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Abstract

The ring R(Bn) of virtual C-characters of the hyperoctahedral group Bn

has two Z-bases consisting of permutation characters, and the ring structure
associated with each basis of them defines a partial Burnside ring of which
R(Bn) is a homomorphic image. In particular, the concept of Young characters
of Bn arises from a certain set Un of subgroups of Bn, and the Z-basis of R(Bn)
consisting of Young characters, which is presented by L. Geissinger and D.
Kinch [7], forces R(Bn) to be isomorphic to a partial Burnside ring Ω(Bn,Un).
The linear C-characters of Bn are analyzed with reduced Lefschetz invariants
which characterize the unit group of Ω(Bn,Un). The parabolic Burnside ring
PB(Bn) is a subring of Ω(Bn,Un), and the unit group of PB(Bn) is isomorphic
to the four group. The unit group of the parabolic Burnside ring of the even-
signed permutation group Dn is also isomorphic to the four group.
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1 Introduction

Let G be a finite group, and let G-set be the category of finite left G-sets
and G-equivariant maps. The Burnside ring Ω(G), which is the Grothendieck ring
of the category G-set, is the commutative unital ring consisting of all Z-linear
combinations of isomorphism classes [X] of finite left G-sets X with disjoint union
for addition and cartesian product for multiplication. We denote by R(G) the ring of
virtual C-characters ofG. Set [n] = {1, 2, . . . , n}, and let Sn be the symmetric group
on [n]. We denote by Yn the set of Young subgroups of Sn, which is closed under
intersection and conjugation. By [15, §7], Ω(Sn) possesses the partial Burnside ring
Ω(Sn,Yn) relative to the Young subgroups as a subring, and Ω(Sn,Yn) ∼= R(Sn).
This fact means that the characters 1Sn

Y induced from the trivial characters 1Y of Y
for Y ∈ Yn form a Z-basis of R(Sn) (see, e.g., [2, Proposition 3]). Let C2 be a cyclic

group of order 2, and let Vn be the direct product C
(n)
2 of n copies of C2. We denote

by Bn the hyperoctahedral group, that is, the wreath product C2 ≀ Sn defined to be
a semidirect product Vn ⋊ Sn of Vn with Sn. Let Zn be the set of all products KY
of K ≤ Vn and Y ∈ Yn with |Vn : K| ≤ 2 and Y ≤ NSn(K). We establish in §3 that
R(Bn) is a homomorphic image of the partial Burnside ring Ω(Bn, Z̃n) relative to
the set Z̃n of intersections of subgroups contained in Zn.

For a ring R, we denote by R× the unit group of R. By [13, Example 2], R(Sn)
×

is isomorphic to the four group. There exists a unit of Ω(Sn,Yn) which enables
us to describe the sign character sgnn : Sn → C as a Z-linear combination of the
characters 1Sn

Y for Y ∈ Yn (see [2, Corollary 2] and [9, §4]); such a description is
called Solomon’s formula. The ring R(Bn) includes exactly four linear C-characters,
and R(Bn)

× is generated by the nontrivial linear C-characters and −1Bn . In §4
we identify R(Bn)

× with a subgroup of Ω(Bn, Z̃n)
×, and then describe the linear

C-characters of Bn as Z-linear combinations of the characters 1Bn
H for H ∈ Zn.

There is a set Un of subgroups of Bn such that the characters 1Bn
H for H ∈ Un

form a Z-basis of R(Bn) (cf. [7, Corollary II.4]). In §5 we define the partial Burnside
ring Ω(Bn,Un) relative to the Young subgroups of Bn, which is a subring of Ω(Bn)
isomorphic to R(Bn). The parabolic Burnside ring PB(Bn) (cf. [1, §4]) is a subring
of Ω(Bn,Un). By [4, (66.29) Corollary], the sign character εn : Bn → C is described
as a Z-linear combination of the characters 1Bn

H for parabolic subgroups H of Bn,
whence PB(Bn) includes a unit αn corresponding to εn : Bn → C. There also is a
unit βn of Ω(Bn,Un) corresponding to a natural extension of sgnn : Sn → C to Bn

such that αnβn corresponds to the restriction of sgn2n : S2n → C to Bn. By the
description of βn in terms of the characters 1Bn

H for H ∈ Zn ∩ Un, we have

βn ∈ Ω(Bn, Z̃n)
× ∩ (Ω(Bn,Un)

× − PB(Bn)
×),

which proves PB(Bn)
× to be isomorphic to the four group.

Let X ∈ G-set. To explore the units of Ω(G), we are mainly concerned with
the reduced Lefschetz invariant Λ̃P (X) of the G-poset P (X) consisting of nonempty
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and proper subsets of X. The reduced Euler-Poincaré characteristic χ̃(P (X)K) of
the set of K-invariants P (X)K in P (X) with K ≤ G is (−1)|K\X|, so that Λ̃P (X) is
a unit of Ω(G) (cf. [11, §5]). As a sequel to this fact, the linear C-characters of Bn

are analyzed with reduced Lefschetz invariants which characterize Ω(Bn,Un)
×.

Let Dn be the group of even-signed permutations on [n], which is also a Coxeter
group of type D. In §6 we explore the units of the parabolic Burnside ring of Dn.

2 Lefschetz invariant

Following [4, §80], we review the Burnside ring of G and related facts. Let F(G)
be the free abelian group on the set of isomorphism classes of finite left G-sets.
Given X ∈ G-set, we denote by X the isomorphism class of left G-sets including X.
Let F(G)0 be the subgroup of F(G) generated by the elements X1∪̇X2 −X1 −X2

for X1, X2 ∈ G-set. We define a multiplication on the generators of F(G) by

X1 ·X2 = X1 ×X2,

where X1 × X2 is the cartesian product of X1 and X2, and extend it to F(G) by
Z-linearly. Then F(G) is a commutative unital ring, and F(G)0 is an ideal of F(G).
We define a commutative unital ring Ω(G) to be the quotient F(G)/F(G)0, and call
it the Burnside ring of G. For each X ∈ G-set, let [X] be the coset X + F(G)0 of
F(G)0 in F(G) represented by X. Then by [4, (80.4) Lemma], [X1] = [X2] if and
only if X1 = X2. Hence we may regard [X] as the isomorphism class of left G-sets
including X ∈ G-set. Multiplication on the generators of Ω(G) is given by

[X1] · [X2] = [X1 ×X2].

Let C(G) be a full set of non-conjugate subgroups of G. Given H ≤ G, we
denote by G/H the set of left cosets gH, g ∈ G, of H in G, and make G/H into a
left G-set by defining d(gH) = dgH for all d, g ∈ G. For H, K ≤ G, G/H ≃ G/K if
and only if H is a conjugate of K (cf. [4, (80.5) Proposition]). The elements [G/H]
for H ∈ C(G) form a free Z-basis of Ω(G). We have

[G/H] · [G/U ] =
∑

HgU∈H\G/U

[G/(H ∩ gU)] (1)

for all H, U ≤ G, where gU = gUg−1 (cf. [4, §80 Exercise 2]). The identity of Ω(G)
is [G/G]. For shortness’ sake, we usually write 1 = [G/G].

Let H ≤ G. For each X ∈ G-set, we denote by invH(X) or XH the set of
H-invariants in X. There exists a ring homomorphism ϕH : Ω(G) → Z given by

[G/U ] 7→ |invH(G/U)|

for all U ∈ C(G). For each X ∈ G-set, it is obvious that

ϕH([X]) = |XH |.
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We set Ω̃(G) =
∏

H∈C(G) Z, and define a map ϕ : Ω(G) → Ω̃(G) by

x 7→ (ϕH(x))H∈C(G)

for all x ∈ Ω(G). By [4, (80.12) Proposition], this map is a ring monomorphism.
We call Ω̃(G) the ghost ring of Ω(G), and call ϕ : Ω(G) → Ω̃(G) the Burnside
homomorphism or the mark homomorphism. Obviously, Ω̃(G)× =

∏
H∈C(G) Z×.

Hence Ω̃(G)× is an elementary abelian 2-group, and so is Ω(G)×.
We turn to the concept of (reduced) Lefschetz invariants for finite G-sets. A

finite (left) G-set P equipped with order relation ≤ is called a finite G-poset if ≤
is invariant under the G-action. Let P be a finite G-poset. For each nonnegative
integer n, we denote by Sdn(P ) the set of chains p0 < p1 < · · · < pn of elements of
P of cardinality n+ 1, and make Sdn(P ) into a G-set by defining

g(p0 < p1 < · · · < pn) = gp0 < gp1 < · · · < gpn

for all g ∈ G and p0 < p1 < · · · < pn ∈ Sdn(P ). The Lefschetz invariant ΛP of P
and the reduced Lefschetz invariant Λ̃P of P are two elements of Ω(G) given by

ΛP =
∞∑
i=0

(−1)i[Sdi(P )] and Λ̃P = ΛP − 1,

respectively, which are introduced by Thévenaz (cf. [3, 11]).
Given X ∈ G-set, we denote by P (X) the G-poset consisting of nonempty and

proper subsets of X, and explore Λ̃P (X) from the point of view of combinatorics.

Definition 2.1 Let X ∈ G-set. Given X0 ∈ G-set, we define a finite left G-set
Map(X,X0) to be the set of maps from X to X0 with the action given by

(gf)(x) = gf(g−1x)

for all g ∈ G, f ∈ Map(X,X0), and x ∈ X (cf. [5, §2]). Given a nonnegative integer
i and X0, X1, . . . , Xi ∈ G-set, we denote by Map(X,X0, X1, . . . , Xi) the set of all
f ∈ Map(X,X0∪̇X1∪̇ · · · ∪̇Xi) such that Imf ∩Xj ̸= ∅ for any j = 1, 2, . . . , i, and
make it into a left G-set by defining

(gf)(x) = gf(g−1x)

for all g ∈ G, f ∈ Map(X,X0, X1, . . . , Xi), and x ∈ X.

Lemma 2.2 Let X ∈ G-set. Set n = |X| and X1 = · · · = Xn = G/G. Then

Λ̃P (X) =
n∑

i=1

(−1)i[Map(X, ∅, X1, . . . , Xi)].
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Proof. Obviously, [Map(X, ∅, X1)] = [Map(X,G/G)] = 1. We assume that 2 ≤ i ≤
n, and define a bijection ∆ : Map(X, ∅, X1, . . . , Xi) → Sdi−2(P (X)) by

f 7→ p0 < p1 < · · · < pi−2,

where

pk = {x ∈ X | f(x) ∈ Xj for some j ∈ {1, 2, . . . , k + 1}}

for each integer k with 0 ≤ k ≤ i−2. Let g ∈ G, and let f ∈ Map(X, ∅, X1, . . . , Xi).
We have (gf)(gx) = f(x) for any x ∈ X. Hence, if ∆(f) = p0 < p1 < · · · < pi−2,
then ∆(gf) = gp0 < gp1 < · · · < gpi−2. Consequently, we have

[Map(X, ∅, X1)] = 1 and [Map(X, ∅, X1, . . . , Xi)] = [Sdi−2(P (X))]

for all integer i with 2 ≤ i ≤ n, which implies that

Λ̃P (X) = −1 +

∞∑
i=0

(−1)i[Sdi(P (X))] =

n∑
i=1

(−1)i[Map(X, ∅, X1, . . . , Xi)].

This completes the proof. 2

By Eq.(1), the set Ω(G)+ consisting of all elements
∑

U∈C(G) ℓU [G/U ], ℓU ≥ 0,
of Ω(G) is an additive semigroup closed under multiplication. We fix X ∈ G-set,
and define a multiplicative map Map(X,−) : Ω(G)+ → Ω(G) by

[Y ] 7→ [Map(X,Y )]

for all Y ∈ G-set. There exists a unique polynomial map (multiplicative map)
(−)[X] : Ω(G) → Ω(G), y 7→ y[X] extending Map(X,−) (see [5, §2] and [14, §3]). If
X = X1∪̇X2, then y

[X] = y[X1] · y[X2] for any y ∈ Ω(G).

By [14, Lemma 3.6], ϕ((−1)[X]) = ((−1)|K\X|)K∈C(G), where K\X is the set of

K-orbits in X, and thus (−1)[X] ∈ Ω(G)×. The following proposition is equivalent
to [9, Proposition 4.1] and [11, Proposition 5.1].

Proposition 2.3 For any X ∈ G-set, Λ̃P (X) = (−1)[X] ∈ Ω(G)×.

We derive Proposition 2.3 from the combinatorial identity

(−1)n =
n∑

i=1

(−1)iS(n, i)i!, (2)

where S(n, i) is the Stirling number of the second kind (cf. [10, (24d)]). While
Eq.(2) is equivalent to [9, Lemma 4.2], the former is nicer than the later for our
argument based on entry 3 of the Twelvefold Way (cf. [10, p. 33]).
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Proof of Proposition 2.3. Set n = |X| and X1 = · · · = Xn = G/G. By Lemma 2.2,

Λ̃P (X) =

n∑
i=1

(−1)i[Map(X, ∅, X1, . . . , Xi)].

Let K ∈ C(G), and set mK = |K\X|. Then for each integer i with 1 ≤ i ≤ n,

|Map(X, ∅, X1, . . . , Xi)
K | = S(mK , i)i!,

because S(mK , i) is the number of partitions of an mK-set into i nonempty subsets.
Combining the preceding facts with Eq.(2), we have

ϕ(Λ̃P (X)) =

(
mK∑
i=1

(−1)iS(mK , i)i!

)
K∈C(G)

= ((−1)mK )K∈C(G) ,

completing the proof. 2

Remark 2.4 For each X ∈ G-set, the elements y[X] for y ∈ Ω(G), which may be
called exponentials, were introduced by A. Dress (cf. [5, §2]), including (−1)[X] (cf.
[5, §3]), and the fact that ϕ(Λ̃P (X)) = ((−1)|K\X|)K∈C(G) was generalized in terms
of the exponentials (see [12, §6] and [14, §3]).

3 The character ring of Bn

Set C2 = Z×, and let Vn be the direct product C
(n)
2 of n copies of C2. The

wreath product Bn := C2 ≀Sn of C2 with Sn is defined to be the semidirect product

Vn ⋊ Sn = {(x1, . . . , xn)σ | (x1, . . . , xn) ∈ Vn and σ ∈ Sn}

in which each permutation on [n] acts as an inner automorphism on Vn:

σ(x1, . . . , xn)σ
−1 = (xσ−1(1), . . . , xσ−1(n)).

If L ≤ Vn or if F ≤ Sn, then we regard L or F as a subgroup of Bn. Given
K ≤ Vn and F ≤ NSn(K) := NBn(K) ∩ Sn, KF is the semidirect product K ⋊ F .

Given J ⊂ [n], we denote by SJ the symmetric group on J , and view it as a
subgroup of Sn. For a cycle type λ = (1m1 , . . . , nmn) of a permutation on [n], let

Sλ denote a Young subgroup of Sn isomorphic to S
(m1)
1 × · · · × S

(mn)
n , where each

S
(mi)
i is the direct product of mi copies of Si.
Let J ⊂ [n]. There exists a linear C-character ϑJ of Vn given by

ϑJ((x1, . . . , xn)) = ϑ(x1) · · ·ϑ(xn) with ϑ(xj) =

{
xj if j ∈ J,

1 otherwise
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for all (x1, . . . , xn) ∈ Vn. Set J = [n]− J . The inertia group IBn(ϑJ) of ϑJ , which
is defined to be {a ∈ Bn | ϑJ(aba−1) = ϑJ(b) for all b ∈ Vn}, is

Vn(SJSJ) = {(x1, . . . , xn)σ ∈ Bn | (x1, . . . , xn) ∈ Vn and σ ∈ SJSJ}

(cf. [8, Lemma 25.5]). There exists an extension ϑ̂J of ϑJ to IBn(ϑJ) given by

ϑ̂J((x1, . . . , xn)σ) = ϑJ((x1, . . . , xn))

for all (x1, . . . , xn) ∈ Vn and σ ∈ SJSJ . Obviously, IBn(ϑJ)/Vn ≃ SJSJ . For a

C-character ψ of SJSJ , we denote by ψ̂ the C-character of IBn(ϑJ) given by

ψ̂(gσ) = ψ(σ)

for all g ∈ Vn and σ ∈ SJSJ . Set KJ = kerϑJ . Then SJSJ ≤ IBn(ϑJ) ≤ NBn(KJ).
For each integer i with 0 ≤ i ≤ n, we indicate with [i] ⊂ [n] that [i] is the subset

{1, 2, . . . , i} of [n], where [0] is the empty set.
Let [i] ⊂ [n]. We write ϑi = ϑ[i], Ki = kerϑi, Si = S[i], and Si = S

[i]
for

shortness’ sake. Let Irr (SiSi) be the set of irreducible C-characters of SiSi.
The following proposition is well-known (cf. [7, §II]).

Proposition 3.1 The irreducible C-characters of Bn consist of the C-characters
(ϑ̂iψ̂)

Bn induced from the product ϑ̂iψ̂ of ϑ̂i and ψ̂ for [i] ⊂ [n] and ψ ∈ Irr (SiSi).

Let J ⊂ [n], and let P(J) be the set of cycle types of permutations on J . We
write P(n) = P([n]). Recall that for each λ ∈ P(J)(= P(|J |)), Sλ denotes a Young
subgroup of S|J |. We set P(J, J) = P(J) × P(J). Given (λJ , λJ) ∈ P(J, J), let
SλJλJ

denote the product HK of a subgroup H of SJ and a subgroup K of SJ such
that H is a conjugate of SλJ

in Sn and K is a conjugate of SλJ
in Sn.

For each X ∈ G-set, let πX be the permutation character of G which assigns
each g ∈ G the number of fixed elements of X by g, that is, πX(g) = |X⟨g⟩|. For
each H ≤ G, πG/H is the character 1GH induced from the trivial character 1H of H.

Theorem 3.2 The characters 1Bn
KiSλiλi

induced from the trivial characters 1KiSλiλi

of KiSλiλi
for [i] ⊂ [n] and (λi, λi) ∈ P([i], [i]) form a Z-basis of R(Bn). In partic-

ular, the number of irreducible C-characters of Bn is
∑n

i=0 |P([i], [i])|.

Proof. The second assertion is well-known, and is also an immediate consequence of
the first one. Let J ⊂ [n], and let (λJ , λJ) ∈ P(J, J). If g ∈ Vn and σ ∈ SJSJ , then

gσ(hτKJSλJλJ
) = hτKJSλJλJ

⇐⇒ τ−1h−1(gσ)hτ ∈ KJSλJλJ

⇐⇒ τ−1
(h−1g) τ

−1σhτ−1στ ∈ KJSλJλJ

⇐⇒ g σh ∈ h τKJ and στ ∈ τSλJλJ

⇐⇒ ghKJ = hKJ and στSλJλJ
= τSλJλJ
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for all h ∈ Vn and τ ∈ SJSJ , because σ ∈ NSn(KJ) and |Vn : KJ | ≤ 2, and thus

1
IBn (ϑJ )
KJSλJλ

J

(gσ) = πIBn (ϑJ )/(KJSλJλ
J
)(gσ)

= πVn/KJ
(g) · π(SJSJ )/SλJλ

J
(σ)

= 1Vn
KJ

(g) · 1SJSJ
SλJλ

J

(σ).

In particular, 1
IBn (ϑ∅)
VnSλ∅

= 1̂
S∅
Sλ∅

. Moreover, if J ̸= ∅, then ϑJ = 1Vn
KJ

− 1Vn and

(1
IBn (ϑJ )
KJSλJλ

J

− 1̂
SJSJ
SλJλ

J

)(gσ) = (1Vn
KJ

− 1Vn)(g) · 1
SJSJ
SλJλ

J

(σ) = (ϑ̂J 1̂
SJSJ
SλJλ

J

)(gσ)

for all g ∈ Vn and σ ∈ SJSJ , and consequently,

1Bn
KJSλJλ

J

= 1̂
SJSJ
SλJλ

J

Bn

+

(
ϑ̂J 1̂

SJSJ
SλJλ

J

)Bn

= 1̂Sn
SλJλ

J

+

(
ϑ̂J 1̂

SJSJ
SλJλ

J

)Bn

.

Let [i] ⊂ [n]. By the above fact with J = [i] and Proposition 3.1, it suffices to verify

that the characters 1
SiSi
Sλiλi

for (λi, λi) ∈ P([i], [i]) form a Z-basis of R(SiSi). We

identify SiSi and the subgroups Sλiλi
of SiSi for (λi, λi) ∈ P([i], [i]) with Si × Sn−i

and the subgroups Sµ ×Sν of Si ×Sn−i for µ ∈ P(i) and ν ∈ P(n− i), respectively.

By [2, Proposition 3] and [4, §9 Exercise 6], the characters 1
Si×Sn−i

Sµ×Sn−i
1
Si×Sn−i

Si×Sν
for

µ ∈ P(i) and ν ∈ P(n− i) form a Z-basis of R(Si × Sn−i). This, combined with [4,

(10.19) Corollary], shows that the characters 1
Si×Sn−i

Sµ×Sν
for µ ∈ P(i) and ν ∈ P(n− i)

form a Z-basis of R(Si × Sn−i), as desired. This completes the proof. 2

We quote part of [15, §3] and review the concept of generalized Burnside rings.

Definition 3.3 For a set D of subgroups of G, we define a Z-lattice Ω(G,D) to be
an additive group consisting of all Z-linear combinations of the elements [G/H] of
Ω(G) for H ∈ D, and define D := { gH | g ∈ G and H ∈ D}.

The following theorem is a concise version of [15, 3.11 Theorem].

Theorem 3.4 Let D be a set of subgroups of G including G, and suppose that∩
⟨g⟩U≤H∈D

H ∈ D

for all U ∈ D and g ∈ NG(U). Then Ω(G,D) has a unique ring structure such that
the group homomorphism Ω(G,D) →

∏
H∈C(G)∩D Z given by

x 7→ (ϕH(x))H∈C(G)∩D

for all x ∈ Ω(G,D) is a ring homomorphism, and the identity of Ω(G,D) is 1. If D
is closed under intersection, then Ω(G,D) is a subring of Ω(G).
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We set Xn = {KJSλJλJ
| J ⊂ [n] and (λJ , λJ) ∈ P(J, J)}. Let Yn be the set

of Young subgroups of Sn, and let Zn be the set consisting of all products KY of
K ≤ Vn and Y ∈ Yn with |Vn : K| ≤ 2 and Y ≤ NSn(K). We define

Z̃n :=

{ ∩
H∈S

H

∣∣∣∣∣ S ∈ Sub(Zn)

}
,

where Sub(Zn) is the set of nonempty subsets of Zn.

Lemma 3.5 The following statements hold.

(a) The set Xn coincides with Zn. In particular, Zn is closed under conjugation.

(b) The set Z̃n is closed under intersection and conjugation.

Proof. Suppose that J ⊂ [n] and (λJ , λJ) ∈ P(J, J). Let σ ∈ Sn, and let g ∈ Vn.
Then we have σ(KJSλJλJ

) = Kσ(J)
σSλJλJ

, σSλJλJ
∈ Yn, and

σSλJλJ
≤ NSn(Kσ(J)),

where σ(J) = {σ(j) | j ∈ J}. Since ϑJ(g τg) = 1 for any τ ∈ SJSJ , it follows that

g(KJSλJλJ
) = {gh τgτ | h ∈ KJ and τ ∈ SλJλJ

} = KJSλJλJ
.

In particular, Xn ⊂ Zn. Suppose that K ≤ Vn and Y ∈ Yn with |Vn : K| ≤ 2
and Y ≤ NSn(K). There exists a subset J of [n] such that K = KJ . For each
σ ∈ Y , we have KJ = σ(KJ) = Kσ(J), whence σ(J) = J and Y = τSλJλJ

for some

τ ∈ SJSJ and (λJ , λJ) ∈ P(J, J). This means that KY is a conjugate of KJSλJλJ
.

Consequently, Xn ⊃ Zn, and the statement (a) holds. Obviously, Z̃n is closed under
intersection. Hence the statement (b) follows from (a). This completes the proof.
2

By Lemma 3.5, Z̃n satisfies the hypothesis of Theorem 3.4 with D = D = Z̃n,
so that Ω(Bn, Z̃n) is a subring of Ω(Bn) which is called a partial Burnside ring.

We now define a ring homomorphism charG : Ω(G) → R(G) by

[X] 7→ πX

for allX ∈ G-set (cf. [14, §6]), and usually write char = charG by omitting subscript
G. Given x ∈ Ω(G) and g ∈ G, char(x)(g) = ϕ⟨g⟩(x).

We are successful in finding a natural relationship between Ω(Bn, Z̃n) andR(Bn).

Theorem 3.6 The ring homomorphism char : Ω(Bn) → R(Bn) induces an epimor-
phism from the partial Burnside ring Ω(Bn, Z̃n) to R(Bn).

Proof. The theorem is a consequence of Theorem 3.2. 2
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4 Units of the character ring of Bn

The set [n] is viewed as a left Sn-set. According to [9, Eq.(3)],

Λ̃P ([n]) =
∑

λ=(1m1 ,..., nmn )∈P(n)

(−1)m1+···+mn
(m1 + · · ·+mn)!

m1! · · · mn!
[Sn/Sλ], (3)

so that the sign character sgnn : Sn → C is described as

sgnn =
∑

λ=(1m1 ,..., nmn )∈P(n)

(−1)m1+···+mn+n (m1 + · · ·+mn)!

m1! · · · mn!
1Sn
Sλ

(4)

(see [2, Corollary 2] and [9, Theorem 4.4]). Note that the numbers

(m1 + · · ·+mn)!

m1! · · · mn!

for nonnegative integers m1, . . . , mn are multinomial coefficients (cf. [10, 1.2]).

Let κn : Bn → C be a linear C-character of Bn given by

(x1, . . . , xn)σ 7→
n∏

i=1

xi

for all (x1, . . . , xn) ∈ Vn and σ ∈ Sn. There also exists an extension ρn : Bn → C of
the sign character sgnn : Sn → C to Bn given by

(x1, . . . , xn)σ 7→ sgnn(σ)

for all (x1, . . . , xn) ∈ Vn and σ ∈ Sn. Let εn : Bn → C be the product κnρn of κn
and ρn, which coincides with the sign character of Bn.

We view the set Z× = {1, −1} as a left Bn-set with the action given by

(x1, . . . , xn)σ.x = x ·
n∏

i=1

xi

for all (x1, . . . , xn) ∈ Vn, σ ∈ Sn, and x ∈ Z×. The set [n] is naturally viewed as a
left Bn-set on which Vn acts trivially. Let [n]⋄ denote the Bn-set Z×∪̇[n].

Lemma 4.1 There are exactly three nontrivial linear C-characters κn : Bn → C,
ρn : Bn → C, and εn : Bn → C defined as above in R(Bn), and κn(y) = (−1)|⟨y⟩\Z

×|,
ρn(y) = (−1)|⟨y⟩\[n]|+n, and εn(y) = (−1)|⟨y⟩\[n]

⋄|+n for each y ∈ Bn.

Proof. By Proposition 3.1, there are exactly three nontrivial linear C-characters
of Bn. Let (x1, . . . , xn) ∈ Vn, and let σ ∈ Sn. Set y = (x1, . . . , xn)σ ∈ Bn, and



Lefschetz invariants and Young characters 11

assume that σ is a product of pairwise disjoint nj-cycles σj for j = 1, 2, . . . , r with∑
j nj = n. Obviously, κn(y) = (−1)|⟨y⟩\Z

×|. We have |⟨y⟩\[n]| = r and

|⟨y⟩\[n]⋄| =


r + 1 if

n∏
i=1

xi = −1,

r + 2 if

n∏
i=1

xi = 1.

Moreover, if ℓ = ♯{j | nj is odd}, then ρn(y) = sgn(σ) = (−1)r−ℓ = (−1)r+n and
εn(y) = (−1)r+n

∏n
i=1 xi, because ℓ ≡ n (mod 2). This completes the proof. 2

Lemma 4.2 R(Bn)
× = ⟨κn, ηn, −1Bn⟩.

Proof. The lemma is a consequence of [6, Theorem 5.5.6] (see also Theorem 3.2),
[13, Corollary 1.2 and Lemma 2.1], and Lemma 4.1. 2

We are now in position to establish the following proposition.

Proposition 4.3 The nontrivial linear C-characters of Bn are characterized by the
reduced Lefschetz invariants. Indeed, κn = char(Λ̃P (Z×)), ρn = (−1)nchar(Λ̃P ([n])),

and εn = (−1)nchar(Λ̃P ([n]⋄)). The reduced Lefschetz invariants Λ̃P (Z×) and Λ̃P ([n]),

together with −1, generate an elementary abelian subgroup of Ω(Bn, Z̃n)
× isomor-

phic to R(Bn)
×, and Λ̃P ([n]⋄) = Λ̃P ([n]) · Λ̃P (Z×). Moreover,

Λ̃P (Z×) = [Bn/(KnSn)]− [Bn/Bn],

Λ̃P ([n]) =
∑

λ=(1m1 ,..., nmn )∈P(n)

(−1)m1+···+mn
(m1 + · · ·+mn)!

m1! · · · mn!
[Bn/(VnSλ)],

Λ̃P ([n]⋄) =
∑

λ=(1m1 ,..., nmn )∈P(n)

(−1)m1+···+mn
(m1 + · · ·+mn)!

m1! · · · mn!
[Bn/(KnSλ)]

−
∑

λ=(1m1 ,..., nmn )∈P(n)

(−1)m1+···+mn
(m1 + · · ·+mn)!

m1! · · · mn!
[Bn/(VnSλ)].

Proof. The first assertion follows from Proposition 2.3 and Lemma 4.1. We prove
the last two assertions. By Lemma 2.2 with X = Z× and X1 = X2 = Bn/Bn,

Λ̃P (Z×) = −[Map(Z×, ∅, X1)] + [Map(Z×, ∅, X1, X2)] = −[Bn/Bn] + [Bn/(KnSn)].

We obtain the description of Λ̃P ([n]) in a similar fashion to the proof of [9, Eq.(3)]. By

Proposition 2.3, Λ̃P ([n]⋄) = Λ̃P ([n]) · Λ̃P (Z×), which yields the description of Λ̃P ([n]⋄),

and the reduced Lefschetz invariants Λ̃P (Z×), Λ̃P ([n]), and Λ̃P ([n]⋄) are contained
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in Ω(Bn, Z̃n)
×. Hence it follows from Lemma 4.2 that Λ̃P (Z×), Λ̃P ([n]), and −1

generate an elementary abelian subgroup of Ω(Bn, Z̃n)
× isomorphic to R(Bn)

×.
This completes the proof. 2

The following descriptions of nontrivial linear C-characters of Bn are obtained;
see Eq.(5) in §5 for Solomon’s formula of the sign character εn : Bn → C.

Corollary 4.4

κn = 1Bn
KnSn

− 1Bn ,

ρn =
∑

λ=(1m1 ,..., nmn )∈P(n)

(−1)m1+···+mn+n (m1 + · · ·+mn)!

m1! · · · mn!
1Bn
VnSλ

,

εn =
∑

λ=(1m1 ,..., nmn )∈P(n)

(−1)m1+···+mn+n (m1 + · · ·+mn)!

m1! · · · mn!
1Bn
KnSλ

−
∑

λ=(1m1 ,..., nmn )∈P(n)

(−1)m1+···+mn+n (m1 + · · ·+mn)!

m1! · · · mn!
1Bn
VnSλ

.

Proof. The corollary is an immediate consequence of Proposition 4.3. (The formulae
of κn and ρn can also be obtained by a calculation and Eq.(4), respectively.) 2

5 The Young subgroups of the hyperoctahedral groups

Given J ⊂ [n], we define a subgroup LJ of Vn by

LJ = {(x1, . . . , xn) ∈ Vn | xk = 1 for all k ∈ J}.

Let Un denote the set of products LJSλJλJ
of LJ and SλJλJ

for J ⊂ [n] and

(λJ , λJ) ∈ P(J, J), and let En denote the set of products LJ(SλJλJ
SJ) of LJ and

SλJλJ
SJ for J ⊂ [n] and (λJ , λJ) ∈ P(J, J). Obviously, En ⊂ Un.

We call the subgroups LJSλJλJ
of Bn and the characters 1Bn

LJSλJλ
J

for J ⊂ [n]

and (λJ , λJ) ∈ P(J, J) the Young subgroups and the Young characters, respectively.
The sets Un and En are closed under intersection; they are not closed under

conjugation, however. Recall that D = { yH | y ∈ Bn and H ∈ D} where D is Un or
En. Given [i] ⊂ [n] and λ ∈ P(i), we write Li = L

[i]
and SλBn−i = Li(SλSi). The

set En consists of the conjugates of the parabolic subgroups SλBn−i for [i] ⊂ [n] and
λ ∈ P(i), and is closed under intersection (cf. [6, Exercise 2.2]). To explore Un, we
make Z× × [n] into a left Bn-set by defining

(x1, x2, . . . , xn)σ.(x, i) = (xσ(i)x, σ(i))

for all (x1, x2, . . . , xn) ∈ Vn, σ ∈ Sn, and (x, i) ∈ Z× × [n].
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Lemma 5.1 The set Un is closed under intersection.

Proof. Suppose that J1, J2 ⊂ [n], (λJ1 , λJ1) ∈ P(J1, J1), (λJ2 , λJ2) ∈ P(J2, J2),
g ∈ Vn, and σ ∈ Sn. Then g(Lσ(J1)

σSλJ1
λJ1

) ∩ LJ2SλJ2
λJ2

is considered to be the

intersection of the stabilizers of disjoint subsets

N+
1 , . . . , N

+
k , N

−
1 , . . . , N

−
k , Nk+1, . . . , Nr

obtained by a certain partition of Z× × [n] into nonempty subsets such that

N+
i = {gi.(1, q) | q ∈ Qi} and N−

i = {gi.(−1, q) | q ∈ Qi}

with Qi ⊂ [n] and gi ∈ LQi for i = 1, 2, . . . , k and

Ni = {(1, q), (−1, q) | q ∈ Qi}

with Qi ⊂ [n] for i = k + 1, . . . , r. Set g′ = g1 · · · gk and J = Qk+1∪̇ · · · ∪̇Qr. Then

gσ(LJ1SλJ1
λJ1

) ∩ LJ2SλJ2
λJ2

= g(Lσ(J1)
σSλJ1

λJ1
) ∩ LJ2SλJ2

λJ2

= g′(LJ
τSλJλJ

)

= g′τ(LJSλJλJ
)

for some τ ∈ SJSJ and (λJ , λJ) ∈ P(J, J). Consequently, Un is closed under
intersection. This completes the proof. 2

By Lemma 5.1 and [6, Exercise 2.2], Ω(Bn,Un) and Ω(Bn, En) are subrings of
Ω(Bn) (cf. Theorem 3.4) called partial Burnside rings. The partial Burnside ring
Ω(Bn, En) is known as the parabolic Burnside ring. As for the partial Burnside ring
Ω(Bn,Un) relative to the Young subgroups of Bn, we quote [7, Corollary II.4]:

Theorem 5.2 The characters 1Bn
LiSλiλi

induced from the trivial characters 1LiSλiλi

of LiSλiλi
for [i] ⊂ [n] and (λi, λi) ∈ P([i], [i]) form a Z-basis of R(Bn).

Corollary 5.3 The ring homomorphism char : Ω(Bn) → R(Bn) induces a ring
isomorphism char : Ω(Bn,Un) → R(Bn). In particular, Ω(Bn,Un)

× ≃ R(Bn)
×.

Proof. The corollary is a consequence of Theorem 5.2, because Un is a set of conju-
gates of the subgroups LiSλiλi

for [i] ⊂ [n] and (λi, λi) ∈ P([i], [i]). 2

The rest of this section is devoted to quite a new view of the units of Ω(Bn,Un).

Proposition 5.4 |Ω(Bn, En)×| = 4.
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Proof. By [4, (66.29) Corollary] and Corollary 5.3, there is a unique unit αn of
Ω(Bn, En) such that char(αn) = εn. Obviously, −1 ∈ Ω(Bn, En)×. Hence we have
|Ω(Bn, En)×| ≥ 4. By Proposition 4.3 and Theorem 5.2, Λ̃P ([n]) ∈ Ω(Bn,Un)

× and

Λ̃P ([n]) ̸∈ Ω(Bn, En)×. Thus |Ω(Bn,Un)
× : Ω(Bn, En)×| ≥ 2. By Lemma 4.1 and

Corollary 5.3, we have |Ω(Bn,Un)
×| = |R(Bn)

×| = 8, whence |Ω(Bn, En)×| = 4.
This completes the proof. 2

We present a technical lemma by which [4, (66.29) Corollary] deduces Eq.(4)
and a description of εn : Bn → C (see also [6, Propositions 2.3.8 and 2.3.10]):

εn =
n∑

i=0

∑
λ=(1m1 ,..., imi )∈P(i)

(−1)m1+···+mi+n (m1 + · · ·+mi)!

m1! · · · mi!
1Bn
SλBn−i

. (5)

Lemma 5.5 Let (Sn, X) be the Coxeter system of type An−1. Given λ ∈ P(n), let
W(λ) be the set of parabolic subgroups WI of Sn for I ⊂ X which are conjugates of
Sλ. Suppose that I ⊂ X and WI ∈ W (λ) with λ = (1m1 , . . . , nmn) ∈ P(n). Then
|I| ≡ m1 + · · ·+mn + n (mod 2), so that (−1)|I| = (−1)m1+···+mn+n.

Proof. We use induction with respect to the partially order ≤ on P(n) given by

µ ≤ ν :⇐⇒ Sµ is a conjugate of a subgroup of Sν .

If λ = (1n), then I = ∅, and hence |I| ≡ 2n (mod 2). Assume that (1n) < λ. Then
mk ̸= 0 and mk+1 = · · · = mn = 0 for some k ∈ [n]. We set

µ =

{
(1m1+2, 2m2−1) if k = 2,

(1m1+1, 2m2 , . . . , (k − 1)mk−1+1, kmk−1, 0, . . . , 0) if k > 2.

Suppose that I ′ ⊂ X and WI′ ∈ W (µ). Then µ < λ and |I ′| = |I| − 1. By the
inductive assumption, |I ′| ≡ m1 + · · ·+mn + 1+ n (mod 2). Since |I| = |I ′|+ 1, it
follows that |I| ≡ m1 + · · ·+mn + n (mod 2). This completes the proof. 2

What about a unique unit γn of Ω(Bn,Un) satisfying char(γn) = κn? We are
interested in the reduced Lefschetz invariant Λ̃P (Z××[n]).

Lemma 5.6 κn = char(Λ̃P (Z××[n])).

Proof. By Proposition 2.3, char(Λ̃P (Z××[n]))(y) = (−1)|⟨y⟩\(Z
××[n])| for all y ∈ Bn.

Let σ ∈ Sn, and assume that σ is the product of pairwise disjoint nj-cycles σj for
j = 1, 2, . . . , r with

∑
j nj = n. Let (x1, . . . , xn) ∈ Vn, and set y = (x1, . . . , xn)σ.

For each j ∈ {1, 2, . . . , r}, let Ij be the minimal subset of [n] with σj ∈ SIj , and set

yj = (x
(j)
1 , x

(j)
2 , . . . , x(j)n )σj with x

(j)
i =

{
xi if i ∈ Ij ,

1 otherwise.
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Obviously, y =
∏r

j=1 yj . We now set s = ♯{j ∈ {1, 2, . . . , r} |
∏n

i=1 x
(j)
i = 1}, so

that |⟨y⟩\(Z× × [n])| = r + s. Hence it turns out that

κn(y) =

n∏
i=1

xi =

r∏
j=1

n∏
i=1

x
(j)
i = (−1)r−s = (−1)|⟨y⟩\(Z

××[n])|.

Consequently, we obtain κn = char(Λ̃P (Z××[n])), completing the proof. 2

The following lemma, which is a basic fact for the left Bn-set Z×× [n], is crucial.

Lemma 5.7 Let {M1, . . . , Mi}, i a positive integer, be a partition of Z× × [n] into
nonempty subsets, and view them as elements of the Bn-poset P (Z× × [n]). If each
Mj for j = 1, 2, . . . , i does not include both (1, q) and (−1, q) for any q ∈ [n], then
there exists an element λ of P(n) such that the intersection of stabilizers of Mj in
Bn for j = 1, 2, . . . , i is a conjugate of Sλ.

Proof. There is a partition {N1, . . . , Nk}, k a positive integer, of [n] into nonempty
subsets such that each Mj for j = 1, 2, . . . , i consists of either (1, q) or (−1, q),
but not both, for each q ∈ Nℓ1∪̇ · · · ∪̇Nℓr with {Nℓ1 , . . . , Nℓr} ⊂ {N1, . . . , Nk}. Let
P̂(n) be the set of all cycle types to which such partitions {N1, . . . , Nk} of [n] into
nonempty subsets correspond, and take the maximal element µ of P̂(n) with respect
to the partially order ≤ on P(n) given in the proof of Lemma 5.5. Let {N1, . . . , Nk}
be a partition of [n] into nonempty subsets corresponding to µ which satisfy the
above condition. We set J = Nℓ, where ℓ is an arbitrary integer with 1 ≤ ℓ ≤ k.
There exists a unique subset Q of J such that

J+ := {(1, q) | q ∈ Q}∪̇{(−1, q) | q ∈ J −Q} ⊂Mj1

and
J− := {(1, q) | q ∈ J −Q}∪̇{(−1, q) | q ∈ Q} ⊂Mj2

for some integers j1 and j2 with 1 ≤ j1 ̸= j2 ≤ i. Let g = (x1, . . . , xn) ∈ LQ, and
suppose that xq = −1 for all q ∈ Q. Then the stabilizer of J+ in Bn is g(LJSJSJ),
and so is that of J− in Bn. Observe now that the intersection of stabilizers of Mj

for j = 1, 2, . . . , i in Bn coincides with the intersection of such subgroups of Bn.
Hence the assertion is a consequence of Lemma 5.1. This completes the proof. 2

Identifying (−1, q) with n + q ∈ [2n] for all q ∈ [n], we may consider S2n to be
the symmetric group on Z× × [n]. In particular, Bn is viewed as a subgroup of S2n.

Lemma 5.8 Let λ ∈ P(2n). Then Bn ∩ σSλ ∈ Un for all σ ∈ S2n, and

[resS2n
Bn

(S2n/Sλ)] =
∑

σ∈Bn\S2n/Sλ

[Bn/(Bn ∩ σSλ)] ∈ Ω(Bn,Un),

where resS2n
Bn

indicates restriction of operators from S2n to Bn and Bn\S2n/Sλ is a
complete set of representatives of double cosets BnσSλ, σ ∈ S2n, in S2n.
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Proof. Let σ ∈ S2n. By Lemma 5.7, Bn ∩ σSλ = gτ (LJSµJµJ
) for some J ⊂ [n],

g ∈ LJ , τ ∈ SJSJ , and (µJ , µJ) ∈ P(J, J). Hence Bn ∩ σSλ ∈ Un. The second
assertion follows from [4, (80.27) Subgroup Theorem]. This completes the proof. 2

There is a formula of the reduced Lefschetz invariant Λ̃P (Z××[n]) (cf. Eq.(6))
which is implicit in the proof of a conclusion from the proceeding facts:

Theorem 5.9 Define three elements αn, βn, and γn of Ω(Bn,Un) by

αn =
n∑

i=0

∑
λ=(1m1 ,..., imi )∈P(i)

(−1)m1+···+mi+n (m1 + · · ·+mi)!

m1! · · · mi!
[Bn/(SλBn−i)],

βn = (−1)nΛ̃P ([n]), and γn = Λ̃P (Z××[n]).

Then εn = char(αn), ρn = char(βn), κn = char(γn), and αn = (−1)nΛ̃P ([n]∪̇(Z××[n])).
Moreover, Ω(Bn, En)× = ⟨αn, −1⟩, Ω(Bn,Un)

× = ⟨βn, γn, −1⟩, and αn = βnγn.

Proof. By Eq.(5), εn = char(αn). Obviously, αn ∈ Ω(Bn, En). Since αn ̸= 1, −1,
it follows from Proposition 5.4 that Ω(Bn, En)× is generated by αn and −1. By
Proposition 4.3 and Lemma 5.6, we have ρn = char(βn), βn ∈ Ω(Bn,Un), and
κn = char(γn). The reduced Lefschetz invariant Λ̃P ([2n]) of the left S2n-set [2n] is an
element of Ω(S2n,Y2n) (cf. [9, §4]); for its description, see Eq.(3). We may identify
Λ̃P (Z××[n]) with resS2n

Bn
(Λ̃P ([2n])) which is the element of Ω(Bn) obtained by restriction

of operators on S2n-sets appearing in the components of Λ̃P ([2n]) from S2n to Bn.

By Lemma 5.8, resS2n
Bn

(Λ̃P ([2n])) ∈ Ω(Bn,Un), and thus Λ̃P (Z××[n]) ∈ Ω(Bn,Un).
Moreover, it follows from Lemma 4.2 and Corollary 5.3 that Ω(Bn,Un)

× is generated
by βn, γn, and −1. Also, αn = βnγn, because εn = ρnκn. By Proposition 2.3, it
turns out that αn = (−1)nΛ̃P ([n]∪̇(Z××[n])). This completes the proof. 2

Since Λ̃P (Z××[n]) = resS2n
Bn

(Λ̃P ([2n])), it follows from Eq.(3) and Lemma 5.8 that

Λ̃P (Z××[n]) =
∑

λ=(1m1 ,..., (2n)m2n )∈P(2n)

∑
σ∈Bn\S2n/Sλ

(−1)m1+···+m2n

× (m1 + · · ·+m2n)!

m1! · · · m2n!
[Bn/(Bn ∩ σSλ)].

(6)

We close this section with a character theoretical explanation of the formula of
κn obtained by Eq.(6). For each C-character χ of G, let χ|H with H ≤ G denote
the C-character obtained by restriction of χ from G to H.

Lemma 5.10 Let M : G → GLn(C) be a C-representation of G affording a real
valued character χ of G. Then for any g ∈ G,

detM(g) = (−1)n−⟨χ|⟨g⟩,1⟨g⟩⟩,

where ⟨χ|⟨g⟩, 1⟨g⟩⟩ is the inner product of χ|⟨g⟩ and 1⟨g⟩.
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Proof. See the later part of the proof of [14, Theorem A]. 2

There is a representation Mn : Sn → GLn(C) given by

σ 7→ (δσ−1(i) j)1≤i, j≤n, δ the Kronecker delta,

which affords the permutation character π[n] : Sn → C. Obviously, the sign character
sgnn : Sn → C coincides with the linear C-character detMn : Sn → C given by

σ 7→ detMn(σ)

for all σ ∈ Sn. Recall that Bn is viewed as a subgroup of S2n. By Lemma 5.10,

detM2n(σ) = (−1)⟨π[2n]|⟨σ⟩,1⟨σ⟩⟩ = (−1)|⟨σ⟩\[2n]|

for all σ ∈ S2n (see also [9, Lemma 3.3]). This, combined with Proposition 2.3 and
Lemma 5.6, shows that the linear C-character detM2n|Bn : Bn → C coincides with
κn : Bn → C. Consequently, we have κn = sgn2n|Bn . Hence it follows from Eq.(4)
and Lemma 5.8 (see also [4, (10.13) Subgroup Theorem]) that

κn =
∑

λ=(1m1 ,..., (2n)m2n )∈P(2n)

∑
σ∈Bn\S2n/Sλ

(−1)m1+···+m2n
(m1 + · · ·+m2n)!

m1! · · · m2n!
1Bn
Bn∩ σSλ

and Bn ∩ σSλ ∈ Un for all λ ∈ P(2n) and σ ∈ S2n.

6 The parabolic Burnside rings of even-signed permutation groups

We set Dn = kerκn and call it the even-signed permutation group on [n]. Ob-
viously, Dn = KnSn, where Kn = kerϑn. Suppose that [i] ⊂ [n] and λ ∈ P(i). We
set SλDn−i = (Kn ∩ Li)SλSi and set t = (0, 0, . . . , 1) ∈ Vn. Observe that

[resBn
Dn

(Bn/(SλBn−i))] =

{
[Dn/(SλDn−i)] if 0 ≤ i ≤ n− 1,

[Dn/Sλ] + [Dn/
tSλ] if i = n

by [4, (80.27) Subgroup Theorem], which are contained in the parabolic Burnside
ring PB(Dn) (cf. [6, 2.3.11]). We define a map resBn

Dn
: PB(Bn) → PB(Dn) by

[Bn/(SλBn−i)] 7→ [resBn
Dn

(Bn/(SλBn−i))]

for all [i] ⊂ [n] and λ ∈ P(i). Set α′
n = resBn

Dn
(αn) (see Theorem 5.9). Then

α′
n =

n−1∑
i=0

∑
λ=(1m1 ,..., imi )∈P(i)

(−1)m1+···+mi+n (m1 + · · ·+mi)!

m1! · · ·mi!
[Dn/(SλDn−i)]

+
∑

λ=(1m1 ,..., nmn )∈P(n)

(−1)m1+···+mn+n (m1 + · · ·+mn)!

m1! · · ·mn!
([Dn/Sλ] + [Dn/

tSλ]).
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Proposition 6.1 PB(Dn)
× = ⟨α′

n,−1⟩.

Proof. By the proof of [1, Theorem 4.5], there is an injection from PB(Dn)
× to

R(Dn)
× inherited from the ring homomorphism char : Ω(Dn) → R(Dn). The sign

character εn|Dn : Dn → C is the only nontrivial C-character of Dn and Q is a
splitting field for Dn (cf. [6, §5.6]). This, combined with [13, Corollary 1.2 and
Lemma 2.1], shows that R(Dn)

× is isomorphic to the four group. Moreover, by [4,
(10.13) Subgroup Theorem] and Eq.(5), we have εn|Dn = char(α′

n). Consequently,
PB(Dn)

× is generated by α′
n and −1. This completes the proof. 2

Remark 6.2 Let (W,S) be a Coxeter system of type E6, E7, or E8. Then every
character of W is rational-valued (cf. [6, 5.3.6]). Moreover, there are exactly two
linear C-characters of W (cf. [6, pp. 413–416]). Hence R(W )× is isomorphic to
the four group and PB(W )× is isomorphic to a subgroup of R(W )× (see the proof
of Proposition 6.1). Thus it follows from [4, (66.29) Corollary] that PB(W )× is of
order 4 and is generated by

∑
J⊂S(−1)|J |[W/WJ ] and −1, where WJ = ⟨s | s ∈ J⟩.
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