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Tokoro-cho Industry Promotion Public Corporation (Kitami, Japan). The feed shell powder 1 

was mainly composed of the calcite phase of calcium carbonate. The median particle size 2 

and the specific surface area of the powder were 20 µm (corresponding to a 50 mass% 3 

diameter) and 1.5 m
2
/g, respectively. The specific surface area was determined by nitrogen 4 

gas adsorption based on the BET method (AdsotracDN-04, Nikkiso, Japan). 5 

 6 

2.2 Mechanical grinding 7 

To prepare a nano-sized powder with high specific surface area, a nano-grinding 8 

procedure was followed as described in detail elsewhere (Yamanaka et al. 2013). Briefly, 9 

92.7 g of the dried feed shell powder was sealed in an yttria-stabilized zirconia pot with a 10 

volume of 500 cm
3
, filled with 669 g of commercially available yttria stabilized zirconia 11 

beads (Nikkato Corporation, Japan) with diameters of 3.0 mm as grinding media. Dry 12 

grinding was performed under atmospheric conditions using a planetary ball mill (P-6, 13 

Fritsch, Germany). The rotation of the pot was set to 400 rpm for 8 hours dry grinding, 100 14 

ml of distilled water or of an aqueous urea solution were added into the milling pot. 15 

   In this study, surface-modified shell powders were prepared following two methods 16 

(Table 1). In the so-called dry method, 100 ml of an aqueous urea solution with 17 

concentrations 1.0 and 15.0 w%, resp., was added to the ground shell, with pure water as 18 

control. The suspension was immediately removed from the milling pot, centrifuged at 19 

1095 G (Type 5800, Kubota, Japan), and dried at 60˚C in an oven to yield the modified, 20 

high-surface area shell powder. For the so-called moist technique again 100 ml of the same 21 

aqueous urea solutions and again with pure water as control were added to the ground shell, 22 

and further wet grinding was carried out for 1 hour in order to crack the agglomerated shell 23 
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particles. The suspension was then centrifuged at 1095 G in order to get a paste like 1 

material. The water content of the moist sample was measured using 2 

thermogravimetric-differential thermal analysis (TG-DTA, Exstar 6200N, Seiko 3 

Instruments, Japan), yielding a weight loss of 46.3 mass% at 100 ˚C. TG-DTA 4 

measurements were conducted under atmospheric conditions at a ramp of 2 K/min. It 5 

should be noted that modified-shells from the moist method could be uniformly distributed 6 

in the RF resin, whereas the dry modified-shells (dry method) showed difficulties in 7 

redispersing the dried and agglomerated shell particles into the RF resin: the effects of the 8 

preparation method on dispersibility of the shell particles into the RF resin and on 9 

formaldehyde emission are discussed in Section 3.2. The specific surface area of these 10 

samples is summarized in Table 1. 11 

    To estimate the urea adsorption on the shell particles, FTIR spectra (FT/IR-460PlusK, 12 

JASCO, Japan) were acquired using a KBr pellet technique with a scan range from 600 to 13 

2000 cm
-1

. The KBr pellets contained 1–2 mass% of shell particles. 14 

 15 

2.3 Plywood preparation and analysis 16 

    120 g RF resin (nonvolatile content weight was 69.6 g), 58.3 g shell nanoparticles (as 17 

dry weight), 18.0 g curing agent (manufacturer's recommended value), and water (added to 18 

produce a total weight of 246.0 g) was stirred using a propeller-type impeller at 1,200 rpm 19 

for 10 min. The proportion of the shell nanoparticles was 46% based on the sum of RF resin 20 

solid plus the shell nanoparticles. The apparent viscosity of the resulting composite resin 21 

were 0.7-2.1 Pa·s at 25˚C. 34.5 ± 0.8 g of the resulting composite resin were spread on a 22 

320×320×2.0 mm
3
 piece of veneer (Abies sachalinensis; grown in Hokkaido, Japan). 2-ply 23 
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boards were prepared by hot pressing for the formaldehyde emission test, and 3-ply boards 1 

for bonding quality tests. The pressing temperature, specific pressure, and time were set to 2 

60˚C, 0.8 MPa, and 10 min, respectively, independently of the type of the plywood. 3 

    The formaldehyde emission was measured by the desiccator method (JIS A 1460: 4 

2001); the absorbance was measured with the aetylacetone method at 415 nm using a 5 

UV-Vis spectrophotometer (UV-2400PC, Simadzu, Japan). The emission tests were 6 

performed 6 times for the control RF resin and 3 times for the scallop shell–RF composite 7 

resins, respectively. 8 

    The bonding quality of the prepared plywood was measured by the cyclic steaming 9 

test (JAS 233: 2003). In each test, bonding strength was assessed for 10 pieces under wet 10 

conditions by measuring the maximum load. 11 

    We also tested the bonding quality and the formaldehyde emission using control RF resin 12 

without the shell powder in order to demonstrate the effect of the shell particles within the RF resin 13 

on the bonding strength and the formaldehyde emission. 14 

 15 

3. Results and discussion 16 

3.1 Characterization of modified-scallop shell particles 17 

    Figure 1 depicts typical scanning electron microscope (SEM) images of the shell 18 

particles according to the dry procedure and the moist procedure, resp. As mentioned above, 19 

the dry shell particles were obtained after dry grinding for 8 hours followed by water 20 

recovery; the moist shell particles were prepared by wet grinding for 1 hour in addition to 8 21 

hours dry grinding (see Section 2.2). Both types of shell particles were found to possess 22 

specific surface areas of 42 ± 3 m
2
/g (see Table 1), and particle sizes of 50 to 100 nm. This 23 



 

 

7

primary particle size was in good agreement with the calculated equivalent diameter 1 

dSSA=60 nm according to the equation dSSA=6/(ρp×SSA), with ρp density of the feed scallop 2 

shell (2440 kg/m
3
 measured using a pycnometer) and SSA specific surface area. Without 3 

the solution (distilled water or aqueous urea) recovery process, the specific surface area of 4 

the ground product was measured to be only 6.5 m2/g, which is a usual value for dry 5 

grinding of calcite crystal (Tsai et al. 2008). The specific surface area increased to the 6 

above mentioned 42 m
2
/g on addition of either distilled water or the aqueous urea solution 7 

to the dried product, independent if there was additional wet grinding after dry grinding and 8 

addition of the solutions or not. In contrast, when the shells were processed solely by wet 9 

grinding for 1 hour, the specific surface area was as low as ca. 10 m
2
/g, which is good 10 

agreement with reported values for the wet grinding of calcium carbonate (He et al. 2006). 11 

As shown in the SEM micrographs in Fig. 1, the dry ground shells partially form 12 

aggregates (10 µm or more in size, Fig. 1a). The particle size distribution was measured 13 

using a laser-diffraction analyzer (MicroTrac MT3000EX, Nikkiso, Japan); these results 14 

were in agreement with the SEM observation; the samples exhibit a broad particle size 15 

distribution ranging from sub-micron to values of several tens of microns with the 50 16 

mass% diameter at 14.3 µm. Particles according to the wet grinding method had sizes from 17 

sub-micron to a few microns in size as shown in Fig. 1b, with the 50 mass% diameter of ca. 18 

1.5 µm. Although both types of shell particles form aggregates, we expected that the coarse 19 

aggregates as observed in the dry ground shells could be disintegrated by the wet grinding. The 20 

coarse aggregates were cracked during the wet grinding process as expected. It should be 21 

noted that although these distributions reflects the material's dispersibility within the RF 22 

resin, there is only small influence either on the overall formaldehyde emission or on the 23 
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adhesive strength of the composite resin (see Section 3.2). 1 

FTIR spectra of the sample powders (Figure 2) show the internal modes of the 2 

carbonate ion in calcite (710, 875 cm
-1

) and the combinations (1795 cm
-1

) of symmetric CO 3 

stretching and OCO bending mode (Andersen and Brečević 1991). The absorption peak at 4 

1668 cm-1 (CO stretching, Barlow and Corish 1959), and 1627 cm-1 (NH vibrations, Piasek 5 

and Urbański 1962) is due to urea adsorption, with increasing intensity of these peaks with 6 

higher concentration of the urea solution. Additionally, the intensities of these urea peaks 7 

were seen to be much higher for the particles processed by the moist method (with the 15.0 8 

w/v% urea solution) compared with those obtained by dry method. 9 

Urea undergoes multi-stage decomposition to carbon dioxide and ammonia at 10 

temperatures between 100 and 400˚C (Chen and Isa 1998; Schabera et al. 2004); therefore, 11 

the amount of adsorbed urea was estimated using TG-DTA from the powder weight loss in 12 

the range 100 to 500˚C (at a ramp of 2 K/min) under atmospheric conditions. From these 13 

results, the mass ratio of urea to total weight was calculated: for the urea solution 14 

concentration of 1.0 w/v%, the mass ratios for the dry and the moist method were 0.37 and 15 

0.81 w/w%, resp.; for the 15.0 w/v% solution the ratios were 3.9 and 10.3), resp. These data 16 

suggest that urea adsorbed on the shell surfaces during urea treatment, and that the 17 

additional wet grinding step is the more efficient method for modification of the shell 18 

particle surfaces. 19 

 20 

3.2 Formaldehyde emission from plywood 21 

    The specific surface area of the various powders, the adsorbed amount of urea, and the 22 

formaldehyde emission from the tested plywood are summarized in Table 1. Figure 3 23 
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shows the formaldehyde emission as a function of urea solution concentration: the emission 1 

from the boards with the control RF resin was 11.4 ± 3.0 mg/L, whereas the resin with 2 

unmodified shell particles gave 9.5±1.1 mg/L as result, showing that the high surface-area, 3 

nano-sized shell particles scavenge 17% of the formaldehyde emitted by the control RF 4 

resin. 5 

When the dry method particles treated with 1.0 and 15.0 w/v% urea solution, resp., 6 

were incorporated into the RF resin, the emission decreased slightly to 8.7 ± 0.2 and 7.5 ± 7 

0.1) mg/L, resp. For the moist method particles treated by wet grinding in 1.0 w/v% urea 8 

solution the emission was 9.2 ± 1.8 mg/L; for the 15.0 w/v% urea solution the emission was 9 

significantly reduced to 3.9 ± 0.4 mg/L (Fig. 3b); this means an overall emission reduction 10 

of around 60% compared with the control samples with unmodified powder (9.5±1.1 11 

mg/L); the upper limit of F** class is 1.5 mg/L according to JIS A 5905&5908: 2003.  12 

    The question arises, if these results might be explained by both, the dispersibility of 13 

the particles within the RF resin as indicated in Fig. 1, and by the adsorbed amount of urea 14 

on the shell surface. Figure 4 depicts typical Ca intensity distribution within the RF resin as 15 

measured by SEM–EDS (SEM–energy dispersive x-ray spectroscopy). The Ca intensity of 16 

the RF resin obtained via dry and moist method treated with 15.0 w/v% urea solution 17 

(calculated from each 10 measurements) were 381 ± 331 and 433 ± 193  cP, respectively, 18 

and their coefficients of variation were 0.87 and 0.45. The judgment for dispersibility of 19 

shell particles was based on coefficients of variation because average values are 20 

proportional to scanning time, Ca concentration within the RF resin, and so on. The value 21 

of coefficient of variation for moist method was only half compared to that for dry method. 22 

These data reveal that scallop shell nanoparticles prepared by the moist method were better 23 
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uniformly distributed for modified particles. As mentioned above, the particle processing 1 

methods had a pronounced effect on the adsorbed amount of urea: from this point of view, 2 

formaldehyde emission was positively correlated with the surface urea adsorption as shown 3 

in Fig. 5.  4 

    For the dry and moist method particles using 1.0 w/v% urea solution the amount of 5 

adsorbed urea were 0.37 and 0.81 w/w%, respectively (see Table 1). Although these two 6 

samples may differ in the dispersibility of the particles within the RF resin as expected 7 

above SEM-EDS measurement, the formaldehyde emission amount of both samples (8.7 ± 8 

0.2 mg/L for the dry method, and 9.2 ± 1.8 mg/L for the moist method) was almost same. 9 

Compared to the control (unmodified powder) this is only a small decrease of 8% and 3%, 10 

resp. This is linked with the only small absorbed amount of urea. On contrary, with the 11 

much higher amounts of absorbed urea (based on the treatment wit the 15% urea solution) 12 

and especially the highest absorption on the moist method powder, the emission decreases 13 

by 21% and 59%.  Based on these results it looks like that the main influence on the 14 

formaldehyde emission is based on the amount of urea absorbed on the powder surface. 15 

Because particle surface characteristics have significant impact on the dispersion behavior, the 16 

effects of a wet grinding time on the adsorbed amount of urea and the dispersibility of the shell 17 

particles within the RF resin will be investigated in the near future.  18 

    Urea is an excellent formaldehyde scavenger (see Table 2). However, the adhesive 19 

strength of the resin decreased with increasing urea content. As shown in Table 2, plywood 20 

treated with RF resins containing more than 1.0 w/w% urea failed the strength test, whereas 21 

the presence of either the dry or moist scallop shell particles exceeded the level required by 22 

the standard of adhesive force (0.7 MPa, JAS 233: 2003).  23 
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In RF resins the bond between the resorcinol monomers and formaldehyde is very 1 

strong; however RF cannot cure unless additional formaldehyde is added. This 2 

formaldehyde originating from the added paraformaldehyde reacts with the resorcinol end 3 

groups in the RF and perform the cross linking during curing. If urea is mixed directly into 4 

the liquid RF resin, this urea competes with the resorcinol moieties in the reaction with the 5 

added formaldehyde. Although quite a high addition of curing agent took place (15 w/w% 6 

based on liquid RF resin), this competing reaction of the mixed urea can slow down the 7 

curing reaction and, hence, decrease the bond strength in the cycling steaming test.  8 

According to the manufacturer of the RF resin (DIC Kitanihon Polymer, Japan), the 9 

curing reaction proceeds at room temperature and can be almost completed by hot-pressing 10 

treatment for around 10 minutes at 60˚C.  11 

However, due to the big proportion of added paraformaldehyde, residual formaldehyde 12 

will remain in the boards as subsequent formaldehyde emission. For resins containing urea, 13 

formaldehyde emission is reduced as the urea is an effective scavenger; however, this is an 14 

extremely fast reaction which also inhibits the curing reaction, hence the non-shell, 15 

urea-containing RF resins possess poor adhesive properties. In contrast, the urea adsorbed 16 

on the shell particles cannot react so easily with the RF resin, because it is not entirely 17 

mixed with the resin; therefore the adhesive strength of resins containing these particles is 18 

not compromised as the curing reaction is not inhibited to the same degree. However, after 19 

the press process and the hardening of the resin, gaseous formaldehyde remaining from the 20 

addition of paraformaldehyde and having not reacted during the curing reaction of the RF 21 

resin might react with the urea absorbed on the shell particles.  22 

 23 
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4. Conclusion 1 

It was shown that the modification of a RF resin with urea-coated scallop shell 2 

nanoparticles reduces the formaldehyde emission from plywood. The lowest formaldehyde 3 

emission was 3.9±0.4 mg/L, which, however, is still above the emission limit of the F** 4 

class. The urea-modified scallop shells could prevent a decrease in adhesion strength, 5 

which usually is the main drawback of the use of urea as formaldehyde scavenger. In 6 

addition, the overall formaldehyde emission was observed to depend strongly on the 7 

amount urea adsorbed on the shell nanoparticle surface. 8 

 9 
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Figure captions 

 

Fig. 1. SEM images of scallop shell particles processed by (a) dry method, and (b) moist 

method. Both types of shell particles were found to possess specific surface areas of 42 ± 3 

m2/g (see Table 1), and particle sizes of 50 to 100 nm. The median particle size of both 

aggregates measured using a laser-diffraction analyzer was 14.3 µm for the dry method, and 

1.5 µm for the moist method. 

 

Fig. 2. FTIR spectra of (a) dry method, and (b) moist method scallop shell powder. 

 

Fig. 3. Formaldehyde emission as a function of urea solution concentration: (a) dry method, 

and (b) moist method shell particles. Black filled circle, and triangle denote the control RF 

resin without any addition of powder, and with unmodified shell sample obtained by dry 

method, respectively. 

 

Fig. 4. SEM-EDS measurement of Ca intensity distribution in the RF resin. (a) dry method, 

and (b) moist method shell particles. 

 

Fig. 5. Relation between formaldehyde emission and adsorbed amount of urea. The 

adsorption amount was the ratio of urea to the shell particles. Black filled triangle denotes 

unmodified shell sample obtained by dry method. 
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Fig. 1 

 

 

 

 

 

 

 

 

 

 

SEM images of scallop shell particles processed by (a) dry method, and (b) moist method. 

Both types of shell particles were found to possess specific surface areas of 42 ± 3 m
2
/g 

(see Table 1), and particle sizes of 50 to 100 nm. The median particle size of both 

aggregates measured using a laser-diffraction analyzer was 14.3 µm for the dry method, and 

1.5 µm for the moist method, respectively. 
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Fig. 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

FTIR spectra of (a) dry method, and (b) moist method scallop shell powder. 
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Fig. 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formaldehyde emission as a function of the urea solution concentration. (a) dry method 

samples, and (b) moist method samples. Black filled circle, and triangle denote the control 

RF resin without any addition of powder, and with unmodified shell sample obtained by dry 

method, respectively. 
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Fig. 4 

 

 

 

 

 

 

 

 

 

 

 

 

SEM-EDS measurement of Ca intensity distribution into the RF resin. (a) dry method 

samples, and (b) moist method samples. 
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Fig. 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relation between formaldehyde emission and adsorbed amount of urea. The adsorption 

amount was the ratio of urea to the shell particles. Black filled triangle denotes unmodified 

shell sample obtained by dry method. 
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Table 1 Particle features of shell powder prepared by dry and moist method 

Sample Dry 

grinding 

[h] 

Wet 

grinding 

[h] 

Conc. of urea 

sol. 

[w/v%] 

Specific surface 

area 

[m
2
/g] 

Adsorbed amount 

of urea 

[w/w%]** 

Formaldehyde 

emission 

[mg/L] 

Dry collection 

8 0 0 47 0 (0.0) 9.5 ± 1.1 

8 0 1.0 41 0.37 (0.18) 8.7 ± 0.2 

8 0 15.0 42 3.91 (1.90) 7.5 ± 0.1 

Moist 

collection 

8 1 1.0 42 0.81 (0.39) 9.2 ± 1.8 

8 1 15.0 38 10.32 (5.01) 3.9 ± 0.4 

Control RF 

resin 

– – 0 – – 11.4 ± 3.0 

– – 1.0* – – 5.19 ± 0.02 

– – 5.0* – – 5.2 ± 0.1 

* denotes the weight ratio [w/w%] of urea to the RF resin. 

** the number in parentheses denotes the weight ratio [w/w%] of urea to the RF resin. 
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Table 2 Adhesive strength test results 

Sample Dry 

grinding 

[h] 

Wet 

grinding 

[h] 

Conc. of urea sol. 

[w/v%] 

Shear strength 

[MPa] 

Minimum shear 

strength 

[MPa] 

Percent wood 

failure[%] 

Dry collection 

8 0 0 1.63 ± 0.19 1.37 55 ± 26 

8 0 1.0 1.50 ± 0.17 1.23 57 ± 25 

8 0 15.0 1.33 ± 0.22 1.05 76 ± 16 

Moist collection 

8 1 1.0 1.24 ± 0.08 1.08 85 ± 11 

8 1 15.0 1.36 ± 0.21 1.07 45 ± 23 

Control RF 

resin 

– – 0 1.00 ± 0.24 0.37 57 ± 24 

– – 1.0* 0.96 ± 0.15 0.71 76 ± 23 

– – 5.0* Fail – – 

* denotes the weight ratio [w/w%] of urea to the RF resin. 


