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Abstract
The relation between the longitudinal third-order transport coefficient ω3 contained in the
continuity equation for electrons and α parameters defined by arrival-time spectra of an electron
swarm is deduced. Values of ω3 and the α parameters in CH4 gas and SF6 gas are calculated by
Monte Carlo simulation, and then the values of ω3 are compared with those of the longitudinal
third-order transport coefficient ω′3 which are calculated from the α parameters to examine the
validity of the deduced relation. The values of ω′3 are found to excellently agree with those of ω3

below 500 Td in CH4 gas and from 150 Td to 700 Td in SF6 gas, where the values of the
effective ionisation coefficient are nought or quite small. The results suggest that values of ω3

can be obtained experimentally from arrival-time spectra measured by a double-shutter drift tube.

Keywords: third-order transport coefficient, electron transport coefficient, α parameters, Monte
Carlo simulation

1. Introduction

The third-order transport coefficient Q, which is called
skewness by several groups and generally represented as a
third-order tensor, is one of the electron transport coefficients
and appears in the continuity equation of the number density
of electrons n(r, t) at position r and time t [1]:
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where Ri is the effective ionisation frequency, W is the bulk
drift velocity, and D is the bulk diffusion coefficient. When an
electric field E is applied in the z-direction, the tensor Q forms

the following structure [1–3]:
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where a, b, c Î {x, y, z}. The tensor’s components Qabc are
often grouped as the transverse third-order transport coeffi-
cient D3T=(Qzxx +Qxxz +Qxzx)/3 and the longitudinal
third-order transport coefficient D3L=Qzzz. Equation (1) is
often employed for the discharge plasma modeling, but the
terms containing third-order and higher-order transport coef-
ficients are generally ignored since little information on those
transport coefficients is reported; however, it was pointed out
that the consideration of the term containing the third-order
transport coefficient may be important in modelling of dis-
charge plasmas under the influence of high electric field [1].
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Furthermore, since the right-hand side of equation (1) is an
infinite series, considering the terms including third-order and
higher-order transport coefficients is profitable to describe
electron behaviour in plasmas accurately. Therefore, exam-
ination of the third-order transport coefficient has been carried
out in recent years [1–5].

Penetrante and Bardsley [4] calculated values of N2D3L

in He, Ne, and Ar below E/N=4 Td using electron collision
cross sections by solving the Boltzmann equation and Monte
Carlo simulation. Here, N and E/N denote the number density
of gas molecules and the reduced electric field, respectively,
and 1 Td is equal to 10−17 Vcm2. Petrović et al [1] calculated
the components of the third-order transport coefficient tensor
in CH4 gas from 0.1 Td to 1000 Td by solving the Boltzmann
equation and Monte Carlo simulation. They reported that the
values of N2D3T become negative in the range of E/N where
the negative differential conductivity appears whilst the
values of N2D3L remain positive. In figures 3–6 shown in their
paper, variations of the tensor components with respect to E/N
are found to not be simple and differ from those of the flux
electron drift velocity and longitudinal diffusion coefficient.
The electron transport coefficients are determined by electron
collision cross sections, which are fundamental data to
describe electron behaviour in gases; therefore, the validity of
electron collision cross sections is often examined by com-
paring the transport coefficients calculated from the cross
sections with measured data, and their report indicates that
comparison between the measured and calculated third-order
transport coefficient enables further examination of the
validity of the electron collision cross sections. To examine
the third-order transport coefficient in various gases and to
verify their calculations, measurement of the third-order
transport coefficient is indispensable; however, a method of
measuring the third-order transport coefficient has not yet
been established.

Kondo and Tagashira [6] introduced new electron
transport coefficients called α parameters, which are defined
by arrival-time spectra of an electron swarm, and reported that
the α parameters are related to D3L. Arrival-time spectra of an
electron swarm can be measured by a double-shutter drift
tube, and the procedure for obtaining the α parameters from
the measured arrival time spectra is well established [7–15];
therefore, there is a possibility that values of D3L are obtained
experimentally by the α parameters.

The aim of this work is to propose the new method for
deducing the longitudinal third-order transport coefficient by
using α parameters. The relation between the longitudinal
third-order transport coefficient D3L and the α parameters is
deduced by using the theory of arrival time spectra estab-
lished by Kondo and Tagashira. To examine the validity of
the deduced relation, values of D3L and the α parameters in
CH4 gas and SF6 gas are calculated by Monte Carlo simu-
lation, and the values of D3L are compared with those of the
longitudinal third-order transport coefficient which is defined
by the α parameters.

2. Definitions of ω and α parameters and their
relations

By integrating equation (1) with respect to x and y, and

defining that n(z, t)=ò-¥

¥
( )rn t x y, d d , the following

equation is obtained.
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Here, ω0, ω1, ω2 and ω3 respectively represent the
effective ionisation frequency, bulk drift velocity, long-
itudinal diffusion coefficient and longitudinal third-order
transport coefficient. Those transport coefficients are called ω

parameters, and the definitions of the ω parameters are
expressed as follows [16]:
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Kondo and Tagashira [6] introduced the following con-
tinuity equation:
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which is equivalent to equation (3). Here, α0, α1, α2 and α3

are called α parameters and defined as follows:
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Here, α0 is equal to the effective ionisation coefficient
measured by the steady-state Townsend experiment.

The relation between the ω and α parameters is expressed
by equations (15)–(17) in terms of the infinite series Ωk

(k=1, 2, 3) defined by equation (18) [6].
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By substituting equation (19) for equation (20), ω3 is
expressed as
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In general, the values of ωk (k>3) are regarded as
negligibly small in comparison with those of ω3; therefore,
values of ω′3 defined by equation (22) are considered to be
approximately equal to those of ω3 when the values of α0 are
small. When the values of α0 are nought, the values of ω′3 are
exactly equal to those of ω3.
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3. Simulation method and condition

Electron transport in CH4 gas and SF6 gas under the influence
of a uniform DC electric field E=(0, 0, E) is simulated by
the Monte Carlo method. Electron collisions with CH4 and
SF6 molecules are only considered, and the number density of
gas molecules set to 3.535×1016 cm3 (0 °C and 1 Torr),
assuming the typical condition of the swarm experiments.
Thermal motion of gas molecules, which may influence

electron transport in gas under the influence of low reduced
electric field, is considered in the calculation of electron
velocity right after the collision. The flight time of an electron
between successive collisions is calculated by the null-col-
lision method [17]. The sets of electron collision cross
sections for CH4 gas and SF6 gas respectively proposed by
Šašić et al [18] and Itoh et al [19] are used. Arrival-time
spectra of an isolated electron swarm are sampled, and the α

parameters are calculated in accordance with equations (10)–
(13). The longitudinal second-order ML(t), third-order M3L(t)
and forth-order M4L(t) moments of electrons are respectively
sampled in accordance with equations (23)–(25).
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Here, Ne(t) is the number of electrons, zi(t) is the position
of the ith electron, and ( )z t is the centre of mass of electrons
sampled as
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Values of ω3 are calculated from equation (27). Fur-
thermore, values of the fourth-order transport coefficient ω4 is
calculated from equation (28) [20] in order to examine the
contribution of the term 4α0ω4 in equation (21) on the values
of ω3. The method of the simulation is described in detail in
our previous papers [21].
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To deduce accurate values of α and ω parameters, Monte
Carlo simulation is conducted five times at the same E/N
value using different random seeds, and values of those
parameters are deduced from regression analysis of the
sampled values. Uncertainty of those parameters is evaluated
by taking the root mean square of residuals, and then
weighted averages of those parameters are calculated. The
initial number of traced electrons is set to 105–107 in SF6 gas
above 300 Td and in CH4 gas. Because of the strong depletion
of traced electrons by electron attachment collisions, the
initial number of traced electrons is set to 108–109 in SF6 gas
at 300 Td or less. The enormous initial electrons lead to high
density of charged species, which disturbs the applied electric
field. However, the electric field created by the charged spe-
cies is not considered in our simulation; that is, the traced
electrons are treated as superparticles, and downscaling of the
particles is implemented implicitly.

3
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4. Results and discussion

Figures 1 and 2 show the values of the longitudinal third-
order transport coefficients N2ω3, N

2ω′3 and N2ω″3 and the
effective ionisation coefficient α0/N in CH4 gas as functions
of E/N. Here, ω″3 denotes ω′3+4α0ω4, which is a part of
equation (21). The values of N2ω′3 are found to agree
excellently with those of N2ω3 below 500 Td. However, the
values of N2ω′3 are lower than those of N2ω3 above 500 Td,
where the values of α0/N increase exponentially with E/N.
Since the values of ω4 and α0 are positive above 270 Td, the
term 4α0ω4 in equation (21) contributes to increase the values
of ω3. Therefore, the values of N

2ω″3 are higher than those of
N2ω′3 and found to agree with those of N2ω3 up to 700 Td.
This result suggests that the terms containing α0 in
equation (21) cannot be ignored to calculate the values of ω3

accurately above 500 Td in CH4 gas.
Figures 3 and 4 show the values of the longitudinal third-

order transport coefficients N2ω3 and N2ω′3 and the effective
ionisation coefficient α0/N in SF6 gas as functions of E/N.
Since the number of electrons sampled in the simulation
drastically decreases due to electron attachment collisions
with SF6 molecules, uncertainty of the values of N2ω′3 is
pronounced below 300 Td. This uncertainty is mainly derived
from that of the values of α3 due to the statistical fluctuation
of sampled values of ̅T .3 The values of N2ω′3 agree with those
of N2ω3 from 150 Td to 700 Td; however, discrepancy
between the values of N2ω3 and N2ω′3 is found below 150 Td
and above 700 Td, indicating that the contribution of the
terms ignored in N2ω′3 such as 4α0ω4 may be significant.
Whilst the values of ω4 in SF6 gas could not be calculated due
to the statistical fluctuation of the sampled values of
M4L(t)–3(ML(t))

2, those sampled values seem to decrease with
t below 200 Td and above 300 Td, indicating that the values
of ω4 are negative. Therefore, when the values of α0 are

positive, the term 4α0ω4 contributes to decrease the values of
ω3, and as a result, the values of N

2ω′3 are higher than those of
N2ω3 above 700 Td. On the other hand, the term 4α0ω4

contributes to increase the values of ω3 below 200 Td;
therefore, the values of N2ω′3 are lower than those of N2ω3

below 150 Td.
Calculated values of the longitudinal third-order transport

coefficient in CH4 gas and SF6 gas are presented and dis-
cussed above. To understand and describe electron behaviour
in gases accurately, further study regarding the nature of the
longitudinal third-order transport coefficient and other com-
ponents of the skewness tensor is required. Examination of
the relation between the third-order transport coefficients and
electron collision cross sections, for example, would be
profitable to clarify the nature of the coefficients and may

Figure 1. Longitudinal third-order transport coefficient in CH4 gas as
a function of E/N.

Figure 2. Effective ionisation coefficient in CH4 gas as a function of
E/N.

Figure 3. Longitudinal third-order transport coefficient in SF6 gas as
a function of E/N.
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provide a guide to determine the shape and magnitude of
electron collision cross sections.

5. Conclusions

The relation between the longitudinal third-order transport
coefficient ω3 and the α parameters is deduced based on the
theory of arrival-time spectra of an electron swarm developed
by Kondo and Tagashira. Furthermore, the values of the
longitudinal third-order transport coefficient ω3 and α para-
meters in CH4 gas and SF6 gas are calculated by Monte Carlo
simulation, and the values of ω3 are compared with those of
the longitudinal third-order transport coefficient ω′3 calculated
from the α parameters. It is found that the values of N2ω′3
agree excellently with those of N2ω3 up to 500 Td in CH4 gas
and from 150 Td to 700 Td in SF6 gas. This indicates that it is
possible to obtain values of the longitudinal third-order
transport coefficient experimentally by measuring arrival-time
spectra of an electron swarm using a double-shutter drift tube
in the range of E/N where the values of the effective ionis-
ation coefficient are nought or quite small.
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