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Abstract 

In recent years, fiber Bragg grating (FBG) sensors have attracted much attention 

because of their excellent properties and potential use in a wide range of 

applications. The excellent properties include small size, lightweight, remote 

sensing, wide bandwidth, immune to electromagnetic interference, lack of need 

for electrical power, and so on. These properties make FBG sensors play a more 

and more important role in monitoring and measuring the strain conditions of 

infrastructures. 

However, since the conventional FBG strain sensors analyze reflected spectrum 

and measure the shift of reflected wavelength due to strain changes, a broadband 

light source, and an optical spectrum analyzer are indispensable devices, which 

make the measurement system large and expensive. In this research, we 

proposed a strain sensor system that measures strains from reflected power 

changes of FBGs. We used a laser diode as the light source and a power meter 

as the measurement device in the system, which make the FBG strain sensor 

system small-size and low-cost over to conventional FBG sensors. In addition, 

multipoint strain measurements can be implemented by using the time delay of 

reflected pulses of a series of FBG sensors with this measurement method. When 

there are two or more FBGs, an oscilloscope is used as the measurement 

instrument since it can perform multipoint measurements. In order to approximate 

the relationship between strains or temperatures and the reflected power, a feed-

forward neural network was used. This is because a feedforward neural network 

composed of three layers of an input layer, a hidden layer, and an output layer, 
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can approximate any function with high accuracy. Comparing with the results 

calculated by function fitting, accuracy was pretty improved by using a neural 

network. 

First, the strain measurement experiment was conducted with only one FBG at 

room temperature. By applying strains to the FBG and measuring the changes in 

reflected power due to change in strains, the relationship between the strains and 

the power changes was obtained. Comparing the strains calculated by the 

function fitting and the strains calculated by the neural network, it was found that 

accuracy was improved by using the neural network. Then, a temperature 

compensation experiment was conducted using two FBGs connected in series 

based on the measurement method. In the experiment, one FBG was used for 

temperature measurement, and the other one was used for strain measurement. 

We heated both FBGs and applied strains to only one FBG in the experiment. In 

order to model the strain-temperature-power relationship of FBGs, the measured 

power of FBGs is used as the input layer of the neural network, while the strains 

and temperatures are used as the output layer. The temperatures and strains 

obtained using the neural network agree well with the actually applied 

temperature and strain in the experiment. In comparison with the strains and 

temperatures calculated using function fitting and that calculated by the neural 

network, it is found that the accuracy was greatly improved using the neural 

network. Furthermore, the output for the power other than the measured power 

was also correctly obtained. Therefore, not only the feasibility of the strain sensor 

system proposed in this research but also the data processing method using a 

neural network have been demonstrated by experimental results. 
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1.1 General Background 

In recent years, natural disasters are occurring frequently due to typhoons, 

earthquake and torrential downpours. Therefore, the realization of safe living by 

the advanced management of structures in the civil engineering and building 

fields is required. Thus, it is important to monitor the strain conditions in real time 

of social infrastructure such as roads, bridges and power facilities [1-3]. In 

addition, places where natural disasters are mostly harsh environments such as 

mountains, tunnels, and rivers, which are susceptible to erosion, lightning strikes, 

electromagnetic interference, and so on. Traditional electrical sensors are easily 

damaged by lightning, electromagnetic interference, etc., and are difficult to apply 

in these places. Optical fiber sensors can be used in these harsh environments 

without being affected because they have many unique advantages that are not 

available in traditional electrical sensors. The excellent properties of optical fiber 

sensors include compact size, lightweight, large bandwidth, the possibility of 

remoting sensing, anti-electromagnetic interference, low loss, good corrosion 

resistance, lack of need for power supply, and high sensitivity [4-10]. These 

characteristics enable optical fiber sensors to be widely used in aerospace 

technology, biosensors, smart robots, pressure sensors, railway monitoring 

systems and other engineering areas for sensing and monitoring as well as the 

structural health monitoring of buildings [11-23]. Fiber optic sensing converts 

measured external changes into changes in the characteristics of light 

propagating in the fiber, and these characteristics include intensity, phase, 

frequency, wavelength, polarization, and so forth [24-25]. There are several types 

of optical fiber sensors depending on the measurement principle. Among them, 
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the development of sensors using fiber Bragg grating (FBG) has been actively 

conducted [26-40]. This is due to the fact that in addition to the properties of 

optical fiber sensors described above, the FBG sensors have an excellent linear 

relationship with respect to temperatures and strains [41-43]. Therefore, they 

have potential applications in disaster-prevention sensing systems such as the 

collapse of tunnels, prediction of an earthquake as well as investigation of strains 

of infrastructures.  

1.2 Research Purpose 

Optical fiber sensors have been being actively studied as sensors for 

measuring physical quantities such as strains, temperatures, pressures, 

magnetic field, and so on. In particular, measurement methods using reflected 

light of fiber Bragg grating (FBG) are actively studied, and strain measurement 

sensors using FBGs are being studied for monitoring of structures in the field of 

building and civil engineering. However, since the conventional FBG strain 

sensors analyze reflected spectrum and measure the shift of reflected 

wavelength due to strain changes, a broadband light source and an optical 

spectrum analyzer are indispensable devices, which make the measurement 

system large and expensive. In addition, the measurement interval is long as the 

sweep time is slow, and it is also difficult to compensate for changes in the 

reflection spectrum of FBGs due to temperature changes. Thus, although the 

FBG sensors have reached a certain practical level, there are also some 

problems such as low of workability and scalability, high cost, which are limiting 

the development of FBG sensors to reach the spread level. In order to resolve 

the problems mentioned above and advance the spread level, instead of the 
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broadband light source and the optical spectrum analyzer, we developed an FBG 

strain sensor system using a laser diode as the light source and a power meter 

as the measurement device which can be found at a more affordable price. And, 

for data processing, we use a three-layer feedforward neural network to 

approximate the relationship of strains, temperatures, and the reflected power of 

FBGs. This method can miniaturize the experimental system and build it at low-

cost. Furthermore, we conducted a temperature compensation experiment using 

the FBG strain measurement method reported here and the neural network. 

1.3 Dissertation Outline 

As described above, the introduction (Chapter 1) describes the general 

background, research purpose, and dissertation outline. 

Chapter 2 presents an overview of optical fiber sensors. The concept, 

characteristics, and types of optical fiber sensors are described here. 

Chapter 3 presents the outline of an FBG and the measurement principle of 

FBG sensors. Also, we described the strain measurement principle of the 

proposed FBG strain sensor in this study. In addition, the principle of multipoint 

measurement and the problems that will arise are also described in this chapter. 

Chapter 4 is about the neural network, including the outline, components and 

form of network, and the backpropagation method. The design of neural network 

is also described for data processing. 

Chapter 5 presents the experiment and experimental results. The experiment 

includes two parts. One is the strain measurement experiment, which is 

conducted using only one FBG, and this experiment is to investigate the strain 

characteristic of an FBG. The other one is a temperature compensation 
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experiment, which is conducted using two FBGs connected in series. In the 

experiment, one FBG is used for temperature measurement, and the other one 

is used for strain measurement. This experiment focuses on temperature 

compensation. The experiment and results are presented in this chapter, showing 

the feasibility of the proposed sensor system. 

Finally, the conclusions drawn from this study are given in chapter 6. 
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2. Optical Fiber Sensor 
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2.1 Fundamental of the optical fiber 

An optical fiber is a flexible, transparent fiber made of quartz glass or plastic 

for transmitting an optical signal, and is mainly used as a transmission line for 

optical communication [44-45]. Nowadays, in addition to optical communication, 

it has come to be used for various applications such as sensors, fiber lasers, high 

power light guides and the like. Along with this, fiber materials are becoming 

diversified, such as fluoride glass, chalcogenide glass, plastics as well as quartz 

glass. It is drawing attention to use as a sensor depending on its own 

characteristics and structure of the optical fiber. Optical fibers generally include a 

core and a cladding material that surrounds the core, and the index of refraction 

of the core is greater than that of the clad [46]. The cross section of the optical 

fiber is shown in Fig 2.1.1.  

 

Fig.2.1.1. Structure of an optical fiber. 

When light enters a medium with a small refractive index from a medium with 

a large refractive index, the light will be reflected and refracted at the boundary. 

We can change the incident angle of the light so that the light is totally reflected 

at the boundary, that is, there is only the reflected light but not the refracted light 

at the boundary. This phenomenon is called the total reflection. Total reflection is 

Core

Clad



8 

 

also a necessary condition for transmitting light with an optical fiber. For this 

reason, the light could propagate in a state totally trapped inside the core of the 

optical fiber. Generally, the refractive index of the core is 1.47 and the refractive 

index of the clad is 1.46. The reflection and refraction of light at the boundary 

between materials with different refractive indices is shown in Fig.2.1.2 [47]. 

 

Fig. 2.1.2. Reflection and refraction of light. 

The incident angle 𝜃1  and the reflection angle 𝜃′ are equal. According to 

Snell's law [48] 

𝑛1𝑠𝑖𝑛𝜃1 = 𝑛2𝑠𝑖𝑛𝜃2                      (2.1.1) 

The 𝑛1 and 𝑛2 are the index of refraction of two different materials. Assume that 

the incident angle is 𝑛𝑐 when the incident light is refracted along the boundary 

surface, the value of 𝑠𝑖𝑛𝜃2 will become 1. From Eq. (2.1.1), we could obtain 

𝑠𝑖𝑛𝜃𝑐 =
𝑛2

𝑛1
                     (2.1.2) 

In the case of 𝑠𝑖𝑛𝜃𝑐 ≥ 𝑛2/𝑛1, the value of 𝑠𝑖𝑛𝜃2 will become larger than 1, the 

light will be completely reflected at the interface between the core and cladding, 

Incident ray Reflected ray

Refracted ray
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which is the total reflection described above. And, the light can be confined in the 

core and transmit over a long distance using this property.  

Fibers that support many propagation paths or transverse modes are 

called multi-mode fibers, while those that support a single mode are called single-

mode fibers (SMF). Multi-mode fibers generally have a wider core diameter and 

are used for short-distance communication links and for applications where high 

power must be transmitted. Single-mode fibers are used for most communication 

links that are hundreds of kilometers or more. In this study, single-mode fibers 

are used to implement the experiments. 

2.2 Fundamental of optical fiber sensors 

Along with the development of optical fiber communication and optical fiber 

sensing technology, optical fiber sensors are rapidly developed. Prior to the 

development of optical fiber sensors, conventional electrical sensors were mainly 

used. However, electrical sensors are susceptible to environmental conditions 

because they measure changes in electrical signals to monitor changes in 

external strains, and use electrical wires transmit electrical signals. Furthermore, 

it is necessary to provide a power source in the measurement section for electric 

sensors. The electronic parts of the power supply and measurement section may 

be easily destroyed by short circuit or electromagnetic interference. In contrast to 

electrical sensors, fiber optic sensors transmit light signals using optical fibers 

and measure external strains using changes in light signals. 

Nowadays, sensors are playing an extremely important role in production and 

living and are currently being studied to be more sensitive, more precise and 

more adaptable. Among many kinds of sensors, optical fiber sensors attract much 

https://en.wikipedia.org/wiki/Transverse_mode
https://en.wikipedia.org/wiki/Multi-mode_fiber
https://en.wikipedia.org/wiki/Single-mode_fiber
https://en.wikipedia.org/wiki/Single-mode_fiber
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attention and research on optical fiber sensors is being conducted. Especially, 

optical fiber has properties as material such as intrinsic safety, non-inductive 

property and so on. Optical fiber sensor systems have been developed utilizing 

these characteristics. Optical fiber sensors are based on the principle that various 

physical phenomena are converted to optical signals via optical fibers, and are 

transmitted and processed. Currently, optical fiber sensors are used to measure 

almost all physical quantities. Those include pressure, temperature, speed, strain, 

load, gas concentration and so on. 

The optical fiber sensor can be divided into two types depending on what role 

the optical fiber plays in the optical fiber sensor system [49]. One is to use the 

optical fiber only as a simple transmission path, and the other is to use the optical 

fiber itself as the sensor. When using an optical fiber only as a transmission line, 

as shown in Fig. 2.2.1, the light coming out of the optical fiber enters the sensor, 

and then the output light from the sensor enters the optical fiber again. The 

characteristics of light reaching the sensor from the light source through the 

optical fiber used as the transmission line change according to the external 

changes applied to the sensor. The characteristic changes are detected from the 

output of the light receiver. The other case that the optical fiber itself is used as a 

sensor is shown in the Fig. 2.2.2. When the physical quantity applied to the optical 

fiber from the external environment changes, the properties of the light 

propagating in the fiber also change. The characteristics of the light described 

here include the intensity, phase, wavelength, frequency, polarization, loss, etc. 

of the light. Since these characteristics change when an external change is 

applied to the optical fiber, it is possible to determine the external change applied 
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to the optical fiber from the change in the measured characteristic changes of 

light. 

 

Fig. 2.2.1. Optical fiber used only as a transmission line. 

 

Fig. 2.2.2. Optical fiber itself used as the sensor. 

In this study, we are conducting experiments using an FBG sensor of which the 

optical fiber itself is used as a sensor, so we will give some descriptions about 

optical fiber sensor of which the optical fiber itself is used as the measurement 
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part. This kind of optical fiber sensor has the following features and advantages. 

A) Small size, lightweight 

B) Flexibility 

C) Passive measurement unit 

D) High strength, durability, corrosion resistance 

E) Resistance to electromagnetic induction 

F) Distribution, quasi-distribution measurement 

These advantages and features make the optical fiber sensor can be used where 

traditional electrical sensors cannot be used, such as the place where there is 

electromagnetic interference or the place where thunderstorms often occur. 

2.3 Classification of optical fiber sensors 

There are roughly three types of the optical fiber sensors when they are 

classified according to their constructions, particularly the way utilizing the optical 

fiber in the sensor system [50]. The first type is a sensor system in which the 

optical fiber is used as a transmission path of signal light. The multimode fiber is 

often used in this kind of optical fiber sensor system. The second one is an optical 

fiber probe sensor. The optical probe sensors perform the measurement by 

receive the light signal reflected from the objects to be measured. One of the 

great advantages of this type of sensor is that it can perform the measurement 

without contacting the objects to be measured. The third type is called a functional 

optical fiber sensor. Functional fiber sensors mainly use single-mode fibers in the 

systems. The working principle is to modulate and influence the transmission 

characteristics of the optical fiber according to the measured physical quantity, 

resulting in changes in the optical properties (intensity, wavelength, frequency, 
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polarization, etc.) of the light, thereby converting the measured physical quantity 

changes into modulated light signals. Using this, we can determine the changes 

in measured physical quantities from the optical signals received by the optical 

detector. As the FBG sensor used in this research is a sensor in which the optical 

fiber itself functions as a sensor, here we mainly explain some examples of the 

functional optical fiber sensors briefly. 

2.3.1 Optical Time Domain Reflectometry 

The Optical Time Domain Reflectometry (OTDR) is one of the optical fiber 

sensing technologies used to measure the backscattering light generated when 

light enters the fiber [51-52]. When the pulsed light is incident on the fiber to be 

measured, reflected light will be generated in a direction opposite to the incident 

direction. This phenomenon is known as backscattering and is used as the 

principle of optical fiber sensors. 

  The measurement principle of OTDR is to input optical pulses to the 

measurement optical fiber and measure the Rayleigh scattering light and the 

Fresnel reflection light returned from the measurement optical fiber with an optical 

receiver. From the time difference from the incidence of pulsed light until the 

scattering light or the reflected light returns, it is possible to find out the position 

where scattered light and reflected light occur. The OTDR can be used to 

measure fiber distance, transmission attenuation and loss, and fault location, and 

is therefore widely used in fiber measurement, construction, and maintenance. 

2.3.2 Brillouin Optical Time Domain Reflectometry Sensor 

As described in the previous section, various scattering lights are generated 

when the light entering the optical fiber propagates through the optical fiber. One 
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of the scattering light is called the Brillouin scattering light that depends on strain 

and temperature changes. That is, Brillouin scattering light shifts its frequency 

when temperature or strains are applied to the optical fiber.  

The Brillouin Optical Time Domain Reflectometry (BOTDR) system is one of 

the fiber sensing methods for determining strains by measuring and analyzing 

Brillouin scattered light [53-55]. It uses the characteristic that the frequency 

distribution of the Brillouin scattering light shifts proportionally to the strains that 

applied to the optical fiber to carry out the measurement. The BOTDR sensing 

system uses a standard communication single-mode fiber as a sensing element. 

In addition, because it is also sensitive to temperature changes, a BOTDR system 

can provide simultaneous measurement of temperatures and strains, and can 

achieve continuous distributed measurement for several tens of kilometers in the 

longitudinal direction of the optical fiber. 

  By confirming in advance the characteristics of the optical fiber used for the 

measurement, and using the strain and temperature coefficient of the optical fiber 

as a result of the frequency shift of the measured Brillouin scattering light, the 

change in strain and temperature can be measured. If the sensor fiber is installed 

in a ring shape, the measurement can be continued by measuring from both ends 

even if a crack occurs in one place. In addition, it is possible to find the position 

where the strains occurred by measuring the time from the incidence of pulsed 

light until the Brillouin scattering light returns. 

However, in order to achieve high-precision measurement, the demand for the 

light source in the BOTDR system is strict, and generally a BOTDR system 

requires a light source with high power, stable output, and narrowband. Moreover, 
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since the Brillouin scattering light signal returned to the incident end is weak, it is 

relatively difficult to perform the measurement. It is necessary to perform the 

averaging process, and a measurement may take tens of seconds to tens of 

minutes. Therefore, it takes a long time to perform a complete measurement, and 

the real-time performance is not good enough to perform dynamic measurement. 

2.3.3 Fiber Bragg Grating Sensor  

A fiber Bragg grating (FBG) is an element constructed by forming a periodic 

refractive index modulation in the core of a short segment of optical fiber. When 

the light enters the FBG, the particular wavelengths of light will be reflected and 

all the others will be transmitted. With the rapid development of fiber Bragg 

grating (FBG) sensing technology recently, FBG sensors have been widely used 

in sensing and monitoring in various engineering fields, such as building structure 

health monitoring, aerospace technology, pressure sensors, electric power 

industry, Intelligent robots, railway monitoring systems, etc. The detailed 

description of FBG sensors will be presented in Chapter 3. 
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3.1 Outline of FBG 

A fiber Bragg grating (FBG) is an element constructed by forming a periodic 

refractive index modulation in the core of an optical fiber along the direction of 

propagation. An FBG will reflect a particular wavelength called the Bragg 

wavelength (𝜆𝐵) and transmit the other wavelengths when light enters the FBG. 

The Bragg wavelength also has a feature that it varies with mechanical stains 

and ambient temperature changes applied to the optical fiber [42-44]. This leads 

to their utility as temperature and strain sensors. Figure 3.1.1 shows the 

schematic diagram of a FBG. 

 

Fig. 3.1.1. FBG sensing principle. 

When the light output from the light source is incident on the FBG, the reflection 

of the grating that periodically changes the refractive index interferes in a direction 

in which they strengthen each other only for a specific Bragg wavelength. As a 

result, the FBG reflects only the Bragg wavelength and transmits all other light 

components. The Bragg wavelength can be expressed by the equation given by  

𝜆𝐵 = 2𝑛𝑒𝑓𝑓𝛬                           (3.1.1) 

where neff is the effective refractive index of the grating in the fiber core, and Λ is 

Incident light Transmitted light

Reflected light

Grating

Grating period
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the grating period [56-59]. From Eq. (3.1.1), we find that the Bragg wavelength is 

a function of the refractive index and the period. When the FBG is stretched or 

heat is applied to the FBG, the grating period Λ will be stretched and neff also 

changes at the same time resulting in a shift in the Bragg wavelength, which 

makes it possible to detect the amount of strains or temperature changes by 

measuring the shift amount of the Bragg wavelength. 

Fabrication of FBGs benefits from the photosensitivity in optical fibers, as a 

small amount of germanium is added to the optical fiber core in order to increase 

the refractive index. The photosensitivity means that exposure to ultraviolet 

radiation induces a permanent change in refractive index. The most common 

method for fabricating FBGs is phase mask processing [58], i.e. irradiating light 

having periodically distributed intensity on the photosensitive core and locally 

changing the refractive index of the optical fiber according to the intensity of the 

light irradiated to fix the state. 

3.2 Measurement Principle of FBG Sensor 

As described above, FBGs are sensitive to temperature and strains. When the 

external temperature or strains applied to the FBG changes, the center 

wavelength of the reflection spectrum of the FBG shifts [60-61]. Therefore, in the 

conventional FBG sensor system, strains and temperature are obtained by 

measuring the shift amount of the center wavelength of the reflected spectrum of 

the FBG. However, since the change of the center wavelength is measured, the 

sensor system requires a broadband light source and a spectrum analyzer, which 

makes the sensor system becomes large and expensive. In addition, the 

measurement interval becomes long as the sweep time is slow, making it difficult 
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to compensate for the change in the reflection spectrum of the FBG caused by 

temperature changes. Thus, although the FBG sensors have reached a certain 

practical level, there are also some problems such as low of workability and 

scalability, high cost, which are limiting the development of FBG sensors to reach 

the spread level. 

In order to solve the problems described above and advance the spread level, 

we developed a sensor system that determines strains applied to the FBG by 

measuring the reflected power of the FBG. Instead of broadband light source and 

a spectrum analyzer, we used a laser diode which is a narrow-band light source 

as the light source, and a power meter as the measurement device. As a result, 

the sensor system can be small size and be constructed at low cost. Furthermore, 

the reflected power is measured in the experiment so that the light source and 

the measurement instrument are placed at the same direction end, reducing the 

operational difficulties. 

The reflected power of an FBG can be expressed by the product of the reflectivity 

of the FBG and the optical power of the laser diode light source, and the 

measurement principle of the reflected power of an FBG is shown in Fig. 3.2.1 

[36]. The reflected power of an FBG changes owing to the change in the 

reflectivity of the FBG, as the width of the laser diode light source used in the 

experiment is constant. Fig. 3.2.2 [36] shows the shift of the reflected spectrum 

of the FBG caused by strain changes. From Fig. 3.2.2, it can be seen that the 

reflected spectrum will shift towards the longer wavelength side when strains are 

applied to an FBG. 
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Fig. 3.2.1. The measurement principle of the reflected power of an FBG. 

 

Fig. 3.2.2. The shift of the reflected spectrum of an FBG. 

  From Fig. 3.2.2, we observe that the reflectivity of FBG the monotonically varies 

between points A (minimum point) and B (maximum point). Therefore, we can 

limit the measurement range to this monotonically changing interval so that each 
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value of the measured reflected power corresponds to a certain strain value. 

Since the reflected spectrum of the FBG is symmetrical about the center 

wavelength, the measurement range can also be limited to the monotonically 

changing range of the other side. Since the light source used in the experiment 

remains unchanged, it can be seen from Fig. 3.1.1 that the area surrounded by 

the FBG reflected spectrum and the laser diode light source, that is, the reflected 

power of the FBG, becomes smaller. Based on this principle, we have developed 

an FBG sensor system that determines the strain by measuring the reflected 

power of the FBG. 

3.3 FBG Multipoint Measurement Principle and Problems 

In practical applications, multiple FBG sensors are required for both multipoint 

strain measurement and temperature compensation experiments as shown in Fig. 

3.3.1. In this study, the temperature compensation experiment is also conducted 

based on the experimental system shown in Fig. 3.3.1. 

 

Fig. 3.3.1. Multipoint measurement experiment system. 
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We can see that the FBGs are connected in series. A laser diode which emits 

pulse light is used as the light source, while an oscilloscope is used as the 

measurement device which still makes the experiment system remain small size. 

The photodetector is used to convert the light signals into electrical signals so 

that the signals can be detected by the oscilloscope. When the pulse light enters 

into the FBGs via the light circulator, it will be reflected by the FBGs. The reflected 

pulses from each FBG measured by the oscilloscope can be expressed by Fig. 

3.3.2. 

 

Fig.3.3.2. Reflected light of each FBG. 

This is conducted by using the time delay of reflected pulses from each FBG 

sensor with the measurement principle we developed. In addition, to prevent the 

reflected pulses from the FBG sensors overlap, we must use long enough fiber 

to connect the FBGs. Therefore, the time it takes to reach the measurement 

device is different as the optical path is different. This is also the cause of the 

multipoint measurement. The time 𝑇 for a round-trip to a FBG can be expressed 

by 
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𝑇 =
2𝐿

𝑐/𝑛1
                         (3.3.1) 

Here, the 𝐿 is the length between two FBGs, the 𝑐 is the light speed in vacuum, 

and the 𝑛1 is the refractive index of glass. The minimum length 𝐿′ between two 

FBGs which make sure the reflected pulses light not overlap can be obtained 

when s = 𝑇 . The minimum length 𝐿′ can be calculated by  

 𝐿′ =
𝑐𝑠

2𝑛1
                     (3.3.2) 

Here, the 𝑠 is the sum of the pulse width and the edge time. 

However, when the number of series-connected FBGs is increased to 3 or 

more, the third FBG will be affected by a lot of conditions. To be understood easily, 

here we call the FBG closest to the light source FBG1, followed by FBG2 and 

FBG3, respectively. First, when the temperatures or strains of FBG1 and FBG2 

change, the light transmitted through FBG1 and FBG2 will change, that is, the 

light entering FBG3 changes too. In this way, even if the strains and temperatures 

of the FBG 3 do not change, since the light entering the FBG3 changes, the 

measured reflected light of FBG3 will change too. 

  In addition, when the temperatures and strains applied to the FBG3 change, 

the reflected light of the FBG3 also changes. As a result, the parameters that 

cause the reflected light of the FBG3 to change will increase, and it will become 

very difficult to obtain the strains applied to the FBG3 using the function fitting. 

Therefore, as a solution, we decided to use neural networks for data processing 

to determine the strains applied to FBG3 which are the amount of strains after 

removing other influences. The detailed description of the neural network will be 

introduced in Chapter 4. 
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4.1 Outline of Neural Network 

The neural network is a mathematical model for information processing that 

simulates the human brains. When a neural network is used as a method in 

engineering, it must be called an artificial neural network. The study of neural 

network information processing began with the proposal of neuron model by 

Warren S. McCulloch and Walter Pitts in 1943 [62]. In their study, they described 

the concept of neurons which are single cells present in cellular networks that 

accept inputs, process their inputs and generate outputs. Neural networks can 

effectively approach a wide range of applications because they have the ability 

to deal with non-linear problems [63-65]. And, they are networks constructed by 

mutually connecting artificial elements simulating nervous system cells (neurons) 

of a living body, and mainly a neural network has three great features [66]. 

The first feature is "nonlinearity". This is very important. It is because of the 

strong nonlinear characteristics of the network that we can use a neural network 

to approximate any function with high accuracy. If a linear activation function is 

used in the system, then no matter how complex the network is, the output we 

obtain is just a linear transformation of the input, as if the neural network contains 

only one layer. This is because the linear activation function has limited learning 

ability. However, in practical applications, we will encounter many problems which 

are non-linear. Nonlinearity also means that the output is not a linear combination 

of inputs, but can establish a non-linear mapping between inputs and outputs. 

The second feature is "parallelism". Neural networks are large-scale systems 

that deal with information processing in parallel, and a theoretical system for 

systematically grasping parallel operation has been established. It becomes 
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possible for high-speed processing by taking advantage of this feature. 

The third feature is "learning ability", which is also considered to be the greatest 

attraction of neural networks. Learning ability is the ability to automatically create 

the necessary functions based on the provided examples (training data). This 

ability applies to problems that traditional methods cannot solve. With this ability, 

we can get the relationship between the inputs and outputs only by providing the 

input and the corresponding output data to the neural network. 

4.2 Components and Forms of Network 

Neural networks are constructed using artificial elements that simulate neurons 

of human brains. Since the behavior of actual neurons is very complicated, it is 

impossible to reproduce all the functions of the neurons of living bodies. Thus, 

when constructing a neural network, we usually use a neuron model that extracts 

specific functions so as to be easy to do in practice. That is, we express the 

function of the neurons by a mathematical expression. Before we explore how 

neural networks work, we must first understand the working methods of neurons 

that make up a neural network. In other words, when inputs are provided to a 

neuron, in what kind of way and what kind of outputs it will give. And based on 

our own experimental data, we have to decide the model of neurons to be used 

in our study. When deciding the model of a neuron, it is generally considered from 

two aspects [66]. The first one is whether the neuron always gives the same 

output when the same input is provided to the neuron. The other one is that the 

output of a neuron takes the two values of 0 and 1, or a continuously changing 

analog value. In our experiment, the reflected power of the FBG is determined 

when the temperatures or strains are determined. Moreover, as the temperatures 
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or strains change, the reflected power of the FBG changes continuously. 

Therefore, the neuron model we use must have a determined output for the same 

input. And the output value of the neuron must be a continuous analog value. The 

neuron model and the activation function used are described as follows. 

4.2.1 Neuron Model 

 

Fig. 4.2.1. Neuron model. 

The neuron model is shown in Fig.4.2.1. The {x1, x2 … xN} represent the signal 

input that the neuron receives from other neurons. And, {w1, w2 … wN} are the 

weights for each input. The 𝑦 represents the output signal from the neuron. The 

output 𝑦 can be calculated using the equations [66] as follows: 

                    𝑠 = ∑ 𝑤𝑛
𝑁
𝑛=1 𝑥𝑛                        (4.2.1) 

                        𝑦 = 𝑓(𝑠 − 𝜃)                          (4.2.2) 

As described above, neurons composing of a neural network is elements that 

simulate neurons of living bodies. Thus, the 𝑠 is an amount corresponding to the 

intracellular potential of the living body neurons. And, θ represents the threshold 

of whether the neuron is excited or not.  
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Again, we can observe that the neuron model contains two kinds of parameters, 

the weight, and the threshold. When we use neural networks composed of 

neurons for learning, the neural networks need to modify the values for both the 

weights and the threshold to perform the learning so that the difference between 

the output of the neural network and the target output that we expect become 

smaller. So, the smaller the number of parameters, the easier it will be to modify 

the parameters. Therefore, in practical applications, a small change is always 

made to the model of the neuron, that is, treat the threshold as one of the inputs 

[67]. That is, an input 𝑥0, the value of which is 1, is added to the inputs, and its 

weight 𝑤0 is set to −𝜃. In this way, the model can be rewritten as shown in Fig. 

4.2.2.  

 

Fig. 4.2.2. Treat threshold as one of weights. 

When learning, we can modify only the weights of the neurons. Since the 

threshold of the neuron is treated as one of the weights, the threshold value is 

modified at the same time. The intracellular potential 𝑠 and the output 𝑦 of the 

neuron can be expressed by the following equation [67]. 

                          𝑠 = ∑ 𝑤𝑛
𝑁
𝑛=0 𝑥𝑛                          (4.2.3) 
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                         𝑦 = 𝑓(𝑠)                              (4.2.4) 

4.2.2 Activation Function 

When we calculate the output of a neuron using the intracellular potential 𝑠 

calculated by Eq. (4.2.3), we need to substitute the 𝑠 into the activation function 

𝑓 for calculating the output. A function called the sigmoid function is usually used 

as the activation function which is a nonlinear function of neurons. The sigmoid 

function is shown in Fig. 4.2.3, and its equation is expressed as Eq. (4.2.5) [66]. 

 

Fig. 4.2.3. Sigmoid function. 

 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑔) =
1

1+𝑒−𝛼𝑔                      (4.2.5) 

Here, α is a coefficient called gain, and 𝑔 represents the value on the horizontal 

axis. The sigmoid function is an important function representing the input/output 

characteristics of neurons. The output of the sigmoid function is continuous and 

known as a monotone function of the input. In addition, the derived function of 
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the sigmoid function is very easy to calculate, and can use its own to represent 

its derived function. The derived function of the sigmoid function is  

        𝑠𝑖𝑔𝑚𝑜𝑖𝑑′(𝑔) =
𝛼𝑒−𝛼𝑔

(1+𝑒−𝛼𝑔)2 = 𝛼𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑔)(1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑔))     (4.2.6) 

This is used in the Backpropagation method which will be introduced later. We 

can also know that the function value is in the range of 0 ≤ y ≤ 1,this ensures 

that the data is not easily divergent during transmission. Continuous output can 

be obtained by using this function when calculating the output y from 𝑠. Also, as 

shown in Fig. 4.2.3, the sigmoid function approaches the step function if the gain 

of the sigmoid function is increased. Conversely, when the gain is larger than 0 

and sufficiently smaller than 1, the sigmoid function cannot be used either. Thus, 

it is necessary to pay attention to these two points. Therefore, when setting the 

initial value for the gain, it must not be too large or too small. Using the sigmoid 

function as the activation function, Eq. (4.2.2) and (4.2.4) can be rewritten as [66] 

                      𝑦 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑠 − 𝜃)                     (4.2.7) 

                     𝑦 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑠)                        (4.2.8) 

4.2.3 Architecture of Neural Network 

A neural network is connected by the neuron-like elements as described in the 

previous section. Also, it can be divided into two types when classified from the 

structure of the network [68]. One is called a feedforward neural network, and the 

other is called a recurrent neural network. A neural network consists of one input 

layer, several hidden layers, and one output layer. 

(1) Feedforward neural networks 

A feedforward neural network is a biologically inspired classification algorithm. 
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An example of a feed-forward network is shown in Fig. 4.2.4, from which we can 

find that a feed-forward network allows signals to travel one way only, from input 

to output.  

 

Fig. 4.2.4. An example of a feedforward neural network. 

It consists of a number of simple neuron-like elements composed of layers. 

Every element in a layer is connected with all the units in the previous layer. Each 

connection may have a different weight. There is no feedback between layers. In 

this case, when the values of the elements of the input of the network are 

determined, the values of the elements can be determined one after another 

toward the output. 

(2) Recurrent neural networks 

Different from the feedforward neural networks, the flow of the output signal of 

recurrent neural networks is bidirectional, that is, when determining the values of 

neurons of the input layer, the values of neurons of the output layer must also be 

considered. An example of a recurrent neural network is shown in Fig. 4.2.5, from 
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which we can find that signals can be exchanged between arbitrary neurons. 

 

Fig. 4.2.5. An example of a recurrent neural network. 

Recurrent neural networks are more powerful than feedforward neural 

networks and can get extremely complicated. They are dynamic, and the states 

are changing continuously until they reach an equilibrium point. They remain at 

the equilibrium point until the input changes and a new equilibrium needs to be 

found. It seems to be difficult, but because the output is decided after a certain 

amount of time lag with respect to the input, this cycle of circulation can be solved. 

4.3 Backpropagation Method 

The error backpropagation method was proposed by Rumalhart, Hinton, and 

Willians in the 1980s and is a convenient algorithm to learn a neural network. In 

particular, the error backpropagation method is one of the learning methods of 

feed-forward neural networks, and is currently being studied and used most 
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aggressively in neural network algorithms [69-70]. 

As shown in Fig. 4.3.1, there are inputs (𝑥0, 𝑥1, … 𝑥𝑁 ) and target outputs 

(𝑡0, 𝑡1, … 𝑡𝑀), while outputs (𝑦0, 𝑦1, … 𝑦𝑀) are calculated by the neural network. In 

order to make the network output (𝑦0, 𝑦1, … 𝑦𝑀) infinitely close to the target output 

(𝑡0, 𝑡1, … 𝑡𝑀), we use backpropagation method to adjust the network parameters, 

that is, the threshold and weights, thus changing the relationship between inputs 

and outputs of the neural network. Fig. 4.3.2 [67] shows this process. 

 

Fig. 4.3.1. Diagram of neural network learning. 

Input (𝑥0, 𝑥1, … 𝑥𝑁) and target output (𝑡0, 𝑡1, … 𝑡𝑀) are the specified input-output 

relationship, which are also the learning goals. When inputting (𝑥0, 𝑥1, … 𝑥𝑁) to 

the neural network, the neural network will give an output (𝑦0, 𝑦1, … 𝑦𝑀 ). The 

input-output relationship of the network is expressed by function (𝑦0, 𝑦1, … 𝑦𝑀) =

𝐹(𝑥0, 𝑥1, … 𝑥𝑁). The error back propagation method gives a procedure for defining 

the parameters of the neural network so that the function (𝑦0, 𝑦1, … 𝑦𝑀) =

𝐹(𝑥0, 𝑥1, … 𝑥𝑁) could realize the specified input / output relationship. The error 

evaluation function 𝐸  represents the error between the target out 𝑡  and the 

output 𝑦 of the neural network, which is given as [67] 

                      𝐸 = ∑ |𝑦𝑚 − 𝑡𝑚|2𝑀
𝑚=1                      (4.3.1) 

Neural network OutputInput Target output
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Give random initial values to the parameters, then modify the parameters 

repeatedly to make the error evaluation function 𝐸 be as small as possible. The 

data used for parameter determination are called training data. When the 

parameters are determined, the relationship between the specified inputs and 

outputs could be determined too. In addition, the original purpose of learning is 

to acquire the ability to give outputs correctly even for inputs other than training 

data.  

 

Fig. 4.3.2. Framework of error backpropagation method. 

Therefore, in the error back propagation method, when an input is given to the 

network, the weights and thresholds of each neuron of the network are modified 

so that the output to that neural network matches the target output. As described 

before, the threshold is treated as one of the weights. 

We will explain the feedforward neural network shown in Fig. 4.2.4 as an 

example. For the neurons constituting the neural network, we use the neuron 
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model described in section 4.2. That is, the threshold is treated as one of the 

weights. Therefore, it is enough to modify only the weights of each neuron. 

In this research, we analyze experimental data using a three-layer feedforward 

neural network, so here we explain the error backpropagation method based on 

a feedforward type neural network which is a 2-input and 2-output feedforward 

neural network as shown in Fig. 4.3.3. In the error backpropagation method, the 

weights of each neuron are minutely modified each time the training data is given. 

 

Fig.4.3.3. Forward mode of error backpropagation method. 

The first step is to calculate the actual output 𝑦 of the neural network when 

the input 𝑥 is given to the neural network. The step for calculating the actual 

output 𝑦 is also called the forward mode as shown in Fig. 4.3.3. Here, the 𝑥1 

and 𝑥2 are the inputs given to the neural network, while the 𝑦1 and 𝑦2 are the 

outputs of the neural network. The 𝑤 represents the weights. The threshold of 

=1 =1
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each neuron is treated as one the weights. There are elements that always output 

a value of 1 in each layer, and the weights of these elements are – 𝜃.  

Before starting the learning, we need set each weight a random initial value to 

break the symmetry. Then provide the input and the target output to the neural 

network as the training data, which are used to determine a set of weights. This 

set of weights could correctly represent the relationship between the input and 

the target output. The actual output of the neural network could be calculated 

using the equations as follows: 

𝑆11 = 𝑤11−1𝑥1 + 𝑤21−1𝑥2 + 𝑤01−1𝑥0                 (4.3.2) 

𝑦𝑠11 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑠11)                      (4.3.3) 

𝑦1 = 𝑤11−2𝑦𝑠11 + 𝑤21−2𝑦𝑠21 + 𝑤01−2𝑠0             (4.3.4) 

The 𝑦𝑠11 and 𝑦𝑠21 are the output of the neurons in the hidden layer. As the 

outputs form the inputs for the next layer, all the outputs could be determined for 

each layer from the input layer to the output layer. Here, we only gave the 

calculation for 𝑦1, and the output 𝑦2 can be obtained in the same way. 

After calculating the outputs of the neural network, the difference 𝑦𝑖 −

𝑡𝑖 between the actual outputs of the neural network and the target output could 

be obtained easily. Then the difference between the actual outputs of the neural 

network and the target output are given to the neural network in the backward 

mode to modify the weights. Fig.4.3.4 shows the backward mode of the error 

back propagation method. 
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Fig. 4.3.4. Backward mode of error back propagation method. 

In the backward mode, the signals travel in opposite direction. The difference 

between the actual outputs of the neural network and the target output are given 

to the network shown in Fig. 4.3.4. They are the inputs for the backward mode. 

The 𝑦𝑠11 and 𝑦𝑠21 are the outputs of neurons in the hidden layer calculated in 

the forward mode. The 𝑧  represents the outputs of each neurons in the 

backward mode as shown in Fig. 4.3.5 [67], and it can be calculated using Eq. 

(4.3.5).  

 

Fig. 4.3.5. Neuron model in backward mode. 
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                𝑧 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑′(𝑔) ∑ 𝑤𝑛𝑍𝑛
𝑁
𝑛=1                 (4.3.5) 

Here, the {𝑍1, 𝑍2 ,   ⋯ 𝑍𝑁} are the inputs to the neuron, and {𝑤1, 𝑤2 ,   ⋯ 𝑤𝑁} are 

the weights corresponding to the inputs. We can know that the derived function 

of the sigmoid function is used to calculate the outputs of neurons in backward 

mode. 

After the output 𝑧 of each neuron is calculated, the weights are modified using  

     𝑤𝑖𝑗−(𝑙+1) = 𝑤𝑖𝑗−(𝑙+1) − 𝜌𝑦𝑠𝑖𝑙𝑧𝑗(𝑙+1)            (4.3.6) 

Here, the 𝜌 is a small positive number that determines the degree of weight 

correction during learning, and 𝑙 represents the number of the layer in which the 

neurons are, and the 𝑤𝑖𝑗−(𝑙+1) represents the weight connecting the neuron of 

number 𝑖 in layer 𝑙 and the neuron of number 𝑗 in layer (𝑙 + 1). Here, we used 

a feedforward neural network with only two inputs and two outputs for explain the 

backpropagation method. However, the problems to be solved may be very 

complicated, with hundreds of inputs. 

4.4 Design of Neural Network 

The greatest feature of a neural network is learning ability, that is, the neural 

network can learn from examples. Whatever input is given to the network, through 

a series of calculations, it will give an output very close to the target output 

corresponding to the given input. In order to obtain the output that we want, we 

have to design the neural network properly [71-73]. 

When inputs are given to the neural network, the outputs will be obtained in the 

forward mode. Basically, an error occurs between the output obtained from the 

network and the target output. To minimize the error, the weights 𝑤𝑖𝑗  of the 

network are adjusted in the backward mode. As mentioned earlier, the adjustment 
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of the weights is performed using the back propagation. 

As we learned about the function approximation ability of the feedforward type 

neural network, we can approximate any function with high precision using a 

feedforward type neural network, which consists of three layers of one input layer, 

one hidden layer, and one output layer [66]. However, in order to improve the 

accuracy of function approximation, the number of neurons in the hidden layer 

has to be increased. Also, as we can see from a variety of successful examples, 

most problems can be obtained with sufficiently high accuracy with a three-layer 

feedforward neural network. Therefore, in this research, we also decided to use 

a feedforward type neural network consisting of one input layer, one hidden layer, 

and one output layer. Although a three-layer neural network seems simple, 

designing a successful network is by no means easy. In order to obtain the output 

that is expected, we must devise properly the design of the network. 

Before designing a neural network, the outputs and inputs of the neural network 

must be decided. In other words, what kind of outputs we would like to obtain 

using the neural network, and what kind of inputs that should be chosen to reach 

that goal. Once the outputs and inputs are determined, the number of neurons 

for input layer and output layer could also be determined. In the research, the 

strains and temperature applied to the FBGs are the expected values that we 

would like to obtain, so these are outputs of the network. For the desired outputs, 

the measured values of the reflected power of FBGs are given to the network as 

inputs of the neural network. 

In general, we will either increase the number of neurons in the hidden layer or 

increase the number of hidden layers to achieve good learning results. As 
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mentioned earlier, in order to improve the accuracy of approximation, the number 

of neurons of the hidden layer has to be increased. Also, the hidden layer has a 

feature detection function, which responds to specific features of input. And, if the 

number of neurons in the hidden layer is not appropriate, it tends to locally 

minimize, so it is very important for the research on how to determine the number 

of neurons in the hidden layer. When the number of neurons in the hidden layer 

is too small, the learning time becomes faster, but the performance of the network 

is bad and it is not possible to grasp the feature of the input. In contrast, when 

the number of neurons in the hidden layer is too large, the learning time becomes 

very long and overfitting occurs, and an optimum solution cannot be obtained. So 

far, various methods have been reported to determine the number of neurons in 

the hidden layer, which are described as follows. 

Among them, the most commonly used method is Trial & Error [71] method. It 

is considered that an almost optimum number of the hidden layer can be 

determined using this method. The procedure of this method is explained as 

follows. First, we set the number of neurons in the hidden layer at a small number, 

then we start the learning and see the learning results. Basically, we do not get 

an optimal solution with a single shot, so we will increase the number of neurons 

in the hidden layer little by little and see the learning results. If the error decreases, 

we will increase the number of neurons in the hidden layer again. Conversely, if 

the error increases, we should reduce the number of neurons in the hidden layer. 

If this procedure is repeated many times and the learning error does not become 

smaller, we will stop learning and set the number at that time to the number of 

neurons in the hidden layer. 
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Determination of the learning times is also important for learning of neural 

networks. In this study, we decided to start learning after setting learning times. 

As the way we decide the number of neurons in the hidden layer, we adjust the 

learning times while seeing the learning result. If the error is large, we increase 

the learning times. Otherwise, we reduce the learning times. Also, we decide the 

degree of weight correction and gain in the same way. The gain is a parameter in 

the sigmoid function. 

We assume that the inputs are (𝑥0, 𝑥1, … 𝑥𝐿), and the outputs are (𝑦0, 𝑦1, … 𝑦𝐿), 

the learning procedure of the backpropagation method could be expressed as 

Fig. 4.4.1. We can see that the learning process is the same as we described 

before. First, set random initial values for the parameters. In this research, the 

parameters mean the weights of each neuron. Then, prepare the training data 

which are used to determine the parameters. After providing the inputs to the 

neural network, the outputs of each neuron in each layer will be calculated so that 

we could obtain the actual output. Then, the program will execute the backward 

mode for modifying the values of the weights. 
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Fig.4.4.1. Learning procedure of the backpropagation method. 
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5.1 Experiment for Investigating the Characteristics of an FBG and Results 

As described in previous section, we developed a small-size, low cost FBG 

strain sensor system. The sensor system uses a narrowband light source and a 

power meter. We calculate the amount of strain applied to the FBG by measuring 

the reflected power of the FBG. All the experiment are conducted based on this 

measurement principle. 

First, we did the experiment for investigating the strain characteristics of a FBG 

sensor using one single FBG based on the measurement principle describes in 

previous section. In the experiment, we measured the change in the reflected 

power of the FBG using a laser diode light source and a power meter. Then the 

amount of strain is calculated using the actually measured reflected power. The 

experiment was performed using the experimental setup shown in Fig. 5.1.1 [36].  

 

Fig. 5.1.1. Schematic diagram of experimental setup. 

The center wavelength of the light source used here is 1549.2 nm, the Full-

Width Half-Maximum (FWHM) is 0.203 nm, and the power 30 μW. The center 
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nm, the FWHM is 0.552 nm, and the reflectivity is 11.90%. 

In the experiment, we fixed the FBG using two magnet stands 20 cm apart. 

And, we applied strains to the FBG by straining the FBG using a micrometer 

screw for every 0.01mm. As described in the previous section in which the 

measurement principle was introduced, when the FBG is strained, the reflectivity 

of the FBG changes, resulting in a change in the reflected power from the FBG. 

That is why the strains applied to the FBG can be obtained from the reflected 

power of the FBG. When the light emitted from the narrow-band light source is 

incident on the FBG, the reflected power from the FBG will be displayed on the 

power meter after it is taken out by the optical circulator. Then we store the 

measured reflected power into a personal computer (PC) connected to a general-

purpose interface bus (GPIB). The strain experiment described here is conducted 

at the same temperature to avoid the effect of temperature changes. 

The reflected power depends on the difference between the laser wavelength 

and the center wavelength of the FBG. Before the experiment, we should adjust 

the center wavelength of the FBG to the point where it is slightly past the peak as 

an initial tension. There are two purposes why we have to do the adjustment. One 

is to ensure that the reflected power changes monotonically, and the other one is 

to obtain the maximum reflected power at the same time. When strains are 

applied to the FBG, the measured reflected power will change. The change in 

reflected power is shown in Fig. 5.1.2 [36] when the FBG is strained. From Fig. 

5.1.2, we can observe that the reflected power of the FBG becomes smaller and 

smaller as the amount of strains applied to the FBG increases. In addition, when 

the amount of strain changes from 150 to 800 με, the reflected power is 
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monotonically changing. Thus, we can get a unique and determined strain for a 

determined reflected power value. Therefore, we also use this interval as a 

measurement range and performed the function fitting at this monotonic interval. 

We can obtain an approximate expression of the amount of strain represented by 

the reflected power through the function fitting. The function fitting is shown in Fig. 

5.1.3 [36]. 

 

Fig. 5.1.2. Relationship between reflected power and amount of strain applied in 

the experiment. 
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Fig. 5.1.3. Function fitting. 

Here, the amount of strain ε can be expressed by the percentage ratio between 

the elongation △d of the FBG and the fixed interval d (20cm) of the FBG, given 

by [36] 

ɛ =
△𝑑

𝑑
⨯ 100%.                        (5.1.1) 
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Fig. 5.1.4. Comparison of calculated strain with strain applied in the experiment. 

We substituted a newly measured reflected power into the approximate 

equation shown in Fig. 5.1.3 to calculate the strains. Then, the calculated strains 

were compared with the strains actually applied in the experiment, and the 

comparison between them is shown in Fig. 5.1.4 [36]. We can find that there is 

an approximately linear relationship between the calculated strains and the 

strains applied in the experiment from Fig. 5.1.4. We can say that they in 

agreement with each other. In addition, we calculated the relative errors between 

the actually applied strains and the calculated strains, as shown in Table 5.1.1 

[36].  
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Table 5.1.1. Relative errors between applied and calculated strains using function 

fitting. 

Strain applied in 

experiment (με) 

Calculated strain (με) Relative errors (%) 

150 155.1 3.4 

200 189.7 5.1 

250 249.5 0.2 

300 305.9 2.0 

350 356.4 1.8 

400 410.5 2.6 

450 444.8 1.1 

500 486.2 2.8 

550 533.4 3.0 

600 599.9 0.0 

650 660.8 1.7 

700 715.4 2.2 

750 752.3 0.3 

800 777.3 2.8 

We can observe that the relative errors are within 5.1% by comparing the strain 

applied in the experiment with the calculated strain. This means that we can use 

the calculated strain to replace the actually applied strain. This also indicates that 

the strain measurement method developed in this research is feasible. At the 

same time, as mentioned earlier, the strain measurement range of the FBG 

sensor is found to be 650 με considering the error. Since we applied strains 

manually throughout the experiment, this is considered to be one cause of the 

errors. In addition, it is also considered to reduce errors by improving the 

accuracy of the function fitting. However, the accuracy improvement is limited. 

Moreover, the calculations will become very complicated when the number of 
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FBG increases. Therefore, we propose to use neural networks for data 

processing to determine the relationship between reflected power and strains of 

the FBG. In this way, even if the number of FBG increases, we only need to 

change the inputs and outputs of the neural network and perform appropriate 

parameter settings to get the desired results. 

5.2 Results of the Characteristics Investigating Experiment using a Neural 

Network 

As described in the previous section, any function can be approximated with 

high precision using a feedforward neural network composed of three layers of 

an input layer, a hidden layer, and an output layer. Therefore, we decided to use 

a three-layer feedforward neural network to obtain the relationship between the 

reflected power of the FBG and the strains applied to the FBG. In the study, the 

strains applied to the FBG are the values that we expected, so we use the amount 

of the strain as the output, and the measured reflected power of the FBG is used 

as the input. That is, the experimental data is provided to the neural network as 

training data for determining the weights of the neurons, and the relationship 

between the inputs and outputs is obtained through appropriate learning. Since 

there is only one single FBG used in this experiment for investigating the strain 

characteristics of an FBG sensor, correspondingly, there is only one input and 

one output in the network when using a feedforward neural network for data 

processing. The feedforward neural network we used is shown in Fig. 5.2.1. 

There is only one hidden layer. All the parameters used to execute the C program 

are as follows: 

Number of neurons in the hidden layer: 3 
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Number of learning times: 300000 times 

Degree of weight correction ρ: 0.35 

Gain α: 1.9 

 

Fig. 5.2.1. Neural network for one FBG. 

Table 5.2.1. Different attempts to determine the parameters. 

Learning times 

(× 104) 

Error evaluation Learning time 

(sec) 

30 0.000239 31.2 

60 0.000224 57.6 

100 0.000215 95.6 

200 0.000209 160.2 
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we should set the parameter values in Chapter 4 where we give the descriptions 

of the neural network design. As shown in Table 5.2.1, we have made a lot of 

attempts to determine the values of these parameters before we determined the 

values.  

From Table 5.2.1, we can observe that increasing the number of learning times 

will reduce the error, but it also increases the learning time. Therefore, when 

setting parameter values, it is not possible to consider only one but to consider 

all the parameters comprehensively. It requires both high accuracy and 

appropriate learning time. Therefore, considering various aspects 

comprehensively, we determined the values of the above parameters. We also 

tried with different numbers when determining the number of neurons in the 

hidden layer. We decided to use three neurons in the hidden layer because even 

if we increased the numbers, the accuracy did not change. 

By executing the C program for learning using the designed neural network, 

we got the output of the neural network for strains. Table 5.2.2 shows the 

comparison of strains applied to the FBG in the experiment (target output) and 

strains outputted by the designed neural network. We can see that the error 

between the output of the neural network and the values applied in the 

experiment are very small. As we can see from comparing Table 5.1.1 with Table 

5.2.2, the accuracy is promoted using neural network than using the function 

fitting. In addition, Figure 5.2.2 shows the relationship between the strain applied 

to the FBG and the reflected power of the FBG. The blue dots represent the 

experimental data, while the red dots represent the learning results of the neural 

network. As we can see from the figure, the two sets of data almost coincide, 
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which also proves that learning has been carried out correctly.  

Table 5.2.2. Relative errors between applied and calculated strains using a neural 

network. 

Applied strain in 

experiment (με) 

Output of network (με) Error (%) 

150 147.6 1.6 

200 191.5 4.2 

250 258.2 3.3 

300 307.5 2.5 

350 347.6 0.7 

400 401.0 0.2 

450 446.2 0.9 

500 500.2 0.0 

550 545.8 0.8 

600 595.0 0.8 

650 644.9 0.8 

700 740.7 0.7 

750 754.5 0.6 

800 791.0 1.1 
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Fig.5.2.2. Comparison of strain applied to the FBG in the experiment (target 

output) and strain output by the neural network. 

 

Fig.5.2.3. Comparison of strain applied to the FBG in experiment (target output) 

and output of the neural network for data other than training data. 
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As explained in Chapter 4, the target function is approximated by modifying the 

values of the weights when performing the learning. Therefore, it is possible to 

calculate the output for data other than the training data using the modified 

weights.  

From the experimental results, we know that the reflected power of the FBG is 

monotonically changing with the increase of the strain applied to the FBG. 

Therefore, we can change the value of the reflected power with constant 

increments within the change range of the reflected power to obtain a set of 

reflected power values. Then we take this set of reflected power values as inputs 

to the network and use the modified weight values to calculate the corresponding 

outputs. The results calculated for this set of reflected power values are shown in 

Fig. 5.2.3. The red dots represent the relationship between the strains applied in 

the experiment and the measured reflected power which are used as the training 

data, while the blue dots represents the relationship between the reflected power 

other than the training data and the strains outputted by the neural network. We 

can see that they are all on the same curve, which means the learning for the 

data other than the training data is correct. 

5.3 Temperature Compensation Experiment and Results  

As we all know, the FBG is not only sensitive to external strains but also 

sensitive to changes in temperatures. Therefore, FBGs are not only widely 

studied as a strain sensor, there is also much research for measuring temperature 

using FBGs. Because of the sensitivity to temperature, temperature 

compensation is a difficult point when measuring strains. In order to be able to 

remove the effects of temperature changes and accurately measure strains, we 
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must do temperature compensation experiments. 

In this study, we performed the experiment using a series of two connected 

FBGs based on the measurement principle described in Chapter 3. The 

experimental setup is shown in Fig. 5.3.1. The method for fixing both FBGs is the 

same as in the FBG strain characteristic investigation experiment. In order to 

observe the reflected light of multiple FBGs, we used an oscilloscope as a 

measurement instrument in this experiment. This still makes the experimental 

system remain miniaturized. We call the former one FBG1 and the latter one 

FBG2. We used the FBG1 as a temperature measurement sensor to detect the 

temperature conditions of both FBGs and used the FBG2 as a strain sensor. As 

can be seen from the experimental setup shown in Fig. 5.3.1, since FBG1 and 

FBG2 are in the same thermostat, the temperature applied to the two FBGs is 

also the same. However, the measurement will become difficult if the reflected 

spectrum of the two FBGs overlaps. Therefore, we used long enough extra optic 

fiber to connect the two FBGs preventing overlap of reflected spectrum of the two 

FBGs. The length of the fiber is calculated using the calculation method 

introduced in Chapter 3. 
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Fig. 5.3.1. Experimental setup using two FBGs connected in series. 

In the experiment, we use a thermostat to heat both FBGs simultaneously to 

ensure that the two FBGs are at the same temperature. We apply strains to FBG2 

by stretching FBG2 using a micrometer screw. The reflected light of the two FBGs 

is measured by an oscilloscope. When the two FBGs are heated, the reflected 

light of FBG1 changes with the change in temperature. In this way, we can get 

the relationship between temperature and reflected light of FBG1. Then we can 

obtain the approximate expression of the temperature of FBG1 represented by 

the reflected light of the FBG1 by performing a function fitting. In this way, we 

could calculate the temperature for both FBGs using the reflected power of FBG1. 

The temperature of FBG1 is also that of FBG2. In the same way, we can also 

obtain an equation of the strains of FBG2 expressed by the temperature and the 

reflected light of FBG2. Then by substituting the temperature of the FBGs and the 

reflected light of FBG2 into the equation of the strain of FBG2, we can determine 
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the strain of FBG2 even when the temperature changes. The change in the 

reflected power of FBG1 is shown in Fig. 5.3.2 when the FBGs were heated. In 

the experiment, the temperature was changed from 24ºС to 44 ºС for every 1 ºС, 

and strains was applied to FBG2 from 0 to 450 με for every 50 με. 

 

Fig. 5.3.2. Temperature versus reflected power of FBG1. 

From Fig. 5.3.2 we can see that the reflected power changes monotonically 

when the temperature changes. Then, we could give an approximate expression 

of the temperature expressed by the reflected power of FBG1 by performing 

function fitting. Then, we could use the approximate expression to calculate the 

temperature of FBG1, which is also the temperature of FBG2. The relationship 

between the reflected power of FBG2 and the strains applied to FBG2 under 

different temperatures is shown in Fig. 5.3.3. 
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Fig. 5.3.3. Reflected power versus strains of FBG2 under different temperatures. 
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should be limited to the range before the curved surface turns up to ensure that 

when the temperature remains the same, the reflected power of FBG2 will change 

monotonically with the changes in strains. Taking this and the error into account, 

we determined the measurement range in which the temperature changed from 

27 ºС to 37 ºС and the strain was from 100 με to 300 με.  

 

Fig. 5.3.4. 3-dimensional graph of FBG2’s measurement results. 

Then, we performed a curved surface fitting in the limited range and got a 

curved surface equation with an R-square of 0.9833. Substituting the temperature 

and the strains of FBG2 into the curved surface equation, we determined the 

calculated strains of FBG2. The comparison of FBG2’s calculated strains and 

strains applied in the experiment with temperature compensation is shown in Fig. 

5.3.5. To illustrate the importance of temperature compensation, we also gave 

results without temperature compensation, and the comparison of FBG’2 
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calculated strains and strains applied in the experiment without temperature 

compensation is shown in Fig. 5.3.6. 

 

Fig. 5.3.5. Comparison of FBG2’s calculated strain and strain applied in the 

experiment with temperature compensation. 

50

100

150

200

250

300

350

50 100 150 200 250 300 350

C
al

cu
la

te
d

 s
tr

ai
n

 (
μ

ɛ)

Strain applied in experiment (μɛ)

27 29 31 33 35 37

Temperature (ºC)



62 

 

 

Fig. 5.3.6. Comparison of FBG2’s calculated strain and strain applied in the 

experiment with temperature compensation. 

Compare Fig. 5.3.5 with Fig. 5.3.6, we can find that when not compensating for 
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5.4 Results of Temperature Compensation Experiment by a neural network 

In the experiment, there are only two FBGs connected in series, we can give a 

3-dimensional graph representing the results of FBG2. However, as the number 

of FBGs increases, the number of parameters increases and the aforementioned 

method of function fitting will no longer apply. Therefore, we decided to use a 

neural network to deal with the function approximate. 

As described in Chapter 4, a proper design of the neural network is very 

important to get desired results. As described in the previous section, any function 

can be approximated with high precision by a feedforward type neural network 

composed of three layers of an input layer, a hidden layer, and an output layer. 

Therefore, we decided to use a three-layer feedforward neural network to obtain 

the relationship between inputs and outputs. In the study, the temperature of the 

two FBGs and the strains applied to FBG2 are the values that we expected, so 

we use the temperature and strains as outputs, and the measured reflected 

power of both FBGs are used as the inputs. The flow is shown in Fig. 5.4.1. There 

is only one hidden layer. All the parameters used to execute the C program are 

as follows: 

Number of neurons in the hidden layer: 10 

Number of learning times: 2000000 times 

Degree of weight correction ρ: 1.0 

Gain α: 1.9 
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Fig. 5.4.1. Neural network for two FBGs connected in series. 

Just as we did in the FBG strain characteristic investigation experiment, we 

made a lot of attempts for each parameter before we finally decided on these 

parameter values. By executing the C program for learning using the designed 

neural network, we got the output of the network for temperatures and strains. 

Figure 5.4.2 shows the comparison of temperature applied in the experiment 

(target output) and temperature outputted by the designed neural network. We 

can see that the output of the designed neural network is almost the same as the 

values applied in the experiment.  
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Fig. 5.4.2. Comparison of temperature applied in experiment and temperature 

output by the neural network. 

 

Fig. 5.4.3. Comparison of the strains applied to FBG2 in experiment at each 

temperature and the output strains by the neural network. 
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The comparison of the strains applied to FBG2 in the experiment (target output) 

at each temperature and the outputted strain by the neural network is shown in 

Fig. 5.4.3. The strains applied in the experiment and the strains outputted by the 

designed neural network are almost the same. In addition, comparing Fig. 5.3.5 

with Fig. 5.4.3, the accuracy was pretty improved using a feedforward neural 

network to do the data processing. 

However, the purpose of learning is to acquire the ability to give correct outputs 

for inputs other than training data. Within the measurement range, we change the 

reflected power values with constant increments within the change range of the 

reflected power at different temperatures and use these power values as inputs 

to the designed neural network. Then we use the modified weights to calculate 

the outputs, which are also the strain values corresponding to these powers. The 

learning results are shown in Fig. 5.4.4 ~ Fig. 5.4.7. 

 

 

Fig. 5.4.4. Learning results for data other than training data at 27ºC. 
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Fig. 5.4.5. Learning results for data other than training data at 30ºC. 

 

Fig. 5.4.6. Learning results for data other than training data at 33ºC. 
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Fig. 5.4.7. Learning results for data other than training data at 36ºC. 
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values for any one of the reflected power values. And this strain value is the value 

after the influence of temperature is removed, which also means the temperature 

compensation is successfully performed.  
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6. Conclusions 

FBG sensors are widely researched and used to measure strains, 

temperatures, pressures, and vibrations. Since conventional FBG strain sensors 

analyze reflection spectrum and measure the shift in reflected wavelength due to 

strain changes, a broadband light source and an optical spectrum analyzer are 

indispensable devices, which make the measurement system large and 

expensive. In view of this, in this study, we proposed a strain sensor system for 

measuring strains from the reflected power of FBGs. In the sensor system, we 

use a laser diode as the light source and use a power meter as the measurement 

device. This makes the FBG strain sensor system small-size and less costly than 

the conventional FBG sensor system. In addition, we gave descriptions of FBGs, 

measurement principles, and neural networks used to process data. Based on 

the FBG strain measurement method proposed in the study, we can perform 

multipoint measurement by using the time delay of reflected pulses of multiple 

FBGs connected in series. Based on the principle of multipoint measurement, we 

used two FBGs connected in series to conduct the temperature compensation 

experiment. Moreover, we used a feedforward neural network with a powerful 

function approximation to find the relationship between strains, temperatures, 

and the reflected power. 

In this study, the experiment was divided into two parts. First, we conducted the 

FBG strain characteristic investigation experiment using a single FBG based on 

the proposed strain measurement method. To avoid the effects of temperature 

changes, we performed the experiment at the same temperature. In order to find 

out the relationship between the strains and the reflected power of the FBG, we 
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used function fitting and neural network to find the relationship between strains 

and reflected power, respectively. The strains calculated by these two methods 

were compared with the strains applied to the FBG in the experiment. We have 

come to the conclusion that the results calculated by the neural network have 

smaller errors and higher accuracy. 

Second, we did the temperature compensation experiment using two series-

connected FBGs. And, we compared the calculated strains with temperature 

compensation and that without temperature compensation. We can know that the 

accuracy was pretty improved with temperature compensation from the 

comparison. This also explains the importance and necessity of temperature 

compensation in FBG strain experiment. The experimental results also prove the 

effectiveness of the temperature compensation method. 

In the temperature compensation experiment, we also used function fitting and 

neural network separately to find the relationship of the temperatures, strains, 

and the reflected power. The strains calculated by the two methods are compared 

with each other. The results obtained by the neural network are much better than 

those obtained by the function fitting. In addition, in both experiments, we 

obtained the corresponding strains for the reflected power other than the 

measured reflected power. Therefore, we can say that the feasibility of the 

proposed strain sensor system has been verified by experimental results. 

Moreover, based on the proposed measurement method, and using the function 

approximation function of the neural network to find the relationship of 

temperatures, strains, and reflected power, it is considered that a multipoint strain 

measurement with temperature compensation can be realized. 
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