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Predicting Transportation Carbon Emission
with Urban Big Data

Xiangyong Lu, Kaoru Ota, Member, IEEE, Mianxiong Dong, Member, IEEE, Chen Yu, Member, IEEE,
and Hai Jin, Senior Member, IEEE

Abstract—Transportation carbon emission is a significant contributor to the increase of greenhouse gases, which directly threatens the
change of climate and human health. Under the pressure of the environment, it is very important to master the information of
transportation carbon emission in real time. In the traditional way, we get the information of the transportation carbon emission by
calculating the combustion of fossil fuel in the transportation sector. However, it is very difficult to obtain the real-time and accurate
fossil fuel combustion in the transportation field. In this paper, we predict the real-time and fine-grained transportation carbon emission
information in the whole city, based on the spatio-temporal datasets we observed in the city, that is taxi GPS data, transportation
carbon emission data, road networks, points of interests (POIs) and meteorological data. We propose a three-layer perceptron neural
network (3-layer PN N) to learn the characteristics of collected data and infer the transportation carbon emission. We evaluate our
method with extensive experiments based on five real data sources obtained in Zhuhai, China. The results show that our method has
advantages over the well-known three machine learning methods (Gaussian Naive Bayes, Linear Regression, Logistic Regression) and
two deep learning methods (Stacked Denoising Autoencoder, Deep Belief Networks).

Index Terms—Transportation carbon emission, urban big data, multilayer perceptron neural network, real-time prediction.

1 INTRODUCTION

RANSPORTATION carbon emission is the main source of
Tgreenhouse gases (GHG). Between 2000 and 2010, car-
bon emission from transportation sector contributed about
11% to the total annual anthropogenic GHG emissions in-
crease. The Intergovernmental Panel on Climate Change
(IPCC) estimates that in the absence of effective emission
reduction policies, the baseline global GHG emissions will
increase anywhere from 25 to 90 percent between the years
2000 and 2030. With the increases of global GHG emissions,
the average global temperatures will continue to rise. The
increases in global temperatures will most likely cause our
planet’s climate change in ways that will have significant
long-term effects on human health and the environment.
Given the importance of devising efficient emission reduc-
tion strategies, it is essential for policy makers to obtain
the real-time and fine-grained information about carbon
emission according to local conditions.

Unfortunately, even in the same city, transportation car-
bon emission differs in different places and relys on multiple
factors, such as road traffic, human mobility and structure
of road network. For instance, in Zhuhai, we divide the city
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into disjoint and uniform grids, as depicted in Figure 1(a). It
is clear that each grid has different spatial distribution of the
road networks and POIs, even though they border each oth-
er, as shown in Figure 1(b). The green line segments stand
for road segments, the blue dots represent the POI. Figure
2(a) clearly exposes that the transportation carbon emission
of different grids is diverse at 5pm on 9/26/2015, even if
they are closed to each other. For example, the grid G26 and
grid G'37 are adjacent, the transportation carbon emission
of them is very different. Figure 2(b) further reveals that
carbon emission from transportation in an area changes with
time of day. The adjacent areas have different time variation
curves, such as G18 and (G26. These results indicate that the
transportation carbon emission of one region close correlate
with its spatial and temporal characteristics.

and POI

Fig. 1. The spatial geographical information of Zhuhai city

In this paper, we take advantage of the excellent fea-
ture learning ability of multi-layer network architectures.
We propose a three-layer perceptron neural network (3-
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Fig. 2. The transportation carbon emission between difference grids

layer PN N) model to infer the real-time and fine-grained
transportation carbon emission in each region, based on
the heterogeneous spatio-temporal data sources in the city,
such as meteorology, road traffic, human mobility, structure
of road networks and POIs. Although, in previous stud-
ies, the environment scientists and governmental agencies
have proposed some greenhouse gas emission calculation
methods and models, such as top-down and bottom-up
models [1]. Carbon emission from transportation is usual
estimated by separating from the total urban carbon e-
mission from fossil fuel combustion. It is calculated as a
simple product of the following factors: fuel consumption,
the carbon coefficient of a particular fuel and the percent
of fuel that is combusted [2]. However, different degrees of
uncertainty will be introduced, when the fossil fuel com-
bustion is measured in different ways. The carbon emission
coefficients vary with region and country. Besides, these
methods and models often work with limited sets of factors
and empirical parameters, which are often not applicable to
other regions with different environments. In addition, it is
difficult to obtain the real time fossil fuel combustion in the
transportation field.

Due to the considerable amount and diversity of the
raw urban data, it is not advisable to use them directly
to train our model. For achieving excellent prediction per-
formance, we firstly extract five kinds of feature datasets
(Fy, Frros Fpy Fr, Fure) based on the relationships between
the datasets and transportation carbon emission. Moreover,
combined with the selected features, we train our model to
learn the neural network parameters and use the trained
model to predict the future transportation carbon emission.
Furthermore, we evaluate our method using the real world
datasets.

Our work presents a multilayer neural network predic-
tion model to infer the regional transportation carbon emis-
sion, leveraging the multiple urban data. The challenges of
our approach lie in three aspects. The first is to identify the
efficient features from the heterogeneous data sources. The
second is the calculation of transportation carbon emission
in each area based on the “top-down” method proposed
by the IPCC. The Third is how to construct the multilayer
neural network to get the better performance. The main
contributions of this paper include:

1. We devise a multilayer perceptron neural network
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prediction model, which learns the model parameters lever-
aging diverse feature datasets. This prediction model could
accurately predict the regional transportation carbon emis-
sion in the future period of time.

2. We identify five kinds of feature datasets
(Fty Fyroy Fypy, FRN, Fire), based on the multiple urban da-
ta. These feature datasets can not only be applied to our
prediction model, but also could be used in the prediction
of other automobile exhaust emissions.

3. We evaluate our method based on the multiple
datasets in Zhuhai city, that is meteorological data, road
networks, POIs, transportation carbon emission data and
the GPS trajectories generated by over 3,000 taxicabs in
Zhubhai city from August 1st to October 14th, 2015. And
we justify the advantages of our method over the other
three machine learning algorithms and two deep learning
algorithms.

The rest of the paper is organized as follows. We first
present the related work in section 2. Then we formally
make some preliminary definitions and describe the frame-
work of our system in section 3. We introduce the feature
extraction in section 4. Feature learning and inference are
discussed in section 5. Experimental evaluation is shown in
section 6. Finally, we conclude our work in section 7.

2 RELATED WORK
2.1 Greenhouse Gases Estimation and Prediction

Greenhouse gases provide us with a hospitable living envi-
ronment by trapping some of the sun’s natural heat. The
main sources of GHGs consist of the electricity produc-
tion, transportation and industry. With the advancement
of urbanization and industrialization, GHGs concentrations
in the atmosphere continue to increase. Under this back-
ground, researches on the statistics and projections of GHGs
attract many scientists and research institutions around the
world. There are two major approaches to estimate the
GHGs emissions, that are “top-down” and “bottom-up”
models proposed by the IPCC [1]. The "top-down” approach
firstly calculates the total carbon emission from the total fuel
consumption in the city. The total carbon emission then is
apportioned to each economic sector, such as transportation
sector. As carbon emission varies in locations non-linearly,
this model would not capture the accurate estimate of the
carbon emission according to local conditions. The “bottom-
up” approach directly calculates the fuel consumption from
each economic sector. Then the amount of carbon emission
is calculated according to the carbon emission parameters of
the fuel.

However, there are many uncertainties in the calculation
of these two models. The uncertainties are mainly from the
empirical assumptions and the uncertainty in the prima-
ry data: fuel consumption, carbon content, and oxidation
factors [3]. When the total carbon emission is allocated to
the individual sectors, additional uncertainties are always
being introduced. Compared with the previous work in
this area, in this paper we calculate the exact amount of
carbon emission from the transportation sector, utilizing the
multiple local data sources to increase the reliability of input
data. What’s more, the increasing numbers of sensors in the
city provide us with rich source data. A wide variety of



urban data will not only help us to understand the dynamics
of the city, but also help us to optimize the urban structure.

2.2 Urban Computing

With the increasing number of city data, researches on
urban computing become more attractive. Urban computing
is described in detail in paper [4]. Zheng [5] proposed a
semi-supervised learning approach based on a co-training
framework to infer the urban air quality, based on the
air quality data and a variety of data sources. Karamshuk
[6] used the supervised regression model and supervised
learning model to optimize the placement of the retail
stores. He extracted the features by studying the predictive
power of various features on the popularity of retail stores
based on the dataset collected from Foursquare in New
York. Nevertheless, Zhang [7] combined the supervised and
unsupervised machine learning techniques to identify the
traffic of zero-day applications in a network. Compared
with their interesting and influential work, in this paper we
devise a multilayer perceptron neural network model to pre-
dict the transportation carbon emission, leveraging multiple
urban data sources. The biggest difference between Zheng’s
research and mine is that the characteristics of the training
methods are different. He divides the feature datasets into
two parts, and uses them to train different models, However
we utilize the all feature datasets to train a 3-layer PN N
model. Compared with Karamshuk’s research, our training
datasets are much more diverse.

Yang [8] modeled the spatial and temporal activity
preference separately and then used a principle way to
combine them for the preference inference. Fan [9] proposed
a predicting-by-clustering framework to predict crowd be-
havior at a citywide level based on human mobility big
data. Shimosaka [10] proposed a low-rank bilinear Poisson
regression model to predict the urban dynamics, utilizing
the one year’s worth of mobility records. Li [11] proposed a
smart city infrastructure to serve people, based on the multi-
sensors data. Sun [12] promoted the concept of smart and
connected communities, based on the Internet of Things
Technologies and big data analytics. Yang [13] proposed
a Wifi-based, real-time monitoring of a carbon monoxide
system for application in the construction industry. Wang
[14] provided an overview of water cyber-physical systems
for sustainability. Compared to their studies, the present
paper predict the transportation carbon emission leveraging
the spatial-temporal urban data, such as meteorology, road
traffic, structure of road networks and POIs. The training
datasets are different between their work and mine. we
extend the application of multi-layer neural networks to the
field of carbon emission analytics.

2.3 Traffic optimization

With the increasing deployment of sensors on the roads
and vehicles, it will help us get more urban traffic data.
And with the help of these data, a series of researches on
city traffic have been done recently, including traffic fore-
casting, congestion management, vehicle distribution and
vehicle routing. Abadi [15] implemented an optimization
methodology to predict the flows of a traffic network in
San Fransico, based on the real-time and estimated traffic
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data. Wang [16] presented an interactive system for visual
analysis of urban traffic congestion, based on GPS trajecto-
ries. Zhang [17] proposed a data-driven system to sense the
refueling behavior and citywide petrol consumption in real
time, based on a trajectory dataset, POI dataset and road
network dataset. Chan [18] proposed an intelligent particle
swarm optimization algorithm to develop short-term traf-
fic flow predictors, based on the dataset captured by on-
road sensors. Chen [19] adopted the regression-and-ranking
methodologies to predict the potential bike trip demand,
utilizing the highly variant urban open data. Compared
with them, we concentrate on inferring the transportation
carbon emission, mainly utilizing the traffic related data.
Our work can be seen as an extension of traffic to the
environment.

3 OVERVIEW
3.1 Preliminary

Definition 1: Transportation carbon emission. The transporta-
tion carbon emission is a measure of the total amount of
carbon dioxide emissions emitted through the combustion
of fossil fuels, which are directly and indirectly caused by
the traffic. The IPCC guidelines for national greenhouse gas
inventories [1] gives two calculation methods, respectively,
“top-down” and “bottom-up” approach. The “top-down”
approach is formulated in Equation 1 as follows:

W=> > Kj-nij sij- e M
i€EN jEN

where W represents the total amount of transportation car-
bon emission. K ; represents the carbon dioxide emission
coefficient of j type of fuel consumed by 7 vehicle type. ¢ is
a kind of vehicle types. j is a type of fuel. n is the number
of vehicles. s represents the transport mileage of vehicles.
e stands for the average intensity of consumption per unit
mileage.

The "bottom-up” approach is formulated in Equation 2
as follows:
44
W= Z(Ki'EJ_M)'(pj'ﬁv
JEN
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where K represents the carbon dioxide emission coefficient
of j type of fuel. E; represents the amount of carbon
emission of j type of fuel. M represents the amount of
carbon fixation. ¢; stands for the share of fuel oxidation.
Definition 2: Trajectory. A spatial trajectory T is a sequence
of GPS points that are time-ordered spatial points, T:p; —
P2 — ... = pn. Each GPS point p; consists of a longitude, a
latitude and a timestamp.

Definition 3: POI. A POI is a specific point location in the
physical world, consisting of a name, category, longitude,
latitude. It is a place where a lot of people can find interest-
ing and useful.

Definition 4: Road network. A road network RN is a network
structure formed by road segments. Each road segment
r connects each others and has different functions and
locations.

Definition 5: Grid. We divide a city into disjoint and uniform
grids (e.g.,.5km x 5km in the experiments) as illustrated in
Figure 1(a). Each grid g has its carbon emission g.WW, which



stands for the total amount of carbon emission in the grid g.
The coordinate of each grid center is used as the coordinate
of the grid. We assuming the meteorological of the city is
uniform in one day.

Definition 6: Neuron. A multiple-input neuron is shown
in Figure 3. The individual inputs Py, P, ..., Pr are each
weighted by corresponding elements wi1, w12, ..., wir. The
b is a bias. The f represents the activation function. The
a represents the output of the neuron. The neuron can be
formulated as the Equation 3.

Inputs

Multiple-Input Neuron

Fig. 3. Multiple-Input Neuron

R

a=fn)=fO (P-Wu)+b), REN (3

=0

3.2 Framework

Our aim is to train a multilayer perceptron neural network
to infer the future information of transportation carbon
emission throughout the city. Primarily, we collect and filter
the relevant source data according to the prior knowledge.
Additionally, we preprocess the raw data and extract the
features that are closely related to the transportation carbon
emission. For obtaining the labeled data, we calculate the
amount of transportation carbon emission in each gird
based on the processed trajectory datasets. Furthermore,
using the extracted features and labeled data, we train the
proposed 3-layer PN N model to learn the model param-
eters. Accordingly, based on the trained neural network
model, we predict the transportation carbon emission of
each grid during the future period of time. Our framework
consists of four main parts, as shown in Figure 4.

Inference

T High-Level

Features
Evaluation
Inference

Feature Learning  Preprocessing Datasets Collecting data sources
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oad Network
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|

Carbon Emission

‘ Map-Matching

Fig. 4. Framework of our system
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Collecting data sources: In this part, we select four real-
world datasets, respectively, the taxi trajectories, road net-
works, POIs and meteorological data. We get the spatial
trajectories generated by over 3,000 taxicabs in Zhuhai city
during a period of nearly three months. The POI dataset
consists of nearly 40,000 POIs in this city. The road network
dataset contains about 3,0277 road segments.

Preprocessing datasets: Each trajectory is extracted from the
raw trajectory datasets and mapped onto the road networks
to improve the quality of the data. Then we utilize the
“top-down” approach to calculate the amount of trans-
portation carbon emission of each grid using the cleaned
trajectory data. Accordingly, we obtain the transportation
carbon emission dataset. Then we extract the diverse spatio-
temporal features that are closely related to transportation
carbon emission, based on the correlation and the effect on
the prediction accuracy after the fusion with other features.
In the process of extraction, we try to keep the original
attributes of the source data. Finally, prior to training, we
regularize these feature datasets. Detailed in section 4.
Feature learning: We feed the extracted features into our 3-
layer PN N model to train the neural network structure and
optimize the learning parameters. The transportation carbon
emission data is used as the labeled data for the supervised
learning. Detailed in section 5.

Inference: Based on the trained network structure and the
learning parameters, we use the logistic regression method
to infer the future transportation carbon emission for each
grid once every hour. See section 5 for details.

Problem statement

Given a collection of grids G = {g1, g2, ..., gn }, where g;. W
is the carbon emission of the grid g;, a road network RN
crossing G, a POI located in G, a trajectory dataset 1" passing
G, and a record of meteorological data in GG, we intend to
infer the g;.TW' in the future.

4 FEATURE EXTRACTION
4.1 Traffic Features: I’

The traffic features are the main characteristics to infer
the transportation carbon emission. Usually, the gasoline-
fueled vehicles have three operating mode conditions, that
is cold start, hot start, and hot stabilized. Under different
condition, the vehicles have significantly different emission
rates. The vehicle speed and travel length are also the
important features in the study of transportation carbon
emission. Accordingly, we select five relative features for
each grid, that is the number of start operations, expectation
of speeds , standard deviation of speeds, the number of
vehicles and the travel length. Figure 5 shows the correlation
matrix between the first four features and transportation
carbon emission. These features are extracted from the GPS
trajectories generated by vehicles traversing the grid in the
past hour.

Number of start operations: NumSta. Given a spatial trajec-
tory of a vehicle, we retrieve all the track points that fall in
the affecting region of each grid (p.l € g.R, p.l represents
the location of the point p). The points contained in the
trajectory are strictly increasing in time. We check the two
adjacent points. If the speed of the former point p; equals
to zero, meanwhile the speed of the later point p;;; is not



equal to zero, we believe that there is a start event. We count
the start action times NumSta according to Equation 4.

Sat = Sat + 1, pi.v =0,p;41.0 # 0, 4)

where p;, pi+1 fall in the same grid g.

Expectation of speeds: E(v). We also retrieve the track
points of the trajectories that fall in the affecting region of
each grid. As the sampled data of the GPS device is discrete,
we use the expectation of speeds to represent all the speeds
of passing vehicles in g.R. We first design a formula to
calculate the distance between two consecutive points, as
Equation 5. We then calculate the total driving distance and
the traveling time. Finally, we calculate the expectation of
speeds according to Equation 6.

X PiU+ Dig1.0
Dist(pi, pi+1) = %

_ 2 Dist(pi, pit1)

i1t —pit]’
Standard deviation of speeds: D(v). As the non-uniform
driving has an important influence on the carbon emission
of vehicles, we use the standard deviation to represent the
discrete degree of the speeds of traveling vehicles in the
g.R in the past hour. We calculate this feature according to
Equation 7.

D) = \/ (B ()~ piel Ipiat—pi
> pit1t — pit|

Number of vehicles: NumV eh. We calculate the number of
vehicles entering a grid by retrieving the vehicles’ travel tra-
jectories. If some points of trajectories fall into the affecting
region of the grid, we believe that the vehicle has access to
the grid. The same vehicle may visit a grid several times in
the past hour, while the number of vehicles in the grid is
only increased by one.
Travel length: Len. Based on the Equation 5, we sum all
the distance between two consecutive points to calculate the
total travel length of all trajectories in the gird g. As shown
in Equation 8.

Len = ZDiSt(pmpiﬂ), pil,piti.l€g R (8)

In figure 5, each row or column indicates one feature.
Each plot indicates the amount of transportation carbon
emission. These features are extracted from a GPS trajectory
dataset generated by over 3,000 taxicabs in Zhuhai. As the
taxicabs travel accounts for about 4.5% of the total daily
travel of residents in the city [20], the dataset is big enough
to represent the traffic patterns there [5].

With the increase of NumVeh and NumSta, the amount
of transportation carbon emission increases significantly, as
depicted in the third row and the fourth column. Vehicles
are the main sources of transportation carbon emission
which mainly comes from the combustion of fossil fuels.
Therefore, normally the more emission sources are always
producing more emissions. Just as we have known the
vehicles will consume more fuel, when vehicles starts. If
there are more start operations, the carbon emission should
be greatly increased. When E(v) is between 0km/h and
40km/ h, the carbon emission gradually increases and reach-
es the maximum value. When E(v) > 40, the larger E(v)

pit1t —pit],  (5)

E(v) pi-l,pit1l € g.R  (6)

,pl€gR (7)
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Fig. 5. Correlation matrix between traffic features and Transportation
carbon emission

is, the more small amount of the carbon emission(e.g., the
plot on the first column). It is surprising that not all vehicles
emit less carbon emission when they are moving close to a
constant speed, as showed in the first row. D(v) and E(v)
are closely related to the analysis of transportation carbon
emission. In the case of small D(v), with the increase of
E(v) the transportation carbon emission will be reduced,
i.e,, in a traffic jam each vehicle has to move very slowly,
the D(v) is small but the carbon emission is relatively large.
When D(v) and E(v) simultaneously increase, the carbon
emission will gradually decrease. In fact, if there is no traffic
jam, the speed of the vehicles on the road is varied and D(v)
will be maintained at a relatively large value.

4.2 Mobility Features: F;,

Urban transportation is to meet the basic mobility-related
needs of human. Digging out the characteristics of human
mobility in different areas is necessary to the research on
urban mining. Based on the characteristics of human mobil-
ity in a certain area, we can evaluate the popularity of this
area. It contributes to the inference of transportation carbon
emission. In our study, we select two human mobility-
related features, that is the number of people arriving at
(numArr) and leaving (numLea) a grid’s affecting region g.R
in the pass hour. We extract the two features from the dataset
generated by vehicles traversing the grid in the past hour.
Given trajectories in the dataset, we retrieve the pickup
points(p,,) and the corresponding drop-off points (p,ff)
falling in the grid. Obtaining these two features of each grid,
we just need to traverse all trajectories once. We calculate the
numArr and numLea using the Equation 9.

numArr = numArr + 1,pyp.l & 9i-R,possl € g;.R

9
numLea = numLea + 1,pyp.l € g;.R,poss.l & 9;.R ©)



where g;.R and g;.R respectively represent the affecting
region of the grid g; and the grid g;. numArr indicates the
number of people arriving at g;. R and numLea indicates the
number of people leaving g;.R. py,.l and p,¢ .l respectively
represent the location of the pickup points and the location
of drop-off points.
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Fig. 6. Correlation matrix between mobility features and carbon emission

In figure 6, it shows the correlation matrix between
transportation carbon emission and the two features, where
each row and column still denotes one feature and a plot
indicates the amount of transportation carbon emission of
each grids in the past hour. These features are extracted
from the aforementioned taxicab trajectories. As is described
in the figure, with the simultaneous increase of numArr and
numLea, the amount of the carbon emission has a nearly
linear increase. This change is actually very reasonable,
although people themselves are not the major producers
of the transportation carbon emission, i.e., the prosperous
region with a lot of POIs will attract more people from
different parts of the city. The increasingly flowing of people
is bound to demand a large number of vehicles. It finally
will contribute to the increase of the transportation carbon
emission.

4.3 POl Features: Fp

The classification and density of POIs tend to imply that the
region’s popularity and regional functions. For instance, a
region with a lot of life service POIs has a high probability
to be a residential area. Combined with the characteristics
of the traffic flow, we can also learn about the frequen-
cy of communication between different functional areas.
Accordingly, this information will be very helpful to infer
the transportation carbon emission. We extract one feature
dataset, that is the density of POIs for each classification
in the grid. In our study, we obtain the POI dataset of
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Zhuhai by the Auto Navi MAP. The visual distribution of
the POlIs in the city is shown in Figure 1(b). We can clearly
see that the density of POIs in each area is very different.
As described in the Table 1, we divide the POI dataset into
twelve classes, ie., {C1,Cq, - ,C12}. The density of POIs
for the classification C; in the affecting region R of the grid

g can be formulated by Equation 10.
p(C))=|{I:1¢€C;1loc € g.R}| (10)

where I.loc is the location of the POI I.

TABLE 1
The category of POls

C1 : Vehicle Services (sales, repair) | C7 : Hotels and Residences

C> : Food and Beverage Cs : Scenic Spots
Cy : Culture and Eduction

C10 : Infrastructure Services

C3 : Shopping Services

Cy : Life Services

Cs : Sports and Leisure C11 : Financial Services

C : Health Care

C12 : Companies

4.4 Road-network Features: Fry

Road networks are very important for road traffic in each
area and they also have great influence on the road traffic.
The road networks in Zhuhai city are shown in Figure 1(b).
In our study, we select the following two related features for
each grid g, that is the total length of highways f1,ignway and
the other roads f;oqq. These two features can be formulated
by the Equation 11. Figure 7 demonstrates the correlation
between transportation carbon emission and this two fea-
tures, utilizing the road-network dataset extracted from
the Auto Navi MAP. The transportation carbon emission
is generated by vehicles traversing the grids in the past
hour. As described in the figure 7, the transportation carbon
emission in each grid is strongly correlated with f,,.q. The
longer froqq, the more transportation carbon emission. On
the surface, there is a small relationship between transporta-
tion carbon emission and frighway. However, it is clear that
froaa and frighway have very different relationships with
transportation carbon emission. This is also one reason why
we need to separate them.

fhighway = Z len(rhighway)7 Thighway S gRa

froad = Z len('rother)7

where len(rhighway) and len(rowner) are the length of the
highway 7highway and the other road 744, respectively.

11)
Tother € gR

4.5 Meteorological Features: F;.

The meteorology could potentially affect our travel plans or
possibly cause us to choose short distance travel, the results
will indirectly affect the amount of transportation carbon
emission. Accordingly, in this section, our purpose is to
identify what useful information from the meteorology can
contribute to the analysis of transportation carbon emission.
In the experiment, we identify two features for each grid:
weather f,, and temperature f;, which can be formulated as
the Equation 12. Figure 8 illustrates the relationship between
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sion

the two features and the transportation carbon emission,
using the meteorology data we collected from August 1st
to October 31th, 2015 in Zhuhai. We mainly compare the
effects of four different weather conditions on transportation
carbon emission in the same region, as shown in Figure 8(a).
Then we analyze the relationship between temperature and
transportation carbon emission in the same region under the
same weather conditions, as shown in Figure 8(b). Clear-
ly, compared with the sunny day, transportation carbon
emission under the moderate to heavy rain conditions is
less. Though the effect of temperature is not obvious, the
bad weather always affects people’s travel. In short, these
features are very discriminative in transportation carbon
emission inference.

weather € M
temp € Z

fw = weather,

12

fr = temp, 12

where the weather is the weather in the grid g. The M rep-

resents the set of weather types. The temp is the temperature
in the grid g.
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Fig. 8. The transportation carbon emission between difference grids

5 LEARNING AND INFERENCE

In this section we combine the extracted features to train
our multilayer perceptron neural network and optimize
the learning parameters. We aim to utilize the combination
of multiple temporal and spatial features to improve the
prediction. Nowadays some deep neural networks have
been used in many fields such as image recognition and
speech recognition, and have achieved very good results,
but for our data characteristics, the performance of the deep
learning algorithms is not very good. Based on the charac-
teristics of extracted data, we propose a 3-layer perceptron
neural network to infer the transportation carbon emission
in the future period of time.

5.1

The 3-layer PN N predicts the transportation carbon emis-
sion, utilizing the extracted features and the labeled data.
The extracted features consist of Fr, Fuo, Fp, Fry and
Fyre. The labeled data is calculated using the “top-down”
approach, which is formulated in Equation 1. The main
training and learning algorithm for our 3-layer PNN is
given in Algorithm 1. The graphical structure of our 3-
layer PN N is shown in Figure 9.

3-layer perceptron neural network:(3-layerPNN)

Hidden layer

Input layer Output layer

SO

sV,
“V’/’ />
{/

Fig. 9. The structure of the 3-layer perceptron neural network (3-
layer PN N)

In this Figure, our 3-layer perceptron neural network
consists of three layers, that is the input layer, the hidden
layer and the output layer. The hidden layer contains n
nodes. The output layer contains k¥ nodes. we use the solid
circles to denote the inputs of the network and utilize hollow
circles to denote the multiple-inputs neurons. The solid
circles labeled ”+1” are used to represent the bias units and
correspond to the intercept term b;. Our neural network has
parameters (W, b) = W M W@ p(2), where Wz(lj) is
the weight associated with the connection between unit j
in layer ! and unit ¢ in layer [ + 1. bgl) denotes the bias
associated with unit ¢ in the layer [ + 1. agl) denotes the
output value of unit ¢ in the lay I. The transfer function f
of each neural in the hidden layer is the activation function
tanh, as designed in Equation 13.

F(2) = tanh(z) = 2172: (13)



Algorithm 1 The training and learning algorithm

Input: A set of features(Fr, Fiao, Fpr, Frn, Fue), the
labeled data D; for each grids, a threshold a controlling
the number of epochs to run the optimizer

Output: A set of learning parameters 6 of the neural net-

works

3-layer PN N < construct a three layers perceptron

0 <+ initialize the parameters 0

D <« {Fr,Fuo, Fp, Frn, Frre}

epoch < 0

while epoch < a do
epoch < epoch + 1
while T'rue do

miniBatch < read one unit from D and D,
if miniBatch is empty then
break
end if
put miniBatch into the Stochastic Gradient

Descent algorithm

13: manimize the loss function of 3-layer PNN
for each sample

14: update the parameters 0 of 3-layer PN N

15: end while

16: end while

O PN

_=
N 2o

The output layer uses the logistic regression to analyze
and predict the transportation carbon emission utilizing the
input data of this layer, as formulated in Equation 14. The
prediction ¥4 is the class whose probability is maximal,
as formulated in Equation 15.

PY =iz, W® ?) = softmaz;(WPz + b))

WP atb® (14)
- Z 6W]§2).’z+h§2) ’
Ypred = argmaz; P(Y =iz, w®, b(2)), (15)

where Y denotes a stochastic variable. = denotes the input
vector. W) is the weight matrix between units in the
hidden layer and units in the output layer. () is the bias
vector associated with units in the output layer.

Formally, the computation that this 3-layer perceptron
neural network represents is given by the equations as
follows:

o® = W Wg 4 b0,

a® = softmaz(W®a® 4 p?) {10
where a(®)| a(® respectively denotes the output vector of the
hidden layer and the output layer. b(!) respectively denotes
the bias vector associated with units in the hidden layer.
W) is the weight matrix between units in the input layer
and units in the hidden layer.

To train our neural network, we use the negative log-
likelihood as the loss. We use the stochastic gradient descent
(SGD) to minimize the loss function to optimal the param-
eters, then update all parameters of the neural networks.
The likelihood £ and the loss ¢ are respectively defined as
follow:

| D]
£(0,D) = log(P(Y = yPz',0)), (17)
=0

where 6 is the set of parameters of the neural networks,
6 ={Ww® @ wm p(M} D is the training data set.

6 EXPERIMENTS
6.1 Datasets

In the experiments, we validate our prediction system using
the five kinds of real world datasets in Zhuhai. We show
these datasets in Table 2. Details are as follows.

Taxi trajectories: The GPS trajectory dataset is generated
by over 3,000 taxicabs in Zhuhai city from August 1st to
October 14th, 2015. We use this dataset to calculate the Fr
and F,. Every taxicab generates a GPS record every 10 sec-
onds and lasts 24 hours a day. All the taxicabs can produce
about 38 million records and generate about 0.116 million
kilometers in one day. According to the annual report of the
traffic development in Zhuhai in 2014, the residents travel
about 4.5 million times a day, and the taxicabs and small
passenger cars account for about 31.8%. Each GPS record
contains vehicle ID, record time, latitude, longitude, speed,
direction and passenger status, etc. Utilizing map matching,
we can easily count the number of taxicabs in each region
and detect the condition of taxicabs on each road in the past
hour. In our study, this dataset is big enough to represent
the traffic patterns there. In Zheng’s paper [5], he also uses
the taxicab dataset to represent the traffic patterns.
Transportation carbon emission: There are two widely ac-
cepted approaches to calculate the transportation carbon
emission, that is “top-down” and “bottom-up” approach-
es defined by IPCC(2006) [1]. The data required by the
"bottom-up” approach is very difficult to obtain, and there
is no complete data provided to this approach. However,
the "top-down” approach can effectively avoid the difficulty
of data acquisition. Accordingly, we use the “top-down”
approach to calculate the transportation carbon emission
in our experiments. The carbon emission coefficient of the
taxicab is 0.5 kg COz/km, that is defined by the ministry
of science and technology of China according to China’s
national conditions [21]. Additionally, the carbon emission
coefficient in different countries may exist differences.
POIs: We extract the POI dataset of Zhuhai from the Auto
Navi MAP. Each record of the POI dataset contains the POI’s
ID, name, type, latitude and longitude, etc. The POIs are
divided into multiple parts, as described in Table 1. The
nember of the POIs in each part is shown in Figure 10. The
geographical distribution of the POIs is described in Figure
1(b).

Road-networks: The road-network data of Zhuhai is also
extracted from the Auto Navi MAP. Each record of this
dataset contains the road-network’s ID, road class, length
and the location of the starting point, mid point and end
point of the road, etc.

Meteorological data: We collect the meteorological data
from a public website every day from August 1st to October
31st, 2015 in Zhuhai. Each record of this dataset consists of
two messages, that is temperature and weather.
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TABLE 2
Details of the datasets
Data sources Zhuhai
taxi Trajectories GPS Trajectories | 2015/08/01-2015/10/14
.. Hours 2208
Carbon emission
Time spans 2015/08/01-2015/10/31
Segments 30227
Roads Road-networks 4,420.820 km
Highways 253.078 km
POIs 2015 38815
Hours 2208
Meteorology -
Time spans 2015/08/01-2015/10/31
Gird sizes 5 x5 km

6.2 Comparison Methods

According to the characteristics of our datasets, we compare
our method with three typical machine learning algorithms
(Gaussian Naive Bayes, Linear Regression, Logistic Regres-
sion) and two deep learning methods (Stacked Denoising
Autoencoder, Deep Belief Networks).

1) Gaussian Naive Bayes (GaussianNB): In many practical
applications, the naive Bayes classifiers can be trained very
efficiently in a supervised learning setting [22]. We compare
with the Gauss Naive Bayes, which is shown in Equation 19

1 _ (w—pe)?
pla=1le) = ———e
\2mo?
where = denotes a continuous attribute of the training data.
v is some observation value. ¢ denotes one class of the C'.
2) Linear Regression: (LinearR) A linear regression model
assumes that the relationship between the dependent vari-
able y; and the p-dimensional vector of regressors z; is
linear [23]. Given a dataset {y;, zi1,- -+, Zip 1=y, the linear
regression prediction model can be formulated as follows:

(19)

yizﬁlxi1+"'+6pxip+5ia i:172a"'7n (20)

where y; denotes the regressand. 1, 242, - - - , %;p are the in-
put variables. 31, 82, - - - , Bp are the regression coefficients.
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3) Logistic Regression (LogisticR): The Logistic regression
utilize a logistic function to measure the relationship be-
tween the categorical dependent variable and one or more
independent variables [24]. The logistic regression predic-
tion model can be written as the Equation 14. In this Equa-
tion, the function so ftmax is a standard logistic function.
4) Stacked Denoising Autoencoder (SDA): The SDA is a
deep neural network stacked by the denoising autoencoders
(DA) [25]. Usually, the performance of the deep learning
models is better when learning high level features. In this
experiment, we construct a deep learning neural network
with five layers, including one input layer, three hidden
layers and one output layer. These hidden layers are built
by the DA. Each hidden layer consists of 100 neurons. The
output of each hidden layer is the input to the next layer. The
output layer is a logistic regression layer. The fine-tuning
loop of the SDA is very similar to that in our 3-layer PN N.
5) Deep Belief Networks (DBN): The DBN is a deep neural
network stacked by the restricted Boltzmann machines (RB-
M). The DBN is a graphical model which learns to extract
a deep hierarchical representation of the training data [26].
In this experiment, we construct a DBN with four layers,
including one input layer, two hidden layers and one output
layer. we use the RBM to build the hidden layers. Each
hidden layer consists of 100 neurons. The output layer is
also the logistic regression layer.

6.3 Results

Evaluation on Features: We first compare and analyze
the prediction performance of the single feature dataset
and the fusion of multiple feature datasets. We use these
different feature datasets to train the 3-layer PN N mod-
el, respectively. Table 3 shows the training results of
five representative combinations of the feature datasets
(Fr, Fyro, Fpy FRN, Fiare). As described in the first three
rows in the table, the prediction performance of the fusion
of Fr and F)y, is better than the performance of Fl,,
and worse than the performance of F;. The prediction
performance of the fusion of Frr, Firo, F'p, FrN, Fiure is best.
The predication accuracy of the model is 90.86% utiliz-
ing the fusion of Fr, Firo, F'p, Frn and Fis.. The results
indicate that the performance of the fusion of multiple
feature datasets is not always superior to the performance
of the single feature dataset. However, when combined with
Fr, Fyo, Fp, FrRN, Fare, the accuracy rate of prediction be-
comes better. It proves that the feature datasets we selected
are very efficient. In addition, these results also suggest
that feature selection is very importance for neural network
training and learning.

TABLE 3
The results related to features

Features Accuracy of the prediction
Fr 88.87 %
Furo 77.45 %
Fr + Furo 88.68 %
Fp + Fry + Fe 66.02 %
Fr + Fao + Fp+ FrRN + Fre 90.86 %




Overall Results: Leveraging the extracted five kinds of
feature datasets (F'r, Fno, Fp, FrRN, Fare), we train the pro-
posed 3-layer PNN and the other five aforementioned
methods. The performance of these algorithms is shown
in Figure 11. The predication accuracy of the 3-layer PN N
is 90.86%. It is clear that the 3-layer PN N is more accu-
rate than other algorithms. The results demonstrate that
our method has the advantage to infer the transportation
carbon emission over the other five methods. Additionally,
the predication accuracy of SDA and DBN is 32.348% and
32.306% respectively. The deep learning algorithms utilize
several processing layers to model high-level abstractions
in data, which may lead to the distortion of training data,
especially for the case of fewer feature datasets. Moreover,
compared the two deep learning methods with the other
methods in our experiments, it is also shown that the
predication performance of the neural network with more
processing layers is not always better in the transportation
carbon emission areas, and the deep learning algorithm is
difficult to obtain the efficient high-level abstractions based
on the manually extracted feature datasets.
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Fig. 11. Overall results of different methods

7 CONCLUSION

In this paper, from the perspective of big data, we predict
the future transportation carbon emission based on five
real world datasets (taxi trajectories, road networks, POls,
meteorological data and carbon emission data) observed
in Zhuhai city. We identify five kinds of feature datasets
(Fr, Faxo, Fr, Fri, Fire) based on the relationship between
the real world datasets and transportation carbon emission.
Additionally, using the “top-down” method, we calculate
the amount of transportation carbon emission as the labeled
data. Accordingly, we train the proposed 3-layer PNN
model to infer the transportation carbon emission in the
future, utilizing the extracted features and the labeled data.
We evaluate our method on the basis of the spatio-temporal
data obtained in the city. The results show the prediction
accuracy of our method being above 90.86%, which is better
than the accuracies of the other methods. Moreover, the
results also demonstrate that our method is superior to the
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well-known machine learning algorithms (Gaussian Naive
Bayes, Linear Regression, Logistic Regression) and deep
learning algorithms (Stacked Denoising Autoencoder, Deep
Belief Networks).

The key experiences we learn from the research lie in
three aspects. Primarily, feature selection and fusion are
very important for neural network training and learning.
Secondly, when the extracted features are relatively few,
the performance of deep learning methods may be not
ideal. For instance, the prediction accuracies of the SDA
and DBN algorithms are worse than the other machine
learning algorithms in our experiments. Finally, the selection
of the learning algorithms should be based on the unique
characteristics of dataset.

In the future, we plan to extend this work in sever-
al directions. First of all, we will apply our method to
more cities, in order to better characterize transportation
carbon emission. Then, to reduce carbon emissions, we
will consider the urban planning and vehicle scheduling to
assist the decision making. Given the different amount of
vehicle exhaust emissions in all regions, the management
departments should optimize the traffic in different ways to
cut the regional emissions. Subsequently, we would further
study the data mining algorithms and theory to design more
excellent algorithms for the heterogeneous urban data.
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