
Rule caching in SDN-enabled mobile access
networks

言語: English

出版者: IEEE

公開日: 2017-10-05

キーワード (Ja):

キーワード (En): Mobile communication, Mobile

computing, Switches, Base stations, Prefetching, IP

networks, Algorithm design and analysis, Wireless

networks, Software defined networking, Software radio

作成者: 董, 冕雄, 李, 鶴, 太田, 香, XIAO, Jiang

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10258/00009475URL

1

SDN Rule Caching in Mobile Access Networks
Mianxiong Dong, Member, IEEE, He Li, Member, IEEE, Kaoru Ota, Member, IEEE, Jiang Xiao, Member,

IEEE,

Abstract—A software defined network (SDN) enabled mobile
access network is a future network with great potential to support
scalable and flexible network applications. To support various
network applications, the SDN-enabled mobile access network
usually uses forwarding rules in SDN devices. With a limited
rule space in existing SDN devices, a rule caching mechanism
is an efficient way to improve the network performance. In this
paper, we propose SRCMN, which is a new caching structure
to improve the network performance with a limited rule space
in the SDN-enabled mobile access network. We design a two-
layer rule space in each SDN device, which is managed by the
SDN controller. We also design a cache prefetching mechanism
with the consideration of user mobility. By conducting extensive
simulations, we demonstrate that our proposed structure and
mechanism significantly outperform original rule space manage-
ment under various network settings.

Index Terms—SDN, mobile access network, Rule cache.

I. INTRODUCTION

AS a mobile access network evolves from 3G to 4G
to accommodate dramatically increased mobile traffic,

mobile access network infrastructure becomes increasingly
chaotic and dense. Researchers are developing various new
technologies to efficiently manage mobile access network
resources [1]. A software defined network (SDN) has been
proposed to offer scalable and flexible management with a
logical centralized control model [2].

Mobile access network topology changes due to user mobil-
ity impose big challenges on rule management [3] which plays
an important role in the SDN. When mobile users move after
associated to base stations, they communicate with the Internet
along different paths, on which the corresponding forwarding
rules should be deployed in the backhaul of access networks.
Meanwhile, each SDN-enabled switch stores forwarding rules
in its local Ternary Content Addressable Memory (TCAM)
which can compare an incoming packet to patterns in all of
rules at a line rate simultaneously [4]. However, TCAM is
not a cost-effective way to provide high performance with its
expensive cost and high energy consumption. A limited TCAM
size is a major restriction for adopting policies to support flow-
based control in large-scale networks [5].

Rule placement optimization is an existing method to im-
prove the processing capacity of data center networks [6]. The
mechanism of this method is that by getting information on
the whole network, after some analysis on all existing flows,
a proper placement strategy can be found to improve the flow
processing capacity. However, these optimizing strategies are
usually static with a limited number of flows. Furthermore,

Mianxiong Dong, He Li and Kaoru Ota are with Muroran Insitute of
Technology, Japan.

Jiang Xiao is with Hong Kong University of Science and Technology, Hong
Kong.

when the status of flows changes, such as flow destination
movement, traffic variation, etc., updating the rules in all
switches is unfordable.

Unlike rule placement optimization which regards a rule
space as a limited resource, rule caching strategies use the
space efficiently to store rules and cache the most frequently-
used rules in TCAM as caching [3]. Therefore, all rules
can be handled in the network via replacement policies and
the performance can be enhanced in terms of high hit ratio.
Compared to the rule placement optimization methods, the rule
caching is a better approach to enable the flow-based control
to provide both high performance and scalability, especially
in a large-scale data center network.

In the mobile access network, another problem is that the
user mobility changes the forwarding path of flows, which
invalidates the cache strategies designed for the stable network
connection. Therefore, except for the prediction of the flow
traffic, the user mobility can be another issue to consider
in mobile access networks. Since it is hard to predict the
user mobility and a cache mechanism is online processing
rather than traditional static rule placement, a mobile opti-
mized prefetching algorithm is more suitable to mobile access
networks.

To address these problems on rule management in SDN-
enabled mobile access networks, in this paper, we set the
TCAM as the rule caching and design a two-layer rule space
to support a rule caching mechanism. With the consideration
of user mobility, we also model the rule optimization problem
and design a caching algorithm of prefetching and replacement
strategies. This algorithm achieves high hit ratio by replacing
rules to the flow forwarding paths and replacing them inte-
grally with prediction of user mobility.

The rest of this paper are organized as follows. Section
II reviews the SDN-enabled mobile access network and rule
caching. Design of SRCMN and caching algorithm is intro-
duced in Section III. Section IV gives results of the perfor-
mance evaluation. Finally, Section V concludes this paper.

II. SDN-ENABLED MOBILE ACCESS NETWORK AND RULE
CACHING

The concept of SDN-enabled mobile access networks stems
from the research of SDN and network virtualization provides
a uniform programmatic interface for mobile access network
management[7][8][9]. For the mobile access networks, SDN
has the potential to make the most out of licensed network
resources, provide better scalability for handling billions of
users, and foster the innovation inside the network. As shown
in Fig. 1, as well as the SDN-enabled wired network, a typical
SDN-enabled mobile access network consists of the control

2

Data Plane

Controller

Control Plane
SDN Switch

SDN Base
Station

Smartphone

IP network

Fig. 1. Concept of the SDN-enabled mobile access network

plane and the data plane. In the control plane, SDN devices,
including base stations and switches, are connected in the
network for forwarding network data between the IP network
and mobile users. Each SDN device has a secure connection
with the controller in the control plane.

In this network structure, the controller manages all network
settings(e.g., frequency bands, forwarding strategies, etc.) of
devices in the data plane. These settings abstract a set of rules
and the controller installs these rules in corresponding devices.
When a user smartphone sends a packet to the destination in
the IP network, devices in the forwarding path will check their
memory to find the matched rules for processing this packet.
However, if the controller does not install the rules for this
packet in the memory, the device will inform the controller
for further processing.

Since the connections between the control plane and devices
are much slower than the connections in the data plane, the
processing in the controller brings longer latency than in the
devices. As a result, an ideal way to reduce this latency
is installing all possible rules in the forwarding path and
only processing packets in the controller when the network
forwarding strategy is updated.

Unfortunately, it is hard to install too much rules in the SDN
devices with the limitation of their memory. In most SDN
devices, manufacturers use TCAM as the rule space to store
rules with high matching speed. Since this type of memories
brings very expansive cost and high energy consumption, rule
space entries in most SDN devices are no more than 10
thousands. It is very strict to deploy comprehensive forwarding
strategies in the mobile access networks with such few rules.

Rule caching is an efficient way to solve this issue that ex-
pands the rule space with normal memories instead of TCAM
and uses TCAM as high-speed rule cache. Some previous
work proposed practical switch structures [10][11][3][12][13]
that uses a part of the memory in the switches as rule space
and adds a caching algorithm to manage rule cache in the
TCAM. However, since most design is based on a single

b1

b2

p1

IP network

s2

s3

s4

s1

r1

(a) User p1 connects to base station b1

b1

b2
p1

IP network

s2

r1

s3

r1 s4

s1

r1

(b) User p1 moves to base station b2

Fig. 2. Example of the SDN rule caching in the mobile access networks

device[14], existing work makes little consideration on the
mobile access network in which device mobility brings more
complex variation.

III. SRCMN DESIGN AND CACHING ALGORITHM

In this section, we first discuss the scenario of rule caching
in SDN-enabled mobile access networks. Then, we describe
the main structure and related modules in SRCMN structure.
After that, we design a cache algorithm based on SRCMN
structure to maximize the cache hit ratio.

A. Scenario analysis

For better understanding of the rule caching in SDN-enabled
mobile access networks, we use an example to illustrate the
scenario as shown in Fig. 2. There are two base stations b1
and b2 which connect to a mobile access network with four
switches, s1, s2, s3 and s4. Mobile user p1 moves from b1 to b2
and sends a network flow to the IP network. The small mobile
access network uses rule r1 to control this flow. Then, p1 sends
its flow from b1 to switch s1. Since this is the first time that
the flow is transferred to s1, the controller has to place rule
r1 to switch s1. Usually, for the upcomming packets, this rule
is placed in the cache of s1 as shown in Fig. 2(a). When the
flow is transferred to switch s2, the controller needs to update
rule r1 to switch s2 again and place r1 to the cache, which
means another cache miss.

In wired networks, after switch s1 and s2 cache rule r1,
there is no cache miss in transferring network flow of p1.

3

SwitchController

Management Connection

Rule Recorder Memory Manager

TCAM Cache Hash MapRule Updater

Topology

Monitor

Fig. 3. Main modules in SRCMN include: Rule Recorder, Rule Updater and
Topology Monitor in the controller; Memory Manager, TCAM Cache and
Hash Map in all switches.

However, we focus on mobile access networks where users
are mobile. As shown in Fig. 2(b), user p1 moves to base
station b2 and the forwarding path is changed to s3, s4 and
s2. Therefore, when the flow comes to switch s3 and s4, the
controller has to update rule r1 and cache it to switches, which
means two more cache misses.

As a result, during user p1 moves from b1 to b2, four cache
misses happen for only one rule r1. In the rest of this paper,
we will state this problem and propose a framework with a
suitable cache algorithm. Meanwhile, the controller needs to
update same rule r1 four times, which is another problem in
some previous work.

B. Rule Space Structure

For the problems of rule caching in mobile access networks,
we design a two-layer rule space structure as shown in Fig.
3. In SRCMN, we design a memory manager as a module in-
serted in the existing programmable SDN devices and a cache
manager as a network application deployed on the centralized
controller. All rules are stored in SDN devices before the cache
manager updates the rules. In the cache manager, we use three
modules to support the cache mechanism: the rule recorder,
the topology monitor, and the rule updater. The rule recorder
stores all rules and the characters of their corresponding flows,
while the rule updater sends updated information to the SDN-
enabled switches. All topology information is stored in the
topology monitor to support the decision of rule updating.

In the memory manager, we use a hash map to store the rules
as the regular design in OpenvSwitch and a modified operating
system in programmable SDN devices will access each rule
entry missed in TCAM in this hash map as the second layer
rule space. Meanwhile, the memory manager will update the
cache miss information to the cache manager.

The rule updater receives the cache miss information and
checks if this information causes cache updating. This updater
checks the rule recorder and decides which rules need to be
replaced by the rules for the new flows. How to make this
decision is a problem dependent on the predicted flow traffic
and the cache access history. With this updating decision, the
rule updater predicts the next possible forwarding paths of the
corresponding flows of this rules and prefetching them to these
predict paths.

The rule recorder stores all rules both in existing network
and network history. We also use a hash map to maintain
these rules. We also maintain a table to store the characters
of the corresponding flows of these rules. We choose the
network predicted traffic and also the miss history as the
main characters of each flow to support the decision of rule
updating.

The topology monitor maintains information of each mobile
users and the network topology. Meanwhile, this monitor also
stores all forwarding paths for all base stations. For example,
when a mobile user moves from one base station to another,
the topology monitor can get the newest forwarding path as
soon as possible.

C. Cache Algorithm

To maximize the cache hit ratio in SRCMN, we design a
prefetching optimized Least Recently Used (LRU). The main
improvement to the traditional LRU is adding a prefetching
strategy with consideration of forwarding paths and user
positions. We use an LRU queue in each switch to store
the cached rules and the length of queue is the same with
the TCAM size. The LRU queue is a basic data structure
to maintain the least accessed rules. We add the prefetching
strategy as an adjustment of LRU to suit the mobility and
forwarding path, which is executed in the controller.

For the forwarding path, we first assume that the controller
can place rules in all switches with similar time intervals. In
SRCMN, we record all forwarding paths of each flow in the
network. Therefore, we put rules in the corresponding switches
in the whole forwarding path when the first switch in this
path throws a rule miss event to the controller. Meanwhile,
considering the neighboring base stations to usually share the
same forwarding path, our prefetching strategy puts rules to a
small number of switches.

In the prefetching strategy, considering the long access
duration and the popular cellular access network [15], the next
possible hops of mobility are predictable. As a result, since the
neighbor base stations are limited with a prescribed network
topology, we use an optimization that prefetches the rule to
all neighbors. For example, in a regular cellular network, for
each base station, the normal number of neighbors is six and
we just need to prefetch rules in this base station and its six
neighbors.

For better understanding of the caching algorithm, we use
a simple example when a user moves from one base station
to another base station. As shown in Fig. 4, we use a network
topology with six switches and four base stations connected
to this network. For each switch, we use some squares to
illustrate LRU queues, in which the dark gray square means
the tail of each queue. In this network, we put only one user p1
who has flow f1 to be forwarded to IP network. For forwarding
this flow, we use r1 as the forwarding rule. As shown in Fig.
4(a), user p1 moves from base station b1. Since there are two
switches in the forwarding path from b1 to IP network, the
caching algorithm first puts r1 in the head of the LRU queues
of these two switches. Then, the algorithm prefetches this rule
to the switches in the forwarding path of neighboring base

4

IP Network

b1 b3b2 b4

r1 ...

r1 ...

r1

...

p1

(a) User p1 moves from base station b1

IP Network

b1 b3b2 b4

r1 ...

r1 ...

r1r1 ...

r1 ...

p1

(b) User p1 moves to base station b2

IP Network

b1 b3b2 b4

... r1

r1 ...

r1 ... r1 ...r1 ...

r1 ...

p1

(c) User p1 moves to base station b3

IP Network

b1 b3b2 b4

... r1

... r1

... r1 r1 ...r1 ...

r1 ...

p1

(d) User p1 moves to base station b4

Fig. 4. A simple example of the caching algorithm during user p1 moves
from base station b1 to b4

station b2. Therefore, r1 is put in the head of the LRU queues
of three switches.

When the user moves to b2 as shown in 4(b), since all the
switches in the forwarding path of base station b2 have cached
rule r1, there is no cache miss for this movement. For the
prefetching, the algorithm puts r1 in the head of the LRU
queues of the switches in the forwarding path of neighboring
base station b3. After the user moves to b3 as shown in 4(c),
there is also no cache miss with the previous prefetching.
Furthermore, since base station b1 is not a neighbor of b3, the
algorithm moves r1 to the tail of the LRU queues of the switch
only in the forwarding path of b1. When the user continues
moving toward base station b4, the algorithm puts r1 to the
tail of the LRU queues of the switches in the forwarding paths
of base station b2 as shown in Fig. 4(d).

IV. EVALUATION

In this section, we first evaluate the cache hit ratio by
experiments on our prototype implementation. After that, we
take a large scale simulation to evaluate the performance of
SRCMN in a large mobile access network.

We have implemented the SRCMN framework as a network
application on top of the popular OpenDaylight which is
an open-source controller solution. We use mininet[16] as
a main emulation tool and OpenvSwitch, an open source
implementation of virtual OpenFlow switches. To reduce the
overload of OpenDaylight, we implement a service outside
the controller application to provide topology and placed
rule information. The module in OpenDaylight is only used
for the response to the caching missing event. For rapid
development for the performance evaluation, we bypass the

0 20 40 60 80 100
Cache hit ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F-
P
e
rc

e
n
ta

g
e
 o

f
sw

it
ch

e
s

(%
)

SRCMN

LRU

FIFO

(a) Small cache size

0 20 40 60 80 100
Cache hit ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F-
P
e
rc

e
n
ta

g
e
 o

f
sw

it
ch

e
s

(%
)

SRCMN

LRU

FIFO

(b) Large cache size

1000 2000 3000 4000 5000
Rule cache size

50

60

70

80

90

100

C
a
ch

e
 h

it
 r

a
ti

o
 (

%
)

SRCMN

LRU

FIFO

(c) Slow movement environment

1000 2000 3000 4000 5000
Rule cache size

50

60

70

80

90

100

C
a
ch

e
 h

it
 r

a
ti

o
 (

%
)

SRCMN

LRU

FIFO

(d) Fast movement environment

Fig. 5. Evaluation results outperform the comparison algorithm in both micro
benchmark and large scale simulations.

standard flow updating processing in openflow protocol and
use a customized updating procedure to notify the switches to
put rules in their cache.

In each OpenvSwitch instance, for rule cache emulation,
we have modified the original source code that changes the
original rule space to limited flow entries and inserts a new
structure to store infinite flow entries. Since we have no
benchmark on the network performance, the additional rule
space brings no latency than the original implementation. We
use the original address mapping and change the address to
the new flow entries when the number of flows exceeds the
cache size.

We test one hour traffic and record the cache hit ratio of all
switches in mininet. For comparison, we also use normal LRU
and First In First Out (FIFO) with the same benchmark setting.
We use two sizes of rule cache to find out the efficiency with
small size cache and large size cache of SRCMN. Since our
setting is a small scale network, the small size cache is set
to 10 rule entries and the large cache size is set to 50 rule
entries.

From the result with small size cache as shown in Fig. 5(a),
the cache hit ratio of SRCMN is much better than other two
cache algorithms with the small cache size. Comparing to the
traditional LRU algorithm, even though the cache size with
10 rule entries is very small, SRCMN performs enough well
with its prefetching strategy.

When the cache size becomes larger, the difference between
these three cache algorithms becomes smaller as shown in
Fig. 5(b) and SRCMN performs little better than other two
algorithms. Considering there are only 30 flows in the network,
the cache size with 50 rule entries is too large. As a result,
SRCMN can improve the cache performance significantly with
a limited cache size. Meanwhile, when the cache size is
enough, all cache algorithms perform similar cache hit ratio
even in mobility environment.

5

To evaluate the performance of the algorithm in SRCMN,
we also use a simulation based benchmark to test the cache hit
ratio with a large-scale network. We still use FIFO and LRU
as comparison in this simulation. In the evaluation setting, we
build a mobile access network with 1000 switches with a cache
size from 1000 to 5000 rule entries. We also generate 10000
flows with mobility and set 500 base stations in the network
which are distributed in the cellular structure. The hops from
each base station to the IP network is still set to three and we
still use the shortest paths as the forwarding paths. All flows
have randomly distributed traffic from 1 bps to 10 Mbps. We
test the cache hit ratio 20 times and get the average result.

For testing the different mobility of flows, we use two
settings of movement speed: flows move from one base station
to another in 20 minutes and 1 minute. We simulate 24 hours
traffic and record the result of the cache hit ratio with two
movement speed.

From the cache hit ratio result in the slow movement setting
as shown in Fig. 5(c), SRCMN performs better than other
two algorithms. Similar with the micro benchmark result, the
small cache size influences the efficiency of FIFO and LRU
seriously since these two algorithms have no optimization on
the forwarding paths.

With faster movement speed, the cache hit ratio becomes
worse as shown in Fig. 5(d), especially for FIFO and LRU.
With the mobility optimized prefetching, SRCMN still per-
forms efficiently with more than 90% cache hit ratio while
other algorithms get near 80 % cache hit ratio even with the
cache size of 5000 cache entries.

V. CONCLUSION

In this paper, we propose a rule caching model in the SDN-
enabled mobile access network. With this model, we design
a cache structure named SRCMN and apply the prefetching
with the mobility and forwarding path of each flow to increase
the cache hit ratio during users’ migration in the network. We
study a rule caching problem to maximize the cache hit ratio
of the SDN-enabled mobile access network. Finally, micro
benchmark and large scale simulations are conducted to show
that the proposed caching algorithm can more significantly
increase the hit ratio than traditional algorithms.

ACKNOWLEDGMENT

This work is partially supported by JSPS KAKENHI Grant
Number 25880002, 26730056, JSPS A3 Foresight Program.

REFERENCES

[1] M. Dong, T. Kimata, K. Sugiura, and K. Zettsu, “Quality-of-experience
(QoE) in emerging mobile social networks,” IEICE TRANSACTIONS on
Information and Systems, vol. 97, no. 10, pp. 2606–2612, 2014.

[2] H. Ali-Ahmad, C. Cicconetti, A. de la Oliva, V. Mancuso,
M. Reddy Sama, P. Seite, and S. Shanmugalingam, “An sdn-based
network architecture for extremely dense wireless networks,” in Pro-
ceedings of IEEE SDN for Future Networks and Services (SDN4FNS
2013), Nov 2013, pp. 1–7.

[3] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the ”one big
switch” abstraction in software-defined networks,” in Proceedings of
the Ninth ACM Conference on Emerging Networking Experiments and
Technologies (CoNEXT ’13). New York, NY, USA: ACM, 2013, pp.
13–24.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[5] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-
fying middlebox policy enforcement using sdn,” in Proceedings of the
ACM SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM ’13), ser.
SIGCOMM ’13. New York, NY, USA: ACM, 2013, pp. 27–38.

[6] C. Meiners, A. Liu, and E. Torng, “Bit weaving: A non-prefix approach
to compressing packet classifiers in tcams,” IEEE/ACM Transactions on
Networking, vol. 20, no. 2, pp. 488–500, April 2012.

[7] L. Li, Z. Mao, and J. Rexford, “Toward software-defined cellular
networks,” in Proceedings of European Workshop onSoftware Defined
Networking (EWSDN 2012), Oct 2012, pp. 7–12.

[8] J. Kempf, B. Johansson, S. Pettersson, H. Luning, and T. Nilsson,
“Moving the mobile evolved packet core to the cloud,” in Proceedings of
IEEE 8th International Conference onWireless and Mobile Computing,
Networking and Communications (WiMob 2012), Oct 2012, pp. 784–
791.

[9] K. Pentikousis, Y. Wang, and W. Hu, “Mobileflow: Toward software-
defined mobile networks,” IEEE Communications Magazine, vol. 51,
no. 7, pp. 44–53, July 2013.

[10] Q. Dong, S. Banerjee, J. Wang, and D. Agrawal, “Wire speed packet
classification without tcams: A few more registers (and a bit of logic)
are enough,” in Proceedings of the 2007 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS ’07). New York, NY, USA: ACM, 2007, pp. 253–264.

[11] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based
networking with difane,” in Proceedings of the ACM SIGCOMM 2010
Conference (SIGCOMM ’10). New York, NY, USA: ACM, 2010, pp.
351–362.

[12] G. Lu, R. Miao, Y. Xiong, and C. Guo, “Using cpu as a traffic co-
processing unit in commodity switches,” in Proceedings of the First
Workshop on Hot Topics in Software Defined Networks (HotSDN ’12).
New York, NY, USA: ACM, 2012, pp. 31–36.

[13] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Infinite cacheflow
in software-defined networks,” in Proceedings of the Third Workshop on
Hot Topics in Software Defined Networking (HotSDN ’14). New York,
NY, USA: ACM, 2014, pp. 175–180.

[14] S. Luo, H. Yu, and L. M. Li, “Fast incremental flow table aggregation in
sdn,” in Proceedings of the 23rd International Conference onComputer
Communication and Networks (ICCCN 2014), Aug 2014, pp. 1–8.

[15] D. Astély, E. Dahlman, A. Furuskär, Y. Jading, M. Lindström, and
S. Parkvall, “Lte: The evolution of mobile broadband,” IEEE Commu-
nicaiton Magazine, vol. 47, no. 4, pp. 44–51, Apr. 2009.

[16] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks (Hotnets-IX).
New York, NY, USA: ACM, 2010, pp. 19:1–19:6.

