
An empirical relation between the limiting ionic
molar conductivities and self-diffusion
coefficients of pure solvents

言語: English

出版者: Elsevier

公開日: 2019-06-27

キーワード (Ja): 

キーワード (En): Limiting molar conductivity,

self-diffusion coefficient, water, methanol

作成者: 松山, 永, 本吉, 航太

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/10258/00009922URL
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0
International License.

http://creativecommons.org/licenses/by-nc-nd/4.0/


1 

 

Title: An empirical relation between the limiting ionic molar conductivities and self-diffusion 

coefficients of pure solvents 

 

Authors: Hisashi Matsuyama *, Kota Motoyoshi 

 

Affiliation: Applied Chemistry Research Unit, Graduate School of Engineering, Muroran Institute 

of Technology, Muroran, Hokkaido 050-8585, Japan 

 

Keywords: Limiting molar conductivity, self-diffusion coefficient, water, methanol 

 

* Corresponding author. 

E-mail address: hisashi@mmm.muroran-it.ac.jp (H. Matsuyama). 

  Phone number: +81-143-46-5729 (H. Matsuyama). 

 

 

 

 

 

 

 



2 

 

A B S T R A C T 

The limiting ionic molar conductivity (λ∞) of an electrolyte solution depends on the self-diffusion 

coefficient (Ds) of the pure solvent when the temperature (T) changes. To study the Ds-dependence 

of λ∞, we proposed a new empirical relation 
tTD )/( s , with a parameter t. The relation is applied 

to the λ∞ and Ds of alkali, tetra-alkyl ammonium, and halogen ions in water or methanol. All ions 

except for tetra-alkyl ammonium ions in water exhibit excellent linear relationships in their 

tTD )/( s  plots, with t in the range from 0.88−1.26. This is the first report showing an affirmative 

linear correlation between λ∞ and Ds. 

 

1. Introduction 

The limiting molar conductivity λ∞ (S m2 mol−1) of an ion is a physical quantity often used in the 

fields of electrochemistry and solution chemistry; it is a measure of the performance of electrolyte 

solutions [1]. The relationship between the limiting molar conductivity and viscosity ηs (Pa s) of pure 

solvents has attracted much attention [2]. This is probably because of unusual behavior in the ionic-

radius dependence or temperature dependence of the Walden product λ∞ηs, which is a component of 

the famous empirical formula, the Walden rule [1]. For example, according to a simple hydrodynamic 

model [2], the limiting molar conductivity in an electrolyte solution is inversely proportional to the 

viscosity ηs and the hydrodynamic radius r of an ion: 

(1)   λ∞ = |z|2eF/(6πηs r) , 

where z is the electric charge of the ion, e is the elementary charge, and F is the Faraday constant. If 
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the radius r in Eq. (1) is independent of the solution temperature, we expect that the product λ∞ηs 

should also not depend on the temperature. However, the Walden product of ions, such as K+, Cl−, 

and NO3
−, in water decreases with increasing temperature [1]. As a result, based on the model, the 

temperature dependence of the Walden product led to the development of several theoretical 

expressions between λ∞ and ηs [3], although the hydrodynamic model failed to explain the 

temperature dependence of the Walden product. 

To our knowledge, no study on the empirical and theoretical relations between λ∞ and the self-

diffusion coefficient Ds (m
2 s−1) of a pure solvent has been previously reported. This may be because 

for pure solvents, the number of temperature-dependent experiments on self-diffusion coefficient is 

less than that on viscosity [4, 5]. The purpose of this paper is to propose a new empirical relation 

between λ∞ and Ds and apply the relation to representative monovalent ions (alkali, tetra-alkyl 

ammonium, and halogen ions) in water or methanol to better understand the ionic transfer behaviors 

in electrolyte solutions and encourage the development of theoretical expressions between λ∞ and Ds. 

If an empirical relation between λ∞ and Ds (to be proposed later) holds for various electrolyte 

solutions, the relation can be employed for the following: if the limiting molar conductivity of an ion 

in an electrolyte solution is known for a given temperature, we can calculate the self-diffusion 

coefficient of a pure solvent in the solution at that temperature, and vice versa. The empirical relation 

between λ∞ and Ds should also be valid for theoretically calculated values of λ∞ and Ds. Therefore, 

the experimental relation between λ∞ and Ds can be used to assess an approximate relation between 

λ∞ and Ds, as calculated by a method such as a molecular dynamics (MD) simulation [6, 7]. In the 
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next paper, we will assess the approximate relation between λ∞ and Ds in acetonitrile, as estimated 

by MD simulation. 

In Section 2, we derive a new empirical relation between λ∞ and Ds using two existing relations 

between λ∞ and ηs and between Ds and ηs. Section 3 outlines the experimental values of λ∞ for 

selected alkali cations (Li+, Na+, K+, Rb+, Cs+), tetra-alkyl ammonium cations (R4N
+, where R = Me, 

Et, or Pr), and halogen anions (Cl−, Br−, I−) in ordinary water and for these ions except for Rb+ and 

Cs+ in methanol, together with the experimental values of λ∞ for Na+ and K+ in heavy water, D2O, as 

cited from other papers. Moreover, we will introduce the experimental values of Ds, measured by 

other researchers, for the three solvents. These experimental values will be used to determine the 

values of parameters in the empirical relation between λ∞ and Ds. Section 4 shows an assessment of 

the proposed empirical relation based on the experimental data introduced in the Section 3. In general, 

the experimental relation between λ∞ and Ds is found to exhibit excellent linearity. 

 

2. Theory 

The empirical relation between λ∞ and Ds was constructed by combining two existing empirical 

relations between λ∞ and ηs, and between Ds and ηs. The former relation is a revised Walden product 

[1] between λ∞ and ηs, which is defined as: 

(2)   λ∞(ηs)
b = a . 

The symbols a (S m2 mol−1) and b are parameters determined by fitting this equation to experimental 

values of λ∞ and ηs. Note that the viscosity ηs in Eq. (2) is divided by 1 Pa s and that the term inside 
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the parentheses in Eq. (2) is dimensionless. The exponent b represents the deviation from the Walden 

product λ∞ηs. Equation (2) has been previously used to study the effects of adding sucrose, glycerol, 

and mannitol to aqueous solutions [1]. The latter relation between Ds and ηs is a revised Stokes-

Einstein relation, given by 

(3)   Ds/T = c/(ηs)
d , 

where c (m2 s−1 K−1) and d are parameters and T (K) is temperature. The two parameters are 

determined by matching Eq. (3) to experimental values of Ds and ηs. For the same reason as in Eq. 

(2), the term inside the parentheses on the right hand side of Eq. (3) is dimensionless. The exponent 

d in Eq. (3) indicates the deviation from the Stokes-Einstein relation [2], defined by Ds = kT/(6πηs rs), 

where k is the Boltzmann constant and rs is the Stokes radius of a solvent molecule. Equation (3) has 

been previously applied [8] to examine the linear relationships between the self-diffusion coefficients 

and viscosities of many molecules such as water, alcohols, and hydrocarbons. 

Substituting Eq. (3) for ηs in Eq. (2) yields the following new empirical relations, with parameters 

q and t, between λ∞ and Ds: 

(4a)   λ∞ = q(Ds/T)t , 

(4b)   ln(λ∞) = ln(q) + t ln(Ds/T) , 

where t = b/d and q = a/ct. The experimental values of λ∞ and Ds can be conveniently fitted into Eq. 

(4b) when we determine the values of parameters q and t. Using Eq. (4b), we investigated the linear 

correlations between λ∞ and Ds for selected alkali cations (Li+, Na+, K+, Rb+, Cs+), tetra-alkyl 

ammonium cations (Me4N
+, Et4N

+, Pr4N
+), and halogen anions (Cl−, Br−, I−) in ordinary water and 
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for these ions except for Rb+ and Cs+ in methanol along with Na+ and K+ in D2O. 

 

3. Materials and methods 

For an electrolyte solution containing ordinary water as a solvent, measurements of λ∞ have been 

previously conducted for Li+, Na+, K+, Cl− at 5°C, 15°C, 25°C, 35°C, 45°C, 55 °C, and 100°C and 

for Rb+, Cs+, Br−, I− at 5°C, 15°C, 25°C, 35°C, 45°C, and 55 °C [1]. The measurements were reported 

to three from five significant figures, and the experimental errors of λ∞ were less than 0.9%. For the 

R4N
+ tetra-alkyl ammonium cations, λ∞ has been previously measured at five temperatures (5°C, 

10°C, 15°C, 20°C, and 25°C) [9]. The experimental values were reported to four significant figures 

and the errors were less than 0.9%. 

Seven experimental values of Ds for ordinary water were taken from Mills’ paper [10]; their 

measurement temperatures were 1°C, 4°C, 5°C, 15°C, 25°C, 35°C, and 45°C, and the self-diffusion 

coefficients were reported to four significant figures and the experimental errors were approximately 

0.2%. To obtain the self-diffusion coefficients of ordinary water corresponding to λ∞ of R4N
+ at 10°C 

and 20°C, we compared a quadratic polynomial, Ds = f1(T/K) 2 + f2(T/K) + f3, with an Arrhenius-type 

function, ln(Ds) = g1/T + g2, where the coefficients f1, f2, and f3 (g1 and g2) were determined by fitting 

the above seven experimental self-diffusion coefficients into the quadratic polynomial (the Arrhenius-

type function). For the quadratic polynomial, fitting of the seven experimental Ds values into the 

quadratic polynomial resulted in f1 = 3.484×10−13 m2 s−1, f2 = – 1.512×10−10 m2 s−1, and f3 = 

1.641×10−8 m2 s−1. The largest and smallest deviations from the quadratic polynomial were 0.8% 



7 

 

(4°C) and 0.1% (25°C), respectively, and the average deviation was 0.4%. For the Arrhenius-type 

function, we obtained g1 = −2.257×103 K, and g2 = −12.34. The largest and smallest deviations from 

the Arrhenius-type function were found to be 2.4% (15°C) and 0.3% (5°C), respectively, and the 

average deviation was 1.3%. By comparing the fitting errors of the quadratic polynomial with those 

of the Arrhenius-type function, we used the self-diffusion coefficients of ordinary water at 10°C and 

20°C, as calculated using the quadratic polynomial. Finally, we obtained values of 1.530×10−9 m2 s−1 

at 10°C and 2.026×10−9 m2 s−1 at 20°C for ordinary water. The errors of these values are considered 

to be approximately equal to those of the experimental values. We also used two experimental values 

of Ds for ordinary water at 55°C and 100°C [11], whose errors were about 1%. 

For Na+ and K+ in heavy water, D2O, these λ∞ values were calculated with empirical equations in 

Refs. [12] and [13], respectively, at 5°C, 15°C, 25°C, 40°C, 45°C, and 55°C. These errors are 

probably less than 1%. We used the Ds values in Ref. [10] at 5°C, 25°C, and 45°C with an error of 

about 0.2%, and in Ref. [14] at 15°C, 40°C, and 55°C with an error of about 2%. 

For the λ∞ values of ions in methanol, the experimental values of four cations (Na+, K+, Me4N
+, 

Pr4N
+) and three anions (Cl−, Br−, I−) were taken from Ref. [15]. The values of λ∞ for these seven ions 

were measured at −15°C, −5°C, 5°C, 15°C, and 25°C [15]. The values were reported to four 

significant figures and the experimental errors were about 0.1%. 

For Li+ in methanol, we calculated the limiting molar conductivities of Li+, λ∞(Li+), using the 

limiting molar conductivities of LiI, Λ∞(LiI), at 0°C, 25°C, 35°C, 47.4°C, and 56.9°C, as taken from 

Ref. [16]. These values were reported to two or three significant figures and had an experimental error 
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of about 1%. We also used values for I−, λ∞(I−), measured at −15°C to 25°C, as taken from Ref. [15]. 

The calculations were based on the law of independent migration of ions [17]. This law is expressed 

by Λ∞(αβ) = λ∞(α+) + λ∞(β−) in the case of monovalent ions α+ and β−. We interpolated and 

extrapolated λ∞(I−) at the five temperatures from 0°C to 56.9°C [16] with the five experimental values 

of λ∞(I−) from −15°C to 25°C [15] and an Arrhenius-type function, ln(λ∞) = h1/T + h2. This function 

has often been used [18] to predict temperature dependency of λ∞ for various ions. The coefficients 

h1 and h2 were determined by fitting the five experimental λ∞(I−) from −15°C to 25°C [15] into the 

function, yielding h1 = −1162 K and h2 = −1.175. The largest and smallest deviations of the 

experimental λ∞(I−) values at −15°C, −5°C, 5°C, 15°C, and 25°C from the Arrhenius-type function 

were 0.11% (5°C) and 0.02% (−5°C), respectively, and the average deviation was 0.06%. Because 

the Arrhenius-type function reproduces the values of experimental λ∞(I−) well, we used this function 

to calculate the five λ∞(I−) values from 0°C to 56.9°C. The values of λ∞(I−)/10−4 S m2 mol−1 obtained 

using the function were: 43.92 (0°C), 62.74 (25°C), 71.19 (35°C), 82.37 (47.4°C), and 91.42 (56.9°C). 

By subtracting λ∞(I−) from Λ∞(LiI) at the five temperatures from 0°C to 56.9°C, five limiting molar 

conductivities λ∞(Li+)/10−4 S m2 mol−1 were obtained: 26.1 (0°C), 41.3 (25°C), 47.8 (35°C), 57.6 

(47.4°C), and 63.6 (56.9°C). The errors of the λ∞(Li+) values were approximately 2%. 

For Et4N
+ in methanol, limiting molar conductivities, λ∞(Et4N

+), were obtained in the same way 

as determined for λ∞(Li+) in methanol. We used the limiting molar conductivities of Et4NBr, 

Λ∞(Et4NBr), measured at 4°C, 10°C, 25°C, 35°C, and 45°C to five or six significant figures and with 

an experimental error of about 0.1% [19], together with Br− values, λ∞(Br−), from −15°C to 25°C  
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[15]. We interpolated and extrapolated the λ∞(Br−) values at the five temperatures from 4°C to 45°C 

[19] with the five experimental values of λ∞(Br−) measured at −15°C to 25°C [15] and an Arrhenius-

type function, ln(λ∞) = h3/T + h4. The coefficients h3 and h4 were determined by fitting the five 

experimental λ∞(Br−) values from −15°C to 25°C [15] into the function to obtain h3 = −1181 K and 

h4 = −1.215. The largest and smallest deviations from the Arrhenius-type function were 0.14% (5°C) 

and 0.04% (15°C), respectively. The average deviation was 0.07%. We used the function to calculate 

the five λ∞(Br−) values from 4°C to 45°C because the Arrhenius-type function reproduced the values 

of experimental λ∞(Br−) well. The values of λ∞(Br−)/10−4 S m2 mol−1 obtained using the function were 

41.88 (4°C), 45.83 (10°C), 56.53 (25°C), 64.29 (35°C), and 72.51 (45°C). Subtracting λ∞(Br−) from 

Λ∞(Et4NBr) at the five temperatures from 4°C to 45°C yielded five limiting molar conductivities 

λ∞(Et4N
+)/10−4 S m2 mol−1: 45.97 (4°C), 49.08 (10°C), 60.50 (25°C), 68.26 (35°C), and 77.05 (45°C). 

The errors of the λ∞(Et4N
+) values were approximately 0.2%. 

For the self-diffusion coefficients of methanol, we used two data sets: five experimental values of 

Ds measured at −86°C, −72°C, −60°C, −33°C, and 19°C to three significant figures and with an 

experimental error of about 5% [20], and five experimental values of Ds measured at 5°C, 10°C, 25°C, 

40°C, and 55°C to three significant figures and with an experimental error of about 0.8% [21]. Using 

these data, we calculated the self-diffusion coefficients of pure methanol at nine temperatures (−15°C, 

−5°C, 0°C, 4°C, 15°C, 35°C, 45°C, 47.4°C, and 56.9°C), corresponding to the λ∞ values of the nine 

ions. Therefore, we compared the quadratic polynomial, Ds = f4(T/K) 2 + f5(T/K) + f6, with the 

Arrhenius-type function, ln(Ds) = g3/T + g4, in a manner similar to calculating the self-diffusion 
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coefficients of water at 10°C and 20°C. The coefficients f4, f5, and f6 (g3 and g4) were determined by 

fitting experimental self-diffusion coefficients from the above two data sets into the quadratic 

polynomial (Arrhenius-type function). For the quadratic polynomial, we obtained f4 = 1.713×10−13 

m2 s−1, f5 = −6.260×10−11 m2 s−1, and f6 = 5.894×10−9 m2 s−1. The largest and smallest deviations from 

the quadratic polynomial were 23.8% (−86°C) and 0.1% (55°C), respectively, and the average 

deviation was 5.4%. We also obtained g3 = −1426 K and g4 = −15.05, for which the largest and 

smallest deviations from the Arrhenius-type function were 3.6% (5°C) and 0.08% (−60°C), 

respectively, and the average deviation was 1.5%. Thus, we calculated the self-diffusion coefficients 

of methanol at nine temperatures from −15°C to 56.9°C using the Arrhenius-type function; this 

function reproduces the experimental values of the self-diffusion coefficients of methanol better than 

those reproduced by the quadratic polynomial. The values of Ds/10−9 m2 s−1 obtained using the 

Arrhenius-type function were 1.17 (−15°C), 1.43 (−5°C), 1.58 (0°C), 1.70 (4°C), 2.07 (15°C), 2.86 

(35°C), 3.30 (45°C), 3.42 (47.4°C), and 3.88 (56.9°C). The errors of the values were approximately 

5%. 

To assess the deviation from Eq. (4), we used the correlation coefficients (CCs) between ln(λ∞) 

and ln(Ds/T) and the average absolute deviations (AADs; %). The AAD is defined by 

(5)   100
)](ln[

)](ln[)](ln[1
AAD

1 exptl,

calc,exptl,



 



N

j j

jj

i

ii

N 


 , 

where λexptl,j(i) is the experimental or calculated value of λ∞(i) of an ion i, and λcalc,j(i) is a value of  

λ∞(i) of the ion obtained from Eq. (4) using parameters q and t. The symbol N is the number of data 
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points (NDP). 

 

4. Results and discussion 

As an example, Figure 1 shows the linear correlations between ln(λ∞) and ln(Ds/T) of Li+, Me4N
+, 

and Cl− in ordinary water. Note that the error bars are not shown because their values were very small. 

For Li+, the fitting intercept ln(q) and slope t were found to be 20.9 and 1.04, respectively. The CC 

was 1.00, and the AAD of Li+ was 0.34%, indicating that the linear correlation of Li+ in ordinary 

water is excellent. The fitting parameters ln(q) and t for Me4N
+ (the five open triangles in Fig. 1), 

were 15 and 0.8, respectively. The CC was 0.98, and the AAD of Me4N
+ was 0.44%. This relatively 

poor CC is mainly ascribed to the fact that λ∞(Me4N
+) at 5°C (left-most open triangle in Fig. 1) is 

larger than the value expected from the other limiting molar conductivities at higher temperatures, as 

noted by Salamanca et al. [9]. These authors studied the limiting molar conductivities of R4N
+ from 

R = Me to R = Bu in aqueous solutions at five temperatures (5°C, 10°C, 15°C, 20°C, and 25°C) and 

found the same trend in the limiting molar conductivity at 5°C for the other tetra-alkyl ammonium 

cations as for Me4N
+. However, the cause for their trends has not yet been elucidated. For ln(λ∞) and 

ln(Ds/T) of Cl− (shown in Fig. 1), we found ln(q) = 19.4 and t = 0.95. The CC and AAD were 1.00 

and 0.07%, respectively. The linear correlation of Cl− in ordinary water was observed to be very 

strong. 

The results of linear correlations between ln(λ∞) and ln(Ds/T) for the 11 ions in ordinary water 

demonstrate the following characteristics (see Table 1). For all alkali and halogen ions, the CCs were 
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1.00 and their AADs were smaller than 0.34%; thus, the linear correlations between ln(λ∞) and 

ln(Ds/T) were found to be excellent. On the other hand, the CCs of the tetra-alkyl ammonium cations 

ranged from 0.95 to 0.98 and their AADs were larger than those of the alkali and halogen ions. The 

main reason for the poorer linear correlations of the three cations, as compared with those of the alkali 

and halogen ions, relates to the fact that their experimental values of λ∞ at 5°C were larger than the 

values expected at higher temperatures, as noted above. As mentioned in Section 2, t is equal to b/d, 

where b and d represent the deviation from the Walden product and the Stokes-Einstein relation, 

respectively. When we compare t‘s values in ordinary water, the value of d is a constant. Thus, the 

value of t is controlled with only the value of b in ordinary water. If the simple hydrodynamic model 

with b = 1 holds for all ions, then these ions have the same value of t (= 1/d). We can see from Table 

1 that the t values range from 0.8 (Me4N
+) to 1.04 (Li+). The values of t for Li+ and Na+ were found 

to quite different from those of larger ions or structure-breaking ions such as Rb+ and Cs+. This 

suggests that the large difference in t between smaller and larger ions is mainly attributed to the 

difference in an ion-solvent interaction or hydration [22, 23] between their ions. However, a relation 

between t and hydration has not been fully clarified [3, 22]. 

Table 1 also shows the linear correlations between ln(λ∞) and ln(Ds/T) for Na+ and K+ in D2O. 

The ln(q) and t values for Na+ and K+ in D2O are roughly the same as those for Na+ and K+ in ordinary 

water, respectively. For example, ln(q) = 20.7 and t = 1.02 for Na+ in D2O, whereas ln(q) = 20.2 and 

t = 1.00 for Na+ in ordinary water. Judging from only the results of Na+ and K+ in ordinary water and 

D2O, we expect that the effect of deuterium on the linear correlations between ln(λ∞) and ln(Ds/T) is 



13 

 

also small for the other ions. 

Next, we consider the linear correlations between ln(λ∞) and ln(Ds/T) for the nine ions (alkali, 

tetra-alkyl ammonium, and halogen ions) in methanol. Figure 2 shows the linear correlations between 

ln(λ∞) and ln(Ds/T) of Li+, Me4N
+, and Cl− in methanol. Note that the error bars of ln(λ∞) are not 

shown in this figure because their values were very small. The error bars of ln(Ds/T) in Fig. 2 are 

equal to an error of 5% . For Li+ in methanol, the parameters determined were ln(q) = 26.7 and t = 

1.26, and the CC and AAD were 1.00 and 0.22%, respectively. The parameters for Li+ were much 

different from those of Li+ in water: ln(q) = 20.9 and t = 1.04. For Me4N
+, the values ln(q) = 20.4 and 

t = 0.99 were also different from those of Me4N
+ in water: ln(q) = 15 and t = 0.8. The linearity between 

ln(λ∞) and ln(Ds/T) of Me4N
+ in methanol was very strong: the CC was 1.00 and the AAD was 0.19%. 

Within the temperature range studied, the abnormal behaviors that appeared in the λ∞ of R4N
+ in 

water were not observed [15] for the λ∞ of R4N
+ in methanol. The empirical relation between ln(λ∞) 

and ln(Ds/T) of Cl− in methanol was also very good, with a CC of 1.00 and AAD of 0.18. The 

parameters ln(q) and t were 22 and 1.06, respectively, and these values were also different from those 

of Cl− in water. 

The results of fitting Eq. (4b) to the experimental values for λ∞ and Ds of all ions in methanol are 

shown in Table 2. All the ions exhibited excellent linear correlations between ln(λ∞) and ln(Ds/T); the 

CCs for all ions were 1.00 and their AADs varied from 0.07% (Et4N
+) to 0.22% (Li+) (although their 

AADs were about three to six times larger than those of K+, Cl−, Br−, and I− in water). The intercepts 

ln(q) changed from 19.7 for Et4N
+ to 26.7 for Li+. The intercept ln(q) for all ions in methanol was 
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found to be larger than that of the corresponding ions in water. The smallest value of exponent t was 

0.97 for Et4N
+ and its largest value was 1.26 for Li+. Except for Me4N

+ and Et4N
+, the exponent t of 

all ions was greater than unity. The exponent t of all ions was greater than that of the corresponding 

ion in water. Thus, we conclude that ln(q) and t depend on the combination of ion and solvent. The 

orders of t’s values in methanol are Li+ > Na+ > K+ within alkali ions and Cl− > Br− > I− within halogen 

ions. This suggests that linear correlations between λ∞ and Ds in methanol are also influenced by ion-

solvent interactions, as seen in water. The effects of such interactions on λ∞ are complicated and not 

fully elucidated theoretically [3]. For example, Hubbard and Onsager (HO) theory cannot explain the 

magnitudes of λ∞ηs for ions, in particular, alkali ions in methanol at ambient conditions. Takahata et. 

al measured [24] molar conductivities of alkali halides at high temperatures in alcohols along the 

liquid-vapor coexistence curve and found that the friction coefficients of ions obtained by the molar 

conductivities are reasonably explained by the HO theory. Thus, if we were able to investigate linear 

correlations between ln(λ∞) and ln(Ds/T) for alkali and halogen ions in methanol at high temperatures, 

a relationship between ln(λ∞) and ln(Ds/T) that does not depend on the type of ions may be obtained 

because ion-solvent interaction near the ion is considered to become weak at high temperatures from 

the results in Ref. [24]. 

 

5. Conclusion 

In this work, we studied the linear correlation between ln(λ∞) and ln(Ds/T) for alkali cations (Li+, 

Na+, K+, Rb+, Cs+), tetra-alkyl ammonium cations (R4N
+, where R = Me, Et, or Pr), and halogen 
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anions (Cl−, Br−, I−) in ordinary water and for these ions except for Rb+ and Cs+ in methanol, together 

with those for Na+ and K+ in D2O. From the results shown in Figure 1, Figure 2, Table 1, and Table 

2, we consider that the linear correlation between ln(λ∞) and ln(Ds/T) for any electrolyte solution 

would be generally strong. This indicates that the λ∞ of an ion is strongly dominated by Ds of the pure 

solvent. Since linear correlations between ln(λ∞) and ln(Ds/T) depend on both the ion and solvent, 

further study on the linearity between ln(λ∞) and ln(Ds/T) is necessary. In future, we will investigate 

the empirical linear relationships between λ∞ and Ds in aprotic solvents such as N,N-

dimethylformamide and acetonitrile. 
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Figure captions 

Figure 1. Linear correlations between ln(λ∞) and ln(Ds/T) in ordinary water for Cl− (circles), Me4N
+ 

(triangles), and Li+ (squares). 

Figure 2. Linear correlations between ln(λ∞) and ln(Ds/T) in methanol for Cl− (circles), Me4N
+ 

(triangles), and Li+ (squares). 
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Table 1 

Fitting parameters ln(q) and t of Eq. (4b) for ordinary water and D2O. CC and AAD are the correlation 

coefficient and the average absolute deviation (%), respectively. NDP is the number of data points. 

The figures in parentheses for ln(q) and t are standard deviations. 

Ion NDP CC AAD ln(q) t 

Li+ 7 1.00 0.34 20.9(0.5) 1.04(0.02) 

Na+ 7 1.00 0.22 20.2(0.3) 1.00(0.01) 

Na+ a) 6 1.00 0.31 20.7(0.7) 1.02(0.03) 

K+ 7 1.00 0.08 18.3(0.1) 0.91(0.00) 

K+ a) 6 1.00 0.30 18.0(0.7) 0.89(0.03) 

Rb+ 6 1.00 0.04 17.9(0.1) 0.89(0.00) 

Cs+ 6 1.00 0.04 17.7(0.1) 0.88(0.00) 

Me4N
+ 5 0.98 0.44 15(3) 0.8(0.1) 

Et4N
+ 5 0.95 0.64 16(4) 0.9(0.2) 

Pr4N
+ 5 0.96 0.62 17(4) 0.9(0.2) 

Cl− 7 1.00 0.07 19.4(0.1) 0.95(0.00) 

Br− 6 1.00 0.04 19.0(0.1) 0.93(0.00) 

I− 6 1.00 0.03 18.8(0.1) 0.93(0.00) 

a) The values of λ∞ were measured in D2O. 
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Table 2 

Fitting parameters ln(q) and t of Eq. (4b) for methanol. CC and AAD are the correlation coefficient 

and the average absolute deviation (%), respectively. NDP is the number of data points. The figures 

in parentheses for ln(q) and t are standard deviations. 

Ion NDP CC AAD ln(q) t 

Li+ 5 1.00 0.22 26.7(0.8) 1.26(0.03) 

Na+ 5 1.00 0.19 24(1) 1.13(0.04) 

K+ 5 1.00 0.20 23(1) 1.11(0.04) 

Me4N
+ 5 1.00 0.19 20.4(0.9) 0.99(0.04) 

Et4N
+ 5 1.00 0.07 19.7(0.3) 0.97(0.01) 

Pr4N
+ 5 1.00 0.19 22(1) 1.05(0.04) 

Cl− 5 1.00 0.18 22(1) 1.06(0.04) 

Br− 5 1.00 0.18 21.4(0.9) 1.04(0.04) 

I− 5 1.00 0.19 21.1(0.9) 1.02(0.04) 
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